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Autonomous Intraluminal Navigation of a Soft Robot using
Deep-Learning-based Visual Servoing

Jorge F. Lazo†1,2, Chun-Feng Lai†1,3, Sara Moccia4,5, Benoit Rosa2, Michele Catellani2, Michel de Mathelin6,
Giancarlo Ferrigno1, Paul Breedveld3, Jenny Dankelman3, and Elena De Momi1

Abstract— Navigation inside luminal organs is an arduous
task that requires non-intuitive coordination between the move-
ment of the operator’s hand and the information obtained from
the endoscopic video. The development of tools to automate
certain tasks could alleviate the physical and mental load
of doctors during interventions, allowing them to focus on
diagnosis and decision-making tasks. In this paper, we present
a synergic solution for intraluminal navigation consisting of a
3D printed endoscopic soft robot that can move safely inside
luminal structures. Visual servoing, based on Convolutional
Neural Networks (CNNs) is used to achieve the autonomous
navigation task. The CNN is trained with phantoms and in-
vivo data to segment the lumen, and a model-less approach is
presented to control the movement in constrained environments.
The proposed robot is validated in anatomical phantoms in
different path configurations. We analyze the movement of the
robot using different metrics such as task completion time,
smoothness, error in the steady-state, mean and maximum
error. We show that our method is suitable to navigate safely in
hollow environments and conditions which are different than
the ones the network was originally trained on.

I. INTRODUCTION

Minimally invasive interventions present a wide range of
benefits such as a smaller risk of wound infections, less
damage to healthy tissue, and shorter postoperative hospital
care. These types of medical procedures take advantage of
already existing orifices or make use of small incisions, to
reach the organs which need intervention. In these scenarios,
navigation inside narrow luminal organs such as the ureter,
colon, or larynx could turn into a complex task, especially
for less experienced operators [1]. Therefore, comprehensive
training is required to master these techniques.

Current constraints in endoluminal navigation can be
considered three-fold. First, there are mechanical design
limitations such as dimensions, steerability, and dexterity
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of the instruments [2]. Second, image-related limitations,
such as low image quality, the presence of artifacts, debris
among others, can compromise procedures [3]. Finally, the
coordination between the hand movement and the matching
with the endoscopic image scenario is far from intuitive and
could lead to hand-eye coordination problems [4].

The necessity of performing intraluminal navigation in
safer and more efficient ways, which can reduce possible
complications such as tools colliding with tissues, mucosal
abrasion, or minor perforations [5], has led to a fast im-
provement of different models of Minimally Invasive Robotic
Intervention (MIRI) systems [6]. Recently different levels of
autonomy have been tested in a few prototypes [7], [8].

Visual servoing has been proposed to control different
types of soft robots based on different actuation mechanisms.
In the case of tendon-driven approaches, Wang et al. propose
an adaptive visual servoing controller where the size of
the manipulators is not required [9]. The model was tested
in open and confined space using a ring-shaped object to
simulate a physical restriction. More recently, Lai et al.
introduce a vision-based approach to control a soft robot
manipulator composed of continuum segments of cable-
driven mechanisms [10]. For Concentric Tube Robots (CTR),
several studies have been conducted. Wu et al. propose a
visual servoing approach based on tracking a laser target.
This method does not require any previous knowledge on the
kinematics model of the robot, just an initial estimation and
a constant update of the Jacobian of the robot [11]. Girerd et
al. present a CTR that can navigate through origami tubular
structures using a combination of a visual Simultaneous
Localization And Mapping (SLAM) approach and a virtual
repulsive force produced by the cloud points detected by
the SLAM algorithm [12]. Visual servoing has also been
implemented in pneumatically driven robots. Fang et al.
use a pneumatically-driven 3-chamber robot and propose an
eye-in-hand servoing method that incorporates a machine
learning-based technique to estimate the inverse kinematic
model without any prior knowledge about the model of the
robot [13]. The work presented by Wang et al. [14] combines
the use of template matching algorithms and Fiber Bragg
Grating (FBG) sensors to achieve a more accurate tracking.

Zhang et al. developed a prototype of an endoscopic robot
for the task of navigation in a colonoscopy scenario [15].
Their prototype consists of biopsy forceps and an auto-
feeding mechanism. Control was achieved using a workspace
model to estimate the tool position. Martin et al. [16]
presented a magnetic endoscope that can achieve different

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 23-27, 2022, Kyoto, Japan

978-1-6654-7927-1/22/$31.00 ©2022 IEEE 6952

20
22

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

79
27

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IR

O
S4

76
12

.2
02

2.
99

82
14

1

Authorized licensed use limited to: TU Delft Library. Downloaded on January 03,2023 at 12:49:59 UTC from IEEE Xplore.  Restrictions apply. 



levels of autonomy as defined by Yang et al. in [17]. Vision-
based navigation is accomplished using a direction vector
acquisition method. In the same clinical scenario, Prender-
gast et al. [18] introduce an autonomous navigation strategy
using a finite state machine region estimation approach.

Even though the approaches mentioned above are effective
in specific scenarios, most of them are still based on the
extraction of user-defined visual features or the use of
extra sensing devices, which might make them prone to
fail in scenarios with large variations in images conditions.
Convolutional Neural Networks (CNNs) on the other hand
tend to generalize better when they are trained in a large
enough amount of data [3]. In this regard, we propose a
CNN based on a model previously validated on patient image
data [19], adapting it to a lighter version to be implemented
in a robotic device.

To address the current obstacles of intraluminal naviga-
tion, in this paper we propose an integrated solution which
comprises: 1) The implementation of a 3D printed flexible
robot which allows fast prototyping, and simplicity in terms
of scalability. 2) A lumen-center detection system based on
a CNN which can handle changing scenarios and variable
image conditions, 3) the synergic integration of the previous
modules using a visual servoing control strategy to achieve
autonomous navigation in narrow luminal scenarios.

We show the robustness of our approach by testing the
navigation capabilities of the robot in different scenarios
and phantoms which were not used to train the CNN. To
the best of our knowledge, this is the first for autonomous
intraluminal navigation MIRI system based on a CNN.

The main contributions of this work are:
• Effective integration of a 3D printed cable-driven flexi-

ble robotic endoscope with a model-less visual servoing
system based on CNNs.

• Validation of the proposed model-less control approach
to bring the robot to the center of the lumen regardless
of its initial position.

• Demonstration of the capabilities of the robot to au-
tonomously find the center of the lumen and safely
navigate through different intraluminal scenarios and
paths which were not previously seen by the robot.

An overview of our approach is provided in the supple-
mentary video.

II. SYSTEM OVERVIEW

A. Robotic Platform

To test the proposed visual servoing approach, a soft
robotic endoscope prototype is manufactured based on the
design of the non-assembly 3D-printed mechanism Heli-
coFlex [20]. The total length of the flexible robotic arm was
set to 70 mm and and the outer diameter was set to 10 mm.
The prototype contains four channels with an inner diameter
of 2.3 mm to allow sensors and cables from the endoscopic
camera to pass through. In the distal end of the prototype,
a cup was designed for the installation of the endoscope
camera module and Electromagnetic (EM) tracking sensors.

It is worth noting that the diameter of robotic arm was
manufactured at a 1:1 scale to a colonoscope, 2:1 scale
to a cystoscope and 3:1 scale to a ureteroscope. While a
smaller robotic arm could easily be manufactured thanks to
the 3D printing technology used in our design, we chose a
larger scale in this paper in order to easily install the EM
sensors and the camera. From the distal end of the steerable
segment, four driving cables were inserted through the cable
guides as illustrated in Fig. 1. These cables pass through
the rigid segment towards the actuation parts. The cables
move freely within the cable guides and are glued to the
tip of the prototype. Between the steerable segment and the
actuation module, there is a rigid body with a total length
of 58 mm. The prototype was 3D printed using digital light
processing technology with a 3D printer (Perfactory 4 Mini
XL, EnvisionTec Gmbh) and R5 epoxy photopolymer resin
(EnvisionTec GmbH, Gladbeck, Germany). The minimum
thickness of the printing layer height was 0.02 mm, and the
x-y accuracy on a printing layer was 0.03 mm.

The actuation module of the soft robotic endoscope pro-
totype, as shown in Fig. 2, consists of one linear stage and
two DC motors (JGY370-30RPM, Walfront) with self-locked
worm gearboxes. The DC motor has maximum 30 RPM and
a nominal torque 7.4 Kg-cm. Two cables on the opposite
side of the flexible robot shaft were fixed antagonistically
on one pulley and then connected to one DC motor (Fig. 1).
This means that each motor pulley system is responsible for
two steering cables and controlling one Degree of Freedom
(DOF) of the soft robotic endoscope prototype. The proto-
type together with its motor pulley system is fixed onto a
linear stage with a 200 mm (EBX1204-200, Garosa) stroke
and a stepper motor (23SSM2440-EC1000, ACT MOTOR)
to provide back and forth movement. In total, there are three
controllable DOFs.

B. Lumen Center Detection

The lumen center detection module consists of two steps,
a lumen segmentation stage and a center detection algo-
rithm. The first part, the lumen segmentation step, consists
of an ensemble of CNNs based on [19] and depicted in
Fig. 3. To make the network resistant against temporal
image variations, such as changes in the illumination, or
the sudden appearance of image artifacts, the segmentation
network takes as input three consecutive frames: {I(t− 2),
I(t−1), I(t)} where I(t) denotes the frame at moment t, and
t − 1, ..., t − n corresponds to the ordered previous frames.
The input is processed by two parallel branches (b1 and b2).
One of the branches processes the continuous blocks while
the other only handle individual frames I(t).

Residual blocks (dashed square Fig. 3) are the core units
of both branches b1 and b2. They bifurcate internally in two
branches, one of them is composed by two consecutive sets
of convolutional layers, followed by a batch normalization
layer using Rectified Linear Unit ReLu as activation func-
tion. The final output of the residual branch is added to the
identity input in the residual block. MaxPooling layers are
used for dimension reduction in the case of the encoding
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Fig. 1. Illustration of the soft robotic mechanism. A) 1) Endoscopic camera is placed in the center pointing to the front, 2) EM sensors illustrated in
yellow were installed. B) Robotic arm, consists of three parts: 3) Steerable segment. The driving cables run through the arm and are glued onto the front
tip, 5) Rigid body, 4) Backbone. and in C) Cable pulley system, 6) Driving cable was antagonistically arranged on the pulley. When the motor rotates, the
driving cable will be pull and released at the same time; 7) Pulley and, 8) DC motor with gearbox and encoder.

Fig. 2. Assembly of the actuation platform for the soft robotic endoscope
and the experimental set-up for the system validation: 1) 3D printed
mold to fix the curve of the lumen phantom; 2) Endoscopic camera;
3) Electromagnetic tracking sensors on the robot tip: 4) Soft anatomical
phantom; 5) Linear stage; 6) Soft robotic arm 7) Electromagnetic field
generator; 8) Linear actuation module; 9) DC motors

Fig. 3. Architecture used for lumen segmentation. The CNN is composed
of two branches, both of them are composed by residual blocks. Branch
b1 process the information of the current frame, while while b2 considers
the information of the current, and three previous frames I(t). The final
output combines the predictions of both branches in the last layer using the
ensemble function F (x)

path, and 2D up-sampling layers for the decoding path,
before connecting this layers to the subsequent residual
block.

The final output of the CNN is obtained using an ensemble
function F (x) followed by a sigmoid activation function. The
ensemble function is defined as:

F (x) =
1

N

N∑
n

xn (1)

where xn corresponds to the individual outputs of the bn
branches and N is equal to the number of the branches in the
network. The CNN is trained to minimize the loss function
based on the Dice Similarity Coefficient Loss defined as:

LDSC = 1− 2TP

2TP + FN + FP
(2)

where TP (True Positives) corresponds to the number of
pixels that are correctly segmented, FN (False Negatives) is
the number of pixels which are classified to be part of the
lumen but actually they are not, and FP (False Positives)
refers to the pixels miss-classified as lumen.

The center detection step is performed to determine the
position of the target p = (px, py) that the robot should
follow. Considering the predicted mask M obtained with the
CNN, the moments of it can be obtained as:

mi,j =
∑
u

∑
w

M(u,w) · ui · wj (3)

with mi,j the image moments and M(u,w) the pixels
corresponding to the segmented area. The px, py coordinates
can be obtained by using:

{px, py} =
{m10

m00
,
m01

m00

}
(4)

To reduce the potential wobbling effects due to noise and
the irregular folds appearing on the lumen, a moving average
filter was applied considering the last four detected points in
the sample window. The output p̂ = (p̂x, p̂y) of the filter, is
sent to the control module.

C. Control Scheme

In order to autonomously navigate through the lumen,
we propose a image-based visual servoing strategy based
on an eye-in-hand robot set-up. The navigation task means
advancing the robot through the lumen, while keeping it in
the center region to avoid the tip of the robot colliding with
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Fig. 4. Diagram depicting the main idea of the Artificial Potential Well
approach. The robot tries to adjust its configuration ΩS by actuating q1
and q2 , to match the the center of the image plane (cx, cy) to the detected
center of the lumen (px, py) An overlay view from the endoscopic camera
and the 2D representation of the potential well is depicted on the right.

the inner walls and produce unintentionally perforations. In
terms of control, this implies two high level tasks: 1) aligning
the robot pose respect to the detected center, and once this
has been achieved within a certain radius δc, 2) moving the
robot forward at a constant speed.

The aim of image-based visual servoing is to find a
mapping relationship g between the task space ΩX , defined
in the image pixel plane, and the robot actuation space ΩQ.
In this work, we define q(k) ∈ ΩQ as the actuators input at
update step k; s(k) ∈ ΩS as the robot configuration under
input x(k) and x(k) ∈ ΩX as the input in the task space.

Considering movements in small steps, and a constant time
step ∆t, the transitions in the task space due to the input
difference q(k) can be defined as:

∆x(k) = g(∆q(k)) (5)

where ∆q(k) = q(k + 1) − q(k) is the difference between
actuator inputs at update steps k and k + 1.

When the kinematic model is known, the Jacobian J is
used to obtain this relationship. Given the characteristics
of the proposed flexible robotic arm, for which kinematic
models are not as accurate as for robots with rigid links, we
opted for a model-less approach. An initial approximation of
the image Jacobian Ĵ can be obtained using:

Ĵ =
[
∆f(q)T

∆q1
... ∆f(q)T

∆qn

]
(6)

where qn indicates the n motor revolution, f(q) is the
position of the target in the image plane coordinate system
and n is the number of actuation variables. The data used for
approximating Ĵ is obtained from commanding the robot to
actuate each cable individually in small steps, and the feature
points x(k) detected at its corresponding q(k). During the
pose correction step, the robot is only bending and not
moving forward. Therefore, for this step, the last column of
Ĵ is replaced by zeros. Note that considering the movement

of the robot tip has only a small movement, the Jacobian
matrix is not updated during the movement.

To actuate motors in charge of the lumen centering
task, we implement a resolved rates approach, which could
provide us with smoother movements desired for surgical
applications, the objective is to generate a control signal for
the actuators inputs velocity q̇ ≜ ∆q/∆t in terms of v⃗. The
relationship between q̇ and v⃗ is defined as:

q̇ = Ĵ+
∆x

∆t
≜ Ĵ+v⃗ (7)

where J+ is the Moore-Penrose pseudo inverse of the
estimated Jacobian, v⃗ is the velocity in the task space.

The desired behaviour for v⃗ would be that when closer
to the target, the smoother the movement is, whereas further
away from its objective, the movement would be faster but
up to a certain limit. Having these considerations in mind,
we proposed a method in which the velocity commanded to
the robot has a direct non-linear correspondence between the
task space ΩX defined in the image plane, and the velocity
actuation space. The way of modeling this behaviour is by
proposing an additional mapping. In this case we opted to
implement an Artificial Potential Well Ua(r⃗), designed to
perform an attractive action between the detected center of
the lumen p = (px, py) and the Set Point (SP), the center
of the image plane c = (cx, cy), with error r⃗ defined as
the vector between p and c. The attraction action presents a
linear behaviour in most of the space, except in the region
close to the center target ρ < δ, where a quadratic-behaviour
potential is proposed in order to avoid singularities. ρ is
defined as the norm of r⃗, and δ is the designed border:

Ua(r⃗) =

{
1
2ψ1 ||⃗r||2 ; ρ < δ

ψ2 ||⃗r||+ κ ; ρ ≥ δ
(8)

ψ1 is a proportionality constant defined as ψ1 =
min [1, ρ/δ], ψ2 = δψ1 and κ is a constant to ensure
continuity in the boundary ρ = δ. A graphical representation
of the Ua(r⃗) is presented in Fig. 4. The relationship to link
the potential well with the robot velocity is given by:

∇Ua = m
dv⃗

dt
(9)

From which v⃗ can be obtained by integrating Eq. (9) and
substituting in Eq. (7) to obtain the values of q̇ in the
actuation space ΩX . In this case m is just considered a
proportionality constant which is set to the unit for simplicity.

The values of q̇ are sent to the actuator controller which
contains two PID and one proportional controller for two DC
motors and for the linear stage, respectively. Note that the
forward movement is only allowed when ρ < δc in which
case, the insertion speed is set to a constant value q̇step,
thus q̇ = [0, 0, q̇step]

T . A complete diagram depicting the
complete control strategy in this section is shown in Fig. 5.

III. SYSTEM VALIDATION

Ten ureter phantoms of different colors and diameters were
manufactured using silicone-based liquid polymer, Dragon
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Fig. 5. Control architecture of the proposed model-less visual servoing system. Given a target point p = (px, py), detected by the lumen center detection
module, its position is compared with set point c = (cx, cy) to obtain the error r. The velocity v is determined using the artificial potential well according
to the obtained r, which is translated to the motors q̇ using the Moore-Penrose inverse Ĵ+. If the norm of r is below a threshold value δc the robot will
move forward. At every step the robot position is updated and the endoscopic camera captures new images. The new image will first be stacked feedback
to the CNN to segment the lumen image into binary image and detect the subsequent target point.

Fig. 6. Pathways considering for testing the navigation task of the robot:
A) Straight line; B) Left curve; C) Right curve; D) Two continuous curves.

Skin (Smooth-On Inc.). The phantoms have a tubular shape
and are easy to bend. A sample is depicted on Fig. 2.

To resemble the curved nature of real endoluminal organs,
four different pathways were considered as depicted in Fig. 6.
To have a reproducible ground-truth path, four molds were
3D printed as the designed pathways and the phantom was
placed inside them. On the tip of the robot, three EM
sensors were installed at an equidistant radius from the center
and in an equilateral triangle configuration. The position of
the robot tip was monitored using an EM tracking Aurora
Planar 20-20 system (Northern Digital Inc, Canada). The
EM field generator was set next to the robot tip and the
experimental set-up as shown in Fig. 2. To validate the
modules in the proposed endoscopic system, different set
of experiments for Lumen Segmentation, Robot Centering
and Autonomous Intraluminal Navigation were conducted.
The lumen segmentation task was tested separately a priory
before integrating it with the visual servoing module. The
experimental protocols and the performance metrics for each
task are described in detail in the following subsections.

A. Lumen Segmentation Task

Using the endoscopic camera (MC2, Redlemon), different
from the one installed in the robotic model, video-clips
from the inside of each of the phantoms were recorded, and
frames were extracted to generate the datasets for training
and validate the lumen segmentation module. In total 3,387

frames were used for training and validation of the network.
1,719 of this frames were extracted from the phantom video-
clips whereas 1,668 frames came from videos of 4 patients
undergoing ureteroscopy. A case-wise hold-out strategy was
used to test the performance of the network. A total of
277 frames were used as test dataset and these frames
were obtained from videos of the phantom used as well in
the autonomous navigation experiments. The phantom used
during test was manufactured using a different hue than
those used for training. A 3-fold cross validation strategy
was used to determine the CNN optimal hyperparameters:
learning rate and batch size. The metric used to determine
the best model was the Dice Coefficient (DSC) defined as
DSC = 1− LDSC .

Once the hyper-parameters were chosen, the network was
retrained randomly splitting the dataset in a ratio 70/30
regarding training and validation data. The test dataset cor-
responds to 277 image frames from two phantoms which
were hold out from any previous training data. The images
were manually labeled by 3 independent experts and the
final ground truth was defined as the intersection areas
proposed by each of them. An ablation study was performed
comparing each of the separate branches b1, which processed
only Single Frames (SF), and b2, which processed consec-
utive multiple frames (MF), against the proposed network
consisting of the ensemble of SF and MF.

The average center detection time is 0.09s deployed on
a NVIDIA GeForce RTX 2080 GPU, using Python 3.5 and
Tensorflow 2.4.

B. Robot Centering Task

The purpose of the robot centering task is to test the
performance and response of the proposed visual servoing
architecture. For this task, the pathway A with straight profile
was used and the robot tip was placed at the opening of the
phantom. The initial orientations of the tip were set manually
by commanding the robot to point beyond a radial distance of
320 pixels from the center, detected by the center detection
algorithm. Ten experiments with random initial orientations
were carried out. Common specifications, e.g. Steady-State
Error (SSE), Rising Time (RT), Settling Time (ST), and
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Fig. 7. Response of the Potential Well controller to the detected center
of the lumen. a) Sample of detected target, and the trajectory followed
by the robot. The cross represents the detected target p̂ = (p̂x, p̂y) at
the beginning of the motion t=0. The dashed green line is the trajectory
followed by the robot and the green circle on the trajectory is p̂ on any
time t=0. b) Normalized Target Response (NTR) values, p̂xn(t), p̂yn(t)
and ρn(t), of the robot centering task. The Settling Time (ST) is the last
value of ρn(t) that falls within a threshold of ±0.1 respect to the set point.
The Rising Time (RT) is the time for the normalized distance ρn(t) to rise
from 0.2 to 0.8.

Over-Shooting (OS) were used as performance metrics.
In order to compare results from different experiments,

we define three Normalized Target Response values (NTRs),
p̂xn(t), p̂yn(t) and ρn(t). The subscript n indicates that
p̂xn(t), ˆpyn(t) and ρn(t) are normalized from the recorded
target point p̂x(t), p̂y(t) and target distance ρ(t) over time
stamp t = t1, t2, ...ti, respectively. The three NTRs are
defined as:

{p̂xn(ti), p̂yn(ti)} =
{ p̂x(t0)− p̂x(ti)

p̂x(t0)
,
p̂y(t0)− p̂y(ti)

p̂y(t0)

}
(10)

ρn(ti) =
ρ(t0)− ρ(ti)

ρ(t0)
(11)

where t0 is the initial time when the experiment starts and ti
is any time stamp in t. Each NTR in each experiment starts
with a value 0.0 at t0. When the target point is reached, the
NTR has a value 1.0, which is defined as the Set Point(SP)
of the response of each experiment. With the NTRs, we can
define the performance metrics for this task as follows:

• SSE: The percentage error from the SP to the ρn(ti)
when the robot stops moving.

• RT: The time for ρn(t) to rise from 0.2 to 0.8
• ST: The time when the last value of ρn(t) that falls to

within ±0.1 from the SP
• OS: This is defined in each of the coordinates x and
y axes, instead of the distance. The over-shooting at
each coordinate is the percentage error between the
maximum p̂xn(t) and p̂yn(t) and the SP, in case p̂xn(t)
or p̂yn(t) is larger than the SP.

An example of the response curves from one of the experi-
ments is shown in Fig. 7.

C. Autonomous Intraluminal Navigation Task

In the intraluminal navigation task, the proposed endo-
scopic robot system should autonomously navigate through
the lumen in all the paths defined in Fig. 6. At each
experiment the starting point was defined at the opening

of the phantom with a random orientation, the insertion
direction is always vertical to the opening of the lumen. The
goal line was set as a virtual crossing line, perpendicular
to the displacement axis of the linear stage in the EM
reference frame. The traveling distance along the axis of
the linear stage is on average 130 mm long. The values
of δ and δc, which allow the movement forward, were set
empirically to 25 and 0.6× δ respectively. Five experiments
were carried out with path A, and for each path B, C
and D, 15 experiments were carried out for each of them.
Calibration of the EM tracking system was done before each
experiment by measuring the eight corners of the 3D-printed
molds of which has known dimensions. The orientation of
the theoretical ground-truth path was then registered to the
EM tracking system reference frame using Iterative Closest
Points algorithm.

Errors and smoothness of the trajectory were considered
as the performance metrics for the autonomous intraluminal
navigation task and they are defined as follows:

• Completion Time (CT): The time when the proposed
robot system completes the task.

• Mean Absolute Error (MAE): The absolute error ez
was compared between the ground-truth path and the
measurement of EM tracking sensors along the depth
direction. The MAE is the sum of ez divided by the
number of data points.

• Max Absolute Error (MaxAE): Largest ez along the
depth axis.

• Log-Dimensionless Jerk (LDJ): Is the negative value
of the natural logarithm of the mean absolute jerk,
normalized by the peak speed and multiplied by the
trial duration [21], defined as:

LDJ = −ln
(
∆t

v2p

∫ tf

ti

∣∣dv2
dt2
∣∣2dt) (12)

where ∆t is the trial duration and vp is the peak speed.
• Spectral arc-length (SPARC): As defined in [22], it

refers to a smoothness metric which measures the arc
length of the Fourier magnitude spectrum of the speed
profile v(t) within an adaptive frequency range.

SPARC = −
∫ ωc

0

√√√√( 1

ωc

)2

+

(
dV̂ (ω)

dω

)2

dω (13)

where V (ω) is the Fourier magnitude spectrum of v(t),
and [0, ωc] is the frequency band occupied by the given
movement. ˆV (ω) is the normalized amplitude spectrum.

• Number of peaks (NP): defined as the number of
velocity profile peaks exceeding a prominence of 0.05
respect to its neighbors divided by the path length

By definition LDJ and SPARC should have negative values
and results closer to zero represents smoother movements.

IV. RESULTS AND DISCUSSION

A. Lumen Segmentation Task

The median DSC values obtained on the test dataset for
each of the networks were 0.84, 0.86 and 0.88, for SF, MF,
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Fig. 8. Boxplots of the DSC values for the different lumen segmentation
networks tested. SF: Single input-frame network (branch b1), MF: 3
consecutive frames (branch (b2) and the Proposed network consisting of
the ensemble of SF and MF networks.

and the proposed network respectively. Figure 8 shows the
results from these experiments. The Kruskal-Wallis test was
used to determine statistical significance among the models,
however, no statistical significance was found. This might be
related to the fact that the dataset in which it was tested does
not contain challenging cases. The ensemble model, which
obtained the best performances and in previous work has
shown to be the more robust against conditions variability
and artifacts [19], was chosen to be implemented in the visual
servoing module.

B. Robot Centering Task

The results for the robot centering task are presented in
Table I. The robot was able to reduce the error bellow a 10%
from target distance, except for one case (SSE = 11%). Most
of the trials reached the SSE within 25 seconds and two trials
needed almost 50 seconds to settle. It is likely that in those
trials with higher ST or bigger error, the targets fell into
the dead-zone of the robot. This issue for this cable-driven
mechanism should be included in the future work to further
improve the performance of the SSE. There is a noticeable
difference of the average OS concerning the x-axis and the
y-axis. On the y-axis, no trial exceeded more than 5% OS.
On the other hand, for the x-axis, three trials exceeded 10%
and one exceeded 20%. This might be caused by the weight
of the robot tip and could possibly be solved by providing a
non-radial-homogeneous potential well in future work. The
results from this task clearly showed that the proposed robot
is able to correct itself from a random starting pose given
a visible target. Despite the slow response, in all cases the
robot is able to center the camera in the target region.

TABLE I
RESULTS OF THE ROBOT CENTERING TASK.

Metric Avg ± STD
Steady state error(%) 5.84 ± 2.67

Rising time(s) 8.34 ± 1.16
Settling time(s) 27.0 ± 15.9

Over-shooting in x(%) 11.8 ± 7.58
Over-shooting in y(%) 4.02 ± 3.59

C. Autonomous Intraluminal Navigation Task

For each path 15 experimental trials were performed.
Figure 9 shows examples of the path followed in each of the
different scenarios along with the respective absolute error
graph. In all the cases, the robot was able to complete the task
by reaching the goal point. The average CT is the shortest in
path A with a time of 81.2±7.28 s, and the longest in path D
with 212.9 ±57.8 s. The results are as expected given that the
geometry in path A is a straight way while the path D has a
S-shaped curve which is considered more difficult. For paths
B and C, which are symmetrical across the displacement
axis, there is a difference on CT of 37.8 s.

The highest MAE was in path B with 2.17±0.34 mm and
was the lowest for path A with 0.86±0.33 mm. For MaxAE
path B presents the highest value again with 6.11±0.37 mm
and path A presents the lowest value with 2.09±0.23 mm.
The difference in these metrics between paths B and C could
be related to manufacturing issues and asymmetrical elonga-
tion of the tendon wires after repetitive tension. However,
it was observed that in all cases, the robot stopped moving
forward several times and corrected its orientation avoiding
collisions with the inner wall.

Regarding smoothness there is no significant difference
between the different paths in terms of LDJ and SPARC. In
path A the lowest values are obtained for both metrics with
12.31±0.40 and -9.16±0.15 respectively, and the highest
values are on path D with 15.3±1.10 and -9.80±0.34. As
for NP the behaviour is similar, the difference between the
best (A) and the worst (D) performance is of 63.9. These
results are understandable since the regularity and precision
of the robot’s movement of is steady regardless the path.

Path D corresponds to a more realistic and complex
scenario where the lumen twists in consecutive curvatures.
Having in mind that the inner diameter of the lumen is 15
mm, and the path followed by the robot presents an average
error bellow 2 mm and a maximum error of 4.35 mm, this
indicates the robot is following the center-line of the phantom
lumen and avoiding collisions with the inner walls. This also
implies that implementation of the endoscopic robot using
vision feedback instead of position feedback seems plausible
for autonomous navigation in narrow lumen. Nevertheless,
the average CT is around 3.5 minutes for an average traveling
distance of 130 mm, which needs to be improved.

Also it was observed that sometimes the correction of the
trajectory happened at a very early stage, when a curvature
of the lumen was detected, but its actual position was further
in the back, delaying the forward movement. This might be
related to the current implementation which is not able to
determine depth from video frames.

V. CONCLUSION

In this work we presented a 3D printed flexible robotic en-
doscope integrated with a model-less visual servoing method,
based on CNNs, for autonomous intraluminal navigation.
The results obtained show that the robot is able to find the
center of the lumen and correct its position to safely navigate
through different pathways not previously seen by the robot.
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Fig. 9. Sample results of the autonomous intraluminal navigation for each of the four different paths. The top figures show the comparison between the
path followed by the robot and the ground truth path in the center of the lumen phantom. The bottom plots show the absolute error ez between the ground
truth path and the robot tip position measured by the EM tracking sensor along the path axis.

TABLE II
RESULTS OF THE INTRALUMINAL NAVIGATION TASK FOR THE 4 DIFFERENT PATHS.

Path A Path B Path C Path D
Metrics* Avg ± STD Avg ± STD Avg ± STD Avg ± STD
CT (s) 81.2 ±70 119.7±33 157.5±57 212.9±57

MAE (mm) 0.86±0.33 2.17±0.34 1.74±0.32 1.99±0.29
MaxAE (mm) 2.09±0.23 6.11±0.37 5.12±0.56 4.35±0.41

LDJ -12.5±0.40 -13.5±1.42 -14.4±1.41 -15.3±1.10
SPARC -9.16±0.15 -9.16±0.27 -9.48±0.37 -9.80±0.34

NP 105.2±14 130.8±42 163.06±58 169.10±40
*Metrics: Completion Time (CT), Mean Absolute Error (MAE), Max Absolute
Error (MaxAE), Log-dimensionless Jerk (LDJ), Spectral Arc Length (SPARC)
and number of peaks (NP).

With this study we showed that it is possible to use a CNN
previously trained in real-patient data, and adapt it to make
it work for visual servoing in phantoms. Validation in more
realistic scenarios is considered as a future task, as well as
a comprehensive comparison with human steering manually,
semi-automatically or guided. Further work includes finding
alternatives for depth estimation from monocular images,
which could improve navigation, and the integration of
computer vision modules for tissue segmentation that could
require a more detailed examination.

The results obtained in this work show that automation
of certain tasks in endoscopic interventions is possible,
and opens the way towards further development of robotic
models and new control strategies to aid in endoscopic
interventions.
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