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Abstract— Motion planning in off-road environments re-
quires reasoning about both the geometry and semantics of the
scene (e.g., a robot may be able to drive through soft bushes but
not a fallen log). In many recent works, the world is classified
into a finite number of semantic categories that often are not
sufficient to capture the ability (i.e., the speed) with which a
robot can traverse off-road terrain. Instead, this work proposes
a new representation of traversability based exclusively on robot
speed that can be learned from data, offers interpretability and
intuitive tuning, and can be easily integrated with a variety of
planning paradigms in the form of a costmap. Specifically, given
a dataset of experienced trajectories, the proposed algorithm
learns to predict a distribution of speeds the robot could achieve,
conditioned on the environment semantics and commanded
speed. The learned speed distribution map is converted into
costmaps with a risk-aware cost term based on conditional
value at risk (CVaR). Numerical simulations demonstrate that
the proposed risk-aware planning algorithm leads to faster
average time-to-goals compared to a method that only considers
expected behavior, and the planner can be tuned for slightly
slower, but less variable behavior. Furthermore, the approach
is integrated into a full autonomy stack and demonstrated in a
high-fidelity Unity environment and is shown to provide a 30%
improvement in the success rate of navigation.

I. INTRODUCTION

Autonomous robotic navigation in off-road environments
is important for many tasks, including planetary explo-
ration [1], [2] and search-and-rescue missions [3]. In an off-
road setting, a fundamental challenge in the local planning
problem is that both the geometry (e.g., positive and negative
obstacles) and the semantics (e.g., terrain type, time of year)
impact the speed and safety with which a robot can traverse
the environment. For example, Fig. 1 shows a mobile robot
surrounded by grass and foliage. While a purely geometry-
based system might consider much of the scene as obstacles
(e.g., since a lidar pointcloud would have many returns from
the leaves and grass), the semantics suggest much of the
vegetation is sufficiently soft that the vehicle could drive
through it, but trees and rocks would likely stop the robot.

To capture these semantics, many approaches train se-
mantic segmentation modules for camera images [4], [5] or
lidar pointclouds [6], which can reduce the dimensionality
and enable learning in a low visual fidelity simulation envi-
ronment [7], [8]. However, the ontology of existing labeled
datasets for off-road navigation [4], [9]–[11] is a fundamental
limitation for capturing traversability. For instance, the 20
and 24 classes in [9], [10] only contain the broad “bush”,
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Fig. 1: Off-Road Navigation. Even though much of this scene can be
categorized broadly as grass/foliage, the vehicle’s ability to traverse through
different regions can vary dramatically. This paper proposes a planner
that accounts for such variability within semantic terrain/object classes, by
learning a speed distribution map.

“grass”, and “tree” classes for vegetation, where the varying
degree of traversability within each class is not captured.
For instance, some bushes can be driven through, some
will slow the robot down, and others will stop the robot.
Alternatively, [11] contains labels with finer granularity such
as “traversable grass” and “non-traversable low vegetation”,
but these are specific to the large vehicle in mind during the
expensive manual labeling procedure, and thus would not
generalize to other vehicles.

Furthermore, because each individual mission or operator
can have different objectives, it is important that the risk
tolerance of the planner (e.g., whether to take a shortcut that
has a 1% chance of causing the robot to get stuck) can be
quickly adjusted. Risk-aware planning has been extensively
studied, e.g., [12]–[16], with different notions of risk such
as collision probability and classification uncertainty. Recent
works such as [17], [18] have adopted conditional value at
risk (CVaR) as the risk metric, which has been analyzed in-
depth in [19] about why CVaR allows robots to assess risks
rationally. Alternatively, other work tries to directly learn
policies, dynamics models, or cost functions [20]–[26] that
satisfy the desired risk tolerance. However, these off-road
techniques often require a non-intuitive cost function tuning
procedure or a complete re-training of the model to adjust
the risk tolerance.

To address these issues and bridge the gap between seman-
tic perception and risk-aware planning, this work proposes a
new representation of traversability as a general distribution
of robot speed conditioned on environment semantics and the
commanded speed. The proposed pipeline first automatically
labels a dataset of collected trajectories with realized vehicle
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speeds to capture the variability in speed outcomes associated
with each semantic class. This dataset can then be used to
learn a distribution of achievable speeds, conditioned on the
commanded speed and semantics of the nearby terrain. The
learned speed distribution is then converted into a speed map
representation that can be leveraged with various planning
paradigms. Notably, we incorporate risk-awareness into the
planner via CVaR and show how to adjust the risk without
collecting any extra data or re-training the learned model.

The contributions of this work include: i) a new represen-
tation of traversability as a probability distribution of speeds
the robot could achieve, which can be learned from data and
allows physically meaningful interpretation in m/s; ii) a new
risk-aware minimum-time planner based on Model Predictive
Path Integral (MPPI [27]) control that uses the learned speed
distribution map, allowing risk level adjustment without re-
training or collecting more trajectories; iii) a demonstration
of a robot reaching its goal with up to 30% improvement in
success rate than a risk-unaware algorithm in a high-fidelity
Unity simulation environment in a full autonomy stack.

II. RELATED WORK

Traversability analysis can be achieved via both proprio-
ceptive and exteroceptive [28] sensors, where the former cat-
egory includes IMUs that measure vibration and orientation
of the robot [29], [30], and the latter category that includes
lidar and RGB cameras that provide geometric and semantic
understanding of the environment. Purely geometry-based
analysis has been widely adopted, e.g., [18], [31]–[33],
which often involves a weighted sum of costs extracted
based on geometric properties such as slope, roughness
and step height. Notably, geometry-based methodology has
been demonstrated successfully in the DARPA Subterranean
Challenge [18], where the cost function is assumed to be
Gaussian, allowing easy computation and adjustment of risk
level via CVaR. In contrast, this work proposes a new rep-
resentation of traversability based on experience and brings
semantics into the problem.

Among methods that combine semantic-based and
geometry-based techniques, [34] proposes a fusion strategy
that uses geometry-based cost (slope added to step height) for
the terrain, unless the associated semantic label is known to
be undesirable. [35] uses both geometric and semantic layers
in a multi-layer costmap, and fuses the costs by accounting
for layer uncertainty. [6] classifies a dense 3D pointcloud
to extract traversability labels (Free, Low Cost, Medium
Cost, Lethal), where the ground truth labels are designed
based on human expertise. These methods either require
human expertise in associating semantics with traversability,
or require combining costs with different units, which makes
tuning non-intuitive. In contrast, this work uses vehicle speed
as a common unit in the cost function to enable intuitive risk
level adjustment.

Other recent work proposes methods to learn navigation
policies or cost functions from experience via imitation learn-
ing [20]–[23], inverse reinforcement learning [24], semi-
supervised learning [36], or model-free reinforcement learn-

ing [37]. While these methods leverage datasets or simulators
to reduce some of the expert knowledge requirements, a key
limitation is that adjusting the risk tolerance could require
collection of a new set of expert trajectories and/or re-
training the learned models. Alternatively, [25], [26] learn
a predictive “events” (e.g., bumpy, collision, smooth) model
from a diverse dataset of experiences. By predicting the
probability of undesirable events, the riskiness of the planner
in [25] can be adjusted by changing the penalty for these
events without re-training the network. However, the cost
terms in [25] have different units such as terrain bumpiness
and goal proximity, leading to a difficult conversion from
risk tolerance to reward function weights. This work also
leverages learning from a dataset of experienced trajectories,
but instead proposes a pipeline to produce speed maps that
can be incorporated into many planning paradigms.

III. TRAVERSABILITY

For fast off-road navigation, time-to-goal is a typical
performance measure that depends on the quality of planned
trajectory and how well a robot executes the planned ma-
neuvers. A good assessment of terrain traversability allows
a planner to generate trajectories that are both fast and
can be executed. To this end, the discrepancy between
the vehicle’s planned speed and realized speed provides
a natural quantity to describe the traversability of terrain.
Importantly, traversability is probabilistic in nature, due to
imperfect sensing, broad semantic class labels for terrain, and
the dynamics of vehicle-terrain interactions. Therefore, we
propose to capture traversability via a conditional distribution
of realized speed given the commanded speed and sensor
observation.

A. Traversability as a Conditional Speed Distribution

Denoting the set of realized speeds as S and the set of
possible observations about a terrain patch as O, we define
traversability of the terrain as the conditional distribution

pθ(s | scmd, o) : S | S ×O → R, (1)

where s, scmd ∈ S are the realized speed and the commanded
speed, o ∈ O is the observation about the terrain, and pθ is a
probability distribution parameterized by θ, which in practice
can be learned via a neural network. This representation
is general enough to capture the multi-modality of the
distribution and allows the planner to extract desired statistics
for trajectory planning such as mean, modes and variance.

For high-speed navigation in a cluttered environment (e.g.,
a forest), the planner often has to trade off opportunities to
reduce navigation time with the risk of colliding with an
obstacle or getting stuck. To quantify these risks, we adopt
the Conditional Value at Risk (CVaR), which satisfies a group
of axioms important for rational risk assessment [19]. The
Conditional Value at Risk at level α ∈ [0, 1] is defined as:

CVaRα(S) :=
1

α

∫ α

0

VaRτ (S) dτ, (2)



Fig. 2: This work defines conditional value at risk (CVaR) to capture worst
case speed (i.e., near 0), rather than other common definitions based on the
(right-side) tail.

where VaRα(S) is the Value at Risk, or the α-quantile:

VaRα(S) := max{s | p(S < s) ≤ α}. (3)

Note that we define CVaR to capture the worst-case speed
outcomes (i.e., lowest speed), as visualized in Fig. 2. In-
tuitively, CVaRα(S) measures the average speed outcomes
that are lower than the α-quantile of the speed distribution,
capturing the worst-case expected speed. Notice that CVaR
is the same as the mean when α = 1, so often a low α is
picked for sufficient distinction from the expectation.

B. Generating a Risk-Aware Traversability Map

Next, we show how a learned speed distribution
from Eq. (1) can be used to convert a semantic map
(built from the robot’s sensor data) into a representation of
traversability for the planner.

The architecture is illustrated in Fig. 3. The input to the
pipeline is a semantic gridmap, Ms ∈ RC×H×W , with
C semantic classes, width W , and height H . Let M ∈
RK×H×W represent a K-layer speed map, where each layer
has width W and height H . For map M, we denote mk,h,w

as the cell value in layer k, row h and column w. Given the
speed limits of [0, smax], we let the k-th layer correspond to
the commanded speed range of [ (k−1)

K smax, kK s
max], where

k ∈ {1, . . . ,K}. Lastly, we associate the distribution pθ(s |
scmd = (k−0.5)

K smax, oh,w) to each cell indexed by (k, h, w),
where oh,w denotes the observation about the terrain patch
that lies in the cell. Note that any cell with unknown
traversability should be marked, e.g., with a negative number.

Although it is up to the user to populate the map cell values
based on the associated speed distribution, it is important that
the values provide interpretability and allow the user to easily
adjust the riskiness of the planner. To this end, we propose
to use the convex combination of the mean and CVaRα(·) at
level α of the underlying speed distribution:

mk,h,w = β · srisk
k,h,w + (1− β) · smean

k,h,w, β ∈ [0, 1], (4)

where we know 0 ≤ srisk
k,h,w ≤ smean

k,h,w ≤ smax. Intuitively,
mk,h,w can be interpreted as the risk-adjusted speed which
lies between the CVaR speed estimate and the mean speed
estimate due to convex combination.

For convenience, we define a look-up function S(M,p, s)
that returns the risk-adjusted speed estimate in the multi-layer

speed map M given a position p ∈ R2 and speed s ∈ R:

S(M,p, s) =

{
0 if out-of-map or unknown,
mk,h,w otherwise,

(5)

where (k, h, w) are the map indices corresponding to position
p and speed s if p lies in the map. Note that 0 speed is
returned when the look-up is not valid, which is desirable
when the unknown region can be dangerous, such as water.
However, if domain knowledge suggests that the unknown is
benign, a more optimistic value can be returned such as the
query speed s.

IV. MINIMUM TIME NAVIGATION

We adopt the MPPI controller proposed in [27, Algo-
rithm 2] for minimum time planning. MPPI is an information
theoretic model predictive control (MPC) algorithm that tries
to approximate the mean of the optimal control distribution
via weighted samples of a Gaussian proposal distribution in
order to minimize the KL-divergence between the two. This
approach is attractive because it is derivative-free and works
with general cost functions and dynamics. Next, we follow
the notation in [27] and propose a new cost function for min-
time planning using the proposed risk-aware traversability
map. Fig. 4 illustrates a high-level overview of our strategy
and the notation used.

Consider the discrete time stochastic system:

xt+1 = F (xt,vt), (6)

where xt ∈ Rn is the state vector and vt ∈ Rm ∼ N (ut,Σ)
is the noisy realization of the nominal control input ut ∈
Rm. Given the initial condition x0, a sequence of input
v0:T−1 leads to the state trajectory x0:T according to the
dynamics (6). For the purpose of min-time planning, we
assume it is possible to extract the planar position pt ∈ R2

and speed st ∈ R from state xt. Furthermore, let 1done(x0:t)
be an indicator function that returns 1 when any state xτ has
reached the goal at position pgoal for 0 ≤ τ ≤ T , and returns
0 otherwise.

The min-time state-dependent objective is defined as

C(x0:T ) = φ(xT ) +

T−1∑
t=0

q(xt), (7)

where φ(xT ) and q(xt) are the time-to-go and the stage cost,
respectively:

φ(xT ) =

∥∥pgoal − pT
∥∥

sdefault

(
1− 1done(x0:T )

)
(8)

q(xt) =
st ·∆

S(M,pt, st)

(
1− 1done(x0:t)

)
, (9)

with sdefault being the default speed for estimating time-to-go
at the end of the rollout, and ∆ being the sampling duration.
Intuitively, the lower the risk-adjusted speed S(M,pt, st)
is, the more nominal stage cost ∆ is scaled up, indicating
longer time to travel. If any state xτ reaches the goal for
0 ≤ τ ≤ T , all subsequent states do not incur stage cost or
cost-to-go.



Fig. 3: Low-dimensional visualization of the pipeline to generate risk-aware speed map from semantic input and desired commanded speeds. A 10-layer
100 × 100 map with 10 output speed bins can be efficiently evaluated on an 8-core CPU under 2 ms with a simple neural network with two 64-node
hidden layers. The speed distribution maps allow any planner to easily adjust the risk tolerance via relative weight β or via the α level of CVaR directly.

Fig. 4: Diagram showing how each MPPI rollout is assigned cost in order
to minimize time-to-goal, where the underlying colored grid is the risk-
adjusted speed map. The cost (7) consists of the stage cost q(xt) (blue) for
0 ≤ t ≤ T − 1 and the estimated time-to-goal φ(xT ) (orange). The core
idea is that the nominal traversal time at each step t will be adjusted based
on the risk-adjusted speed estimate S(M,pt, st), where s is speed map,
pt and st are the position and speed extracted from state xt. Note that if
any state on a rollout satisfies the goal tolerance (red), the subsequent states
do not accumulate stage cost or the terminal cost (shown in green).

At each time t and given the nominal control sequence
ut:t+T , MPPI estimates the mean of the optimal control
distribution as the weighted sum of control rollouts that are
sampled from N (uτ ,Σ) for all t ≤ τ ≤ t+T . The weight of
each rollout is an exponentiated cost function (7) evaluated
along the induced state trajectory. The algorithm runs in
an receding horizon fashion, where the nominal control
sequence ut+1:t+T+1 in the next round is set to be newest
estimate of the mean of the optimal control distribution.

V. RESULTS

In an off-road environment, where the geometric and
semantic properties are hard to assess, traversability can be
highly non-Gaussian. For instance, if terrain is classified
as vegetation but there is no distinction between dense
bushes or soft grass, the speed outcome may exhibit bi-
modal distribution (i.e., being stuck or not). With this core
issue in mind, we first validate our approach of capturing
speed distributions in a grid world (Section V-A), and then
integrate the proposed planner into a full autonomy stack
in a high-fidelity Unity environment (Section V-B). Given
this environment and autonomy stack, Section V-C describes
the process of collecting a training dataset and training a
neural network to predict PMFs of the speed distribution.
Then, Section V-D demonstrates the improved navigation

performance as a result of the learned speed maps and risk-
awareness.

A. Grid World Navigation

To validate that a speed distribution representation of
traversability can be incorporated into a risk-aware planner
and lead to improved performance, we first designed a grid
world (see upper left of Fig. 5), where each 1 m × 1 m
cell is associated with a semantic type (either vegetation or
dirt). The task is to navigate from the start position to the
goal position in minimum time by planning a sequence of
actions chosen from {UP,DOWN,LEFT,RIGHT} that move
the robot to a neighboring cell in the corresponding directions
with nominal speed of 1 m/s. Although every action is
deterministic, the actual traversal time is stochastic due to
the underlying speed distribution of traversed cell, as shown
in Fig. 5 (upper right). Note that we use a single-layer
traversability map (i.e., K = 1) and denote mh,w for each
value.

To find the min-time trajectory, we use a best-first search
algorithm [38] with a prioritized search queue where new
nodes with reachable states given actions are added. The
stage cost of the map cell at row h and column w is the
estimated traversal time 1/mh,w, where CVaR is fixed at
level α = 0.1. We compare the performance of the planner
with β ∈ {0, 0.5, 1}, which correspond to using mean speed,
risk-adjusted speed, and the (pure) risk speed. The optimal
trajectories and their average time-to-goal values over 1000
trials are visualized in Fig. 5 (upper left and bottom). By
only capturing the mean speeds (β = 0), the planner’s
performance has high variance because it does not consider
the worst-case. By only accounting for risk (β = 1), the
planner’s performance has very low variance, but it is also
highly conservative. By utilizing both risk and mean of
the speed distribution (β ∈ (0, 1)), the planner’s riskiness
can be chosen to achieve shorter average time-to-goal with
slight increase in variance. This experiment demonstrates
that representing traversability as a speed distribution can be
incorporated into a risk-aware planner and lead to improved
performance.



Fig. 5: A grid world example (top left) where the green vegetation and
brown dirt terrain types have distinct speed distributions (top right) given
the fixed commanded speed. A min-time planner that ignores risk (red) has
the worst time-to-goal with high variance. On the other hand, the planner
that only uses CVaR speed estimates acts conservatively by avoiding most of
the vegetation cells, which leads to low-variance performance but still slow
in time-to-goal. By combining both the risk and mean speeds, our proposed
planner (gray) gains better average performance by taking moderate risks.

B. Integration with Autonomy Stack in High-Fidelity Envi-
ronment

Next, we integrate the proposed methods into a full
autonomy stack [39] in a high-fidelity Unity simulation
environment with a Clearpath Warthog platform [40], as
shown in Fig. 6. To focus on the challenge of coarse semantic
labeling and its impact on traversability analysis, the Unity
environment contains dirt and vegetation terrain types, where
roughly 1

4 of the bushes (classified as vegetation) on grass are
non-traversable (i.e., the robot cannot drive through them),
which slows down navigation and the resulting wheel slip
has a side-effect of causing substantial drift in the vehicle’s
pose estimate.

C. Data Collection and Network Training

In order to learn the traversability model as defined in (1),
samples consisting of tuples of (commanded speed, terrain
type, realized speed) were gathered with a joystick-controlled
robot, where the joystick provided the commanded speeds,
and the traversed terrain type and true speed were taken
directly from the Unity simulation engine. The robot drove
for 3 minutes in the training area (Fig. 6 left), resulting in
about 7000 and 2000 samples associated with the vegetation
and dirt terrain, respectively. The dataset was used to train
a multi-layer feedforward NN with 2 hidden layers of 64
nodes and ReLU activation functions. The network input
contains the one-hot encoding of the terrain type and the
commanded speed, and the output consists of the probability
mass function (PMF) for 10 output speed bins between 0 m/s
and maximum speed 5 m/s via a softmax layer. The network
was trained for 10 epochs with the Adam optimizer with
the learning rate of 0.005, resulting in the speed distribution

Fig. 6: Unity environment (left) where the robot learns and uses speed
distribution maps for min-time planning. The key challenge is that bushes
(1/4 of which lead to collision) are not distinguished semantically from the
collision-free grass. After learning the distributions in the training region,
the robot is tested to reach goals specified in regions with vegetation (right).

Fig. 7: Learned speed distributions for vegetation and dirt terrains, where
the color gradient indicates magnitude of the probability mass. Note the
bi-modal distribution associated with vegetation, whose outcome speeds are
concentrated around 0 m/s (due to collisions with bushes) and around the
commanded speeds. On the other hand, driving on dirt has a uni-modal,
roughly linear relationship between commanded speed and realized speed.

maps visualized in Fig. 7, where the rows correspond to 10
binned commanded speeds and their resultant PMFs of speed
outcomes.

During deployment, top-down 100×100 semantic images
of the environment with 0.4 m cell resolution was processed
by the network, as illustrated in Fig. 3. The training and
testing areas contain mostly dirt and vegetation terrains types,
and unknown semantic types were assumed to induce 0 m/s.
Note that the semantic map and every commanded speed
are paired and reshaped into a large batch input to the
network. A 10 layer 100× 100 speed distribution map with
10 output speed bins can be evaluated under 2 ms using
the CPU (all runtimes reported on a desktop computer with
an Intel i7-7700K CPU and 32GB RAM). The risk-aware
speed maps can be extracted from the speed distribution
maps as the convex combination of PMF mean and CVaR.
When the entire autonomy stack was running and competing
for CPU, mean and CVaR took 15 ms and 150 ms to
compute, respectively. The computation for CVaR was done
via rectangular approximation of density within each output
speed bin (software optimization and GPU parallelization
could likely reduce the CVaR calculation times substantially).
Due to computational constraints, the traversability map was
published at 2 Hz to the MPPI local planner.



Fig. 8: Effect of risk weight β ∈ [0, 1] on average speed of successful
trials and the overall success rate, where CVaR is fixed at level α = 0.1.
By increasing β from 0 to 0.6, the robot achieves a much higher success
rate (42% → 72%), while the average speed reduces moderately as a
performance trade-off. However, very high risk weight (e.g., β > 0.8) can
cause excessive conservatism.

D. Min-Time Navigation Benchmark

In order to benchmark the effectiveness of learned risk-
aware speed maps, the planner is tasked to navigate the robot
from a set of pre-specified starting positions to goal positions
in an unseen test environment, as illustrated in Fig. 6. Each
test pair of starting point and goal were repeated for 3 trials
over a range of risk weights β ∈ [0.0, 0.15, 0.3, 0.45, 0.6].
The goal tolerance was set to be a 3 m circle and the longest
distance the robot had to travel was about 35 m. A timeout
period of 40 s was imposed to terminate the trials where
the robot got stuck or disoriented due to collisions with
bushes. The planner models the Clearpath Warthog robot
as a differential drive robot whose control input consists of
two wheel speeds. During each MPPI optimization round,
500 control rollouts were sampled over 5 s horizon at
20 Hz according to noise standard deviation of 5 rad/s for
each wheel. The estimated optimal control distribution was
iteratively refined as MPPI ran in a receding horizon fashion.
A small default speed of 0.5 m/s was used for estimating
time-to-go to encourage the robot to approach the goal.

The benchmark results are shown in Fig. 8 which contain
the success rate and the average speeds over the successful
trials for a range of risk weights. As the risk weight increases,
the robot has lower average speed but higher success rate
(42% → 72%) as beta increases from 0 to 0.6. Example
rollouts produced by β = 0 and β = 0.6 are shown in Fig. 9,
where the risk-aware trajectories (β = 0.6) overlap more
with the dirt terrain (lower risk), whereas the planner that
only accounts for the expectation (β = 0) prefers shorter
paths that overlap more with vegetation (higher risk). As a
result, one of the trajectories led to a collision with bushes,
which caused localization errors and failure to reach goal.

VI. CONCLUSION & FUTURE WORK

This work proposed a new notion of traversability as the
conditional speed distribution achievable by a robot, condi-
tioned on the environment semantics and commanded speed.
This representation can be learned directly from experienced
trajectories and can be incorporated into various planning
paradigms as a speed map. The proposed planning strategy
was shown to lead to faster average time-to-goals compared

Fig. 9: Example MPPI min-time trajectories with risky (β = 0) and conser-
vative (β = 0.6) behaviors. The risky planner’s trajectories (red) follow
a relatively straight path to the goal by traversing longer distance on
vegetation, but there’s a higher risk of collisions with bushes. Collision
did happen to one of the trials and led to odometry failure due to wheel
slips, which made the robot move in the wrong direction. On the other hand,
the risk-aware planner’s trajectories spend longer time on dirt, thus are more
likely to reach the goal safely.

to other methods that did not consider the worst-case. Lastly,
the proposed risk-aware strategy led to higher success rate in
minimum-time navigation task in a high-fidelity simulator.

One area of future work is in automatically tuning the risk
parameter β online, based on differences between realized
speed and commanded speed. Additionally, the work could
be extended to capture other forms of uncertainty, such as
from out-of-distribution inputs or from probabilistic outputs
from the semantic segmentation module. Finally, a learned
cost-to-go estimator could be used to improve the cost
assigned to the end of each MPPI rollout for improved
performance.
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