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Abstract— We present an unsupervised simultaneous learning
framework for the task of monocular camera re-localization and
depth estimation from unlabeled video sequences. Monocular
camera re-localization refers to the task of estimating the
absolute camera pose from an instance image in a known
environment, which has been intensively studied for alternative
localization in GPS-denied environments. In recent works, cam-
era re-localization methods are trained via supervised learning
from pairs of camera images and camera poses. In contrast to
previous works, we propose a completely unsupervised learning
framework for camera re-localization and depth estimation,
requiring only monocular video sequences for training. In our
framework, we train two networks that estimate the scene
coordinates using directions and the depth map from each
image which are then combined to estimate the camera pose.
The networks can be trained through the minimization of
loss functions based on our loop closed view synthesis. In
experiments with the 7-scenes dataset, the proposed method
outperformed the re-localization of the state-of-the-art visual
SLAM, ORB-SLAM3. Our method also outperforms state-of-
the-art monocular depth estimation in a trained environment.

I. INTRODUCTION

Relying on a single memory image, humans can easily
recognize a previously visited environment. Humans can also
comprehend the implicit map of any environment relying on
only the memory of their first visit. Immediately they see a
new image, they can recognize where it belongs on the map.
How can humans construct an implicit map in their brains
relying only on unlabeled image sequences? We consider
that humans recognize relative pose and depth from the
difference of appearance in the images. They also perform
re-localization on the images to recognize a place as the
same place when they see it for a second time. Inspired by
this human ability, we propose a novel unsupervised learning
framework to train neural networks to estimate camera pose
from a single image.

To this end, we trained camera re-localization and depth
estimation simultaneously from unlabeled monocular video
sequences by utilizing view synthesis inspired by monocular
depth estimation [1], [2]. By introducing re-localization
networks, it is possible to construct implicit maps while
determining that places with the same appearance are the
same places. Our training led the networks to implicitly
understand the environment captured in the training dataset,
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(a) Training from unlabeled monocular video sequences.

(b) Test: camera re-localization (camera pose estimation from a
single monocular camera image) with depth estimation.

Fig. 1. Unsupervised simultaneous learning for camera re-localization
and depth estimation. We present an unsupervised simultaneous learning
framework for camera re-localization and depth estimation from unlabeled
monocular video sequences. Our models predict the camera pose and depth
in a known environment at test time.

thereby, achieving accurate camera re-localization and depth
estimation in inference (see Fig. 1).

Our method can train networks for localization and struc-
ture understanding of the environment via a single learning
process. This information is essential for visual-based au-
tonomous navigation of robots. Our method is smart and
useful because it can simultaneously learn the networks
required for such autonomous navigation.

This study makes three main contributions:

• We develop a novel unsupervised simultaneous learning
framework for camera re-localization and depth estima-
tion from unlabeled video sequences.

• We propose a novel directed scene coordinate network
that enables accurate estimation of the camera pose from
a single image by combining it with an estimated depth
map.

• We propose a calculation process of the loss function
with loop closed view synthesis, which improves the
training of camera re-localization.
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To the best of our knowledge, our study is among the
first studies to propose unsupervised camera re-localization
by training models from unlabeled video sequences and
estimating camera pose from a single image in inference.

The proposed method outperformed the re-localization
systems embedded in the state-of-the-art visual SLAM
method, ORB-SLAM3 [3]. Our method also outperformed
one of the unsupervised monocular depth estimation meth-
ods, monodepth2 [2] in depth estimation. Our method can
suppress the deviation of scale in the test dataset on depth
estimation because more consistent scales are learned via
camera pose estimation. These evaluations are quantitatively
and qualitatively conducted on 7-scenes dataset [4].

II. RELATED WORK

In the following, we discuss camera re-localization and
monocular depth estimation, which are most closely related
to our study.

A. Camera Re-Localization

In early studies of camera re-localization based on image
retrieval [5], images were retrieved from a database by
matching query images with global image descriptors [6],
[7]. Because the re-localization accuracy of these retrieval
approaches is limited by the sampling density of database
images, various camera re-localization methods have been
proposed to address this problem.

In addition, absolute pose regression methods [8]–[14]
have been used to train neural networks to regress the camera
pose using database images as the training set. However, in
practice, absolute pose regression methods do not outperform
the accuracy of image retrieval methods [15]. Relative pose
regression methods [15], [16] train a neural network to
predict the relative transformation between the query image
and the database image most similar to that which is obtained
by image retrieval. A recent study [17] suggested that relative
pose regression can achieve accuracy comparable to that of
the structure-based methods described below.

Structure-based approaches, such as scene coordinate re-
gression [4], are some of the most successful approaches.
Scene coordinate regression [4] directly predicts the 3D
scene points corresponding to a given 2D pixel location, and
the camera pose is calculated by solving the PnP problem.
Originally, scene coordinate regression was proposed for
RGB-D-based re-localization in indoor environments [4],
[18]–[20]. Recently, scene coordinate regression has been
shown to be effective for RGB-based re-localization [21],
[22]. DSAC++ [23] presents the possibility of learning
scene coordinate regression from RGB images and ground-
truth poses only. In subsequent work, DSAC* [24] makes
several improvements to DSAC++ to achieve state-of-the-art
performance.

Recently, some studies have extended the camera re-
localization method to the time domain in order to ad-
dress temporal re-localization [14], [25]–[28]. While these
approaches are effective for some applications, we will focus

on one-shot camera re-localization because it is a more
fundamental and widely used technique.

The reviewed literature referred to above has focused
on supervised learning of camera re-localization. In con-
trast, we present an unsupervised framework for camera
re-localization using unlabeled video sequences. We also
estimate the scene coordinates based on the findings of these
studies of camera re-localization. Unlike [23], [24], when
solving the PnP problem, our method estimates the scene co-
ordinate, which is a 6-dimensional coordinate with the gaze
direction to handle the difference in appearance depending on
the viewing direction. Our approach to estimating the camera
pose is introduced in our unsupervised learning framework
based on loop closed view synthesis, which is inspired by
unsupervised monocular depth estimation.

B. Monocular Depth Estimation

One of the earliest works in convolutional-based depth
estimation was presented by Eigen et al [29]. Eigen et al used
a multi-scale deep network trained on RGB-D sensor data to
regress the depth directly from single images. Inspired by
the two-view stereo disparity estimation [30] based on flow
estimation [31], Umenhofer et al. [32] trained a depth and
pose network simultaneously to predict depth and camera
ego-motion between successive unconstrained image pairs.
To address the difficulty of labeling the target depth, [33],
[34] trained a monocular depth network with stereo cameras
without requiring ground-truth depth labels. Godard et al.
[34] used stereo images to geometrically transform the right
image into a left image based on a predicted depth by lever-
aging spatial transformer networks [35]. The photometric
re-projection loss between the synthesized and original left
images can be used to train the depth network without the
ground-truth depth.

Following [34] and [32], Zhou et al. [1] applied this
unsupervised training to a purely monocular setting, where a
depth and relative pose network are simultaneously learned
from unlabeled monocular videos. Recent studies [36]–
[43] have incorporated these methods, additional loss, and
constraints. Monodepth2 [2] is a successful method that
employs a ResNet encoder [44] and has achieved state-of-
the-art performance. More recent methods employ improved
network models with more parameters to achieve state-of-
the-art performance [45]. Several methods [46]–[48] have
focused on pose estimation based on an unsupervised monoc-
ular depth estimation framework, however, these approaches
have focused only on relative pose estimation between two
images, that is, visual odometry.

Instead of the visual odometry network of unsupervised
monocular depth estimation, our method estimates the ab-
solute camera pose in an implicit map via estimated scene
coordinates, which is trained with our loop closed view
synthesis. Note that the estimated camera pose in our method
is not a relative pose between two images. To the best of our
knowledge, our method is the first of its kind to train camera
re-localization in an unsupervised setting.



III. METHOD

A. Camera Re-Localization based on Directed Scene Coor-
dinate and Depth

In this study, we propose a novel unsupervised simul-
taneous learning framework for camera re-localization and
depth estimation, shown in Fig. 2. Our model consists of
two networks for depth and directed scene coordinate. The
depth network predicts the dense depth map Dt from a single
RGB image It at time step t. The directed scene coordinate
network predicts the direct scene coordinate St, which con-
sists of subsampled scene coordinates with direction from a
single RGB image It. The directed scene coordinate St =
[θt, τt]

T consists of a 3-dimensional attitude θt as an axis-
angle representation and 3-dimensional position τt. Here, θt
indicates the direction of the vector from the camera position
to the position of corresponding scene coordinates.

The camera pose Pt can be calculated geometrically from
a directed scene coordinate St and the depth Dt for each
pixel. To calculate camera pose, we introduce the point cloud
Qt, which can be obtained by back projection from the depth
Dt as follows:

Qt(p) = Dt(p)K
−1
t

[
p
1

]
, (1)

where Qt(p) is a vector to local point corresponding to pixel
p = [u, v]T , and Kt is the camera intrinsic parameter for It.

The camera pose Pt(p) corresponding to a pixel p also
consists a 3-dimensional attitude θPt

(p) as an axis-angle
representation and a 3-dimensional position τPt(p) as

Pt(p) =

[
θPt(p)
τPt(p)

]
, (2)

and it is calculated from the directed scene coordinate St(p)
and the point Qt(p) (see. Fig. 3). The camera attitude θPt

(p)
is calculated by rotating the gaze direction θt(p) using the
direction of the pixel p corresponding to the directed scene
coordinates.

R(θPt(p)) = R−1p R(θt(p)) (3)

where Rp is the rotation matrix of gaze direction to the
pixel p, R(·) represents rotation matrix corresponding the
3-dimensional attitude. The camera position τPt

(p) is cal-
culated by translating the scene coordinates τt(p) by the
distance of the local point Qt(p) in the gaze direction θt(p).

τPt
(p) = ‖Qt(p)‖ ·R(θt(p))ez + τt(p), (4)

where ez is a unit vector to depth direction, and ‖Qt(p)‖ is
the distance of the point Qt(p)

In this procedure, the camera poses are calculated from all
pixels of the directed scene coordinate; therefore, the final
pose Pt is obtained as the average (median in testing) of the
estimated camera poses from all pixels.

Pt =
1

nS

∑
p

Pt(p), (5)

where, nS is the number of pixels of directed scene coordi-
nate.

B. Unsupervised Learning based on Photometric Re-
projection Loss

Here, we propose a framework for jointly training two
networks that estimate directed scene coordinates and depths
from unlabeled video sequences. Each model can be used
independently during test-time inference, and camera re-
localization can be performed by combining the two net-
works, as shown in Sec. III-A.

Our models were trained from image sequences obtained
from moving cameras in the target environment. We assume
that the corresponding environments are mostly static, that is,
the scene appearance change across different frames is dom-
inated by the camera motion. Similar to most unsupervised
monocular depth estimations [1], [2], we also formulate our
problem as the minimization of a photometric re-projection
error at training time. Geometrically, a pixel mapping Ms→t

between It and Is can be derived from the depth Dt and
Tt→s as follows [1], [2]:

Ms→t = KsTt→sDtK
−1
t , (6)

where Kt and Ks are the camera intrinsic matrices for It and
Is, respectively. The transformation matrix Tt→s between
two images can be calculated from estimated camera poses
Pt and Ps from each image independently as

Tt→s = T (Ps)
−1T (Pt), (7)

where T (·) denotes a transformation matrix corresponding
to a 6-DoF pose.

By using the relative pose between two images, the base
of our unsupervised learning framework for camera re-
localization can be formulated. The synthesized image Ît can
be constructed by sampling from Is by following Ms→t.

Similar to previous works [2], we employ L1 and SSIM
loss as a photometric re-projection loss, which is formulated
as

Lp =
1

|V |
∑
p∈V

α
(1− SSIM(It(p), Ît(p)))

2

+
1

V

∑
p∈V

(1− α)‖It(p)− Ît(p)‖1, (8)

where V is a set of valid points p that are successfully
transformed between It and Is, and |V | denotes the number
of points in V . The parameter α = 0.85 to follow previous
works [2].

The photometric re-projection loss is effective for texture-
rich scenes, however fragile for low-texture or homogeneous
regions. Therefore, another smoothness loss Ls is used
together with the photometric re-projection losses to solve
this problem [2],

Ls =
1

nD

∑
p

(
e−∇It(p) · ∇Dt(p)

)2
, (9)

where nD is the number of pixels of Dt, and ∇ denotes
the first derivative. This ensures that the smoothness of
the depth map is constrained by the primary gradient of



Fig. 2. Overview of our unsupervised simultaneous learning framework of directed scene coordinate and depth networks. Our model consists of
two networks for depth and directed scene coordinate. The camera pose can be calculated geometrically from a directed scene coordinate and depth as
shown in Sec.III-A, and the relative pose between an image It and a ‘nearby’ image Is can be calculated from the predicted camera pose from each image
independently. By using the relative pose and back-projected point cloud from depth, the corresponding map Ms→t can be calculated. Our networks are
trained by the photometric re-projection loss Lp between the original It and the view synthesis image Ît from the ‘nearby’ image Is.

Fig. 3. Camera pose calculation from directed scene coordinate and
depth. The camera pose Pt(p) can be calculated from a pixel of the directed
scene coordinate St(p) and the corresponding depth Dt(p) by rotating the
pose based on the direction of the pixel and translating the position based on
the depth and direction of the scene coordinates. The final pose is obtained
as the average of estimated camera poses from each pixel.

the corresponding color image. Following [2], Lp and Ls

are calculated for each estimated multi-scale depth at the
resolution of each decoder’s layer.

In this study, we adopt an additional loss to these well-
known losses in unsupervised depth estimation. The loss is
the pose coordinate loss Lc, which is the error between the
camera pose estimated from each pixel and the average final
pose in (5).

Lc =
1

nS

∑
p

‖Pt − Pt(p)‖2. (10)

Therefore, the final training loss L consists of photometric
re-projection loss, smoothness loss, and pose coordinate loss,
as follows:

L = Lp + wsLs + wcLc, (11)

where ws and wc are the respective weight parameters of
smoothness loss and pose coordinate loss.

C. Loop Closed View Synthesis

In this study, to achieve effective training for camera pose,
we introduced loop closed view synthesis. First, we picked
three or more images from sequences. For each combination,

Fig. 4. Loop closed view synthesis. The monocular depth estimation [2]
learn from view synthesis based on T1→2 and T3→2, however, the two
relative poses are insufficient to estimate the three absolute camera poses
on an implicit map. To address this issue, we train our networks from view
synthesis for all combinations of images.

we bi-directionally predict the images by view synthesis,
following Sec.III-B, and calculate the photometric repro-
jection loss. According to our loop closed view synthesis,
we calculate six photometric reprojection losses and average
them as Lp for three image cases (see Fig.4).

This is because the photometric reprojection loss from
two images is insufficient to train networks for camera re-
localization. Eq. (7) provides one constraint for two camera
poses, which is insufficient to estimate absolute camera poses
on an implicit map. Massive iteration in the learning process
may provide sufficient constraints; however, the training
process becomes unstable and does not converge smoothly.
Our loop closed view synthesis attempts to solve this issue.
Sufficient constraints to estimate the absolute camera pose
stabilize the training process of unsupervised camera re-
localization and leads to adequate results.

The final training loss L is averaged over the scale, batch,
and view synthesis.



D. Network Architecture

Our depth network is the same as in [2]. The network
is based on the general U-Net architecture [49], that is, an
encoder-decoder network, with skip connections, enabling
us to represent both deep abstract features as well as local
information. We also used ResNet18 [44] as the depth
encoder and started with weights pre-trained ImageNet [50].
The depth decoder has sigmoids at the output and we convert
the sigmoid output σ to depth with D = 1/(aσ+b), where a
and b are chosen to constrain D between 0.1 and 100 units,
following [2].

Our directed scene coordinate network also consists of
an encoder-decoder network. We also use a pre-trained
ResNet18 as the directed scene coordinate encoder. The de-
coder consists of three CNN layers with Rectified Linear Unit
(ReLU) activations. The output of the decoder is the directed
scene coordinates St with 6 channels of 20×15 matrix. The
output directed scene coordinate is subsampled by factor 32
from the original images (640×480). Therefore, we resize
the estimated depth by 32 × 32 average pooling layer to
combine with directed scene coordinates for calculating the
camera pose.

IV. EXPERIMENTS

A. Dataset

In this study, an indoor camera dataset, 7-scenes
dataset [4], was used for the evaluation. The 7-scenes dataset
is an RGB-D indoor re-localization dataset of seven small
indoor environments with challenging conditions such as
motion blur, reflective surfaces, repetitive structures, and un-
textured areas. The dataset was collected using KinectFusion
[51] to record the RGB image, the depth map, and the
estimated camera pose. For each scene, several sequences
with 500 or 1000 frames are available, splitting into training
and test sets. We trained our network using only RGB
images, essentially, we did not use depths and camera poses
for training. For testing, the provided camera poses are used
as the pseudo-ground-truth poses for evaluation.

B. Training

At the training time, we select three images to take
our loop closed view synthesis. An image is picked at
random from whole train sequences, and the other two
‘nearby’ images are picked within 20 steps before or after
the target image. Each image is scaled in the range of
1.0 ∼ 1.1 and cropped by its original size (640 × 480) as
a data augmentation. We also augment its color via random
brightness, contrast, saturation, and hue jitter with respective
ranges of ±0.2, ±0.2, ±0.2, and ±0.1. Importantly, the color
augmentations are only applied to the images that are fed to
the networks, and not to those used to compute Lp. The
weight parameters of the losses are set as ws = 0.001 and
wc = 0.03.

The training is performed through a training split for each
scene of the 7-scenes dataset [4]. The models were trained
within 300 epochs with a batch size of 6, and the ‘nearby’
images were selected at random from whole sequences for

50 % in the latter 100 epochs to learn consistency between
images that are distant in time series. During training, we
used batch normalization [52] for all the layers except for the
output layers, and the Adam [53] optimizer with β1 = 0.9,
β2 = 0.999, and a learning rate of 0.0001. The training was
executed on TITAN RTX GPUs. We implemented all our
systems using the PyTorch [54] framework. In our setting, the
training process takes about 50 sec per one training image.

C. Results

1) Camera Re-Localization Performance: First, we eval-
uate the camera re-localization performance using a 7-scenes
test dataset [4]. At the test time, the final pose of our
method is calculated by a median operator instead of the
averaging in (5) to achieve robustness against outliers. For
the comparison, we employ following baselines:

ORB-SLAM3 [3] ORB-SLAM3 equips the camera re-
localization system to detect the camera pose when tracking
with VO is lost. The camera re-localization consists of image
retrieval based on the bag-of-words (BOW) feature [57] and
pose optimization via RANSAC using ORB features [58]. In
this evaluation, we executed ORB-SLAM3 on the training
dataset of each scene to create a map and evaluate the re-
localization performance on the test dataset. The camera
re-localization was not successful in all scenes; therefore,
we output the pose of the most matched key-frame in the
candidates retrieved by BOW as an estimated pose when the
camera re-localization failed.

DSAC* [24] (pose sup. [3], [55]) We trained DSAC* with
pose supervision via ORB-SLAM3 [3], and listed the results
of DSAC* trained with pose supervision via COLMAP [55]
in [56] as a reference method of the supervised camera re-
localization with SLAM and SfM from RGB sequences.

monodepth2† [2] We trained monodepth2 for unsupervised
camera re-localization to estimate the camera pose from a
single image instead of a relative camera pose in the orig-
inal monodepth2. Following our method, we calculated the
relative pose from estimated camera poses to predict images.
This is also an ablation study to confirm the effectiveness of
our unsupervised learning framework with the directed scene
coordinates and loop closed view synthesis.

Unsupervised camera re-localization methods do not pro-
vide scale and alignment of trajectories; therefore, we applied
Sim(3) alignments estimated on the training dataset using evo
[59] for testing. The median re-localization error of position
(m) and attitude (◦) on the 7-scenes test dataset are shown
in Table I, which also lists the median errors of conventional
supervised camera re-localization methods.

Based on the results of unsupervised camera re-
localization, our method outperforms all competitors in most
scenes. ORB-SLAM3 camera re-localization cannot provide
accurate results because the camera re-localization fails in
most frames of each scene.

The monodepth2† is less effective than our method for all
scenes. This result confirms the contribution of our learning



TABLE I
Median re-localization error of position (m) and attitude (◦) on the 7-scenes test dataset [4]. Unsupervised (Unsup.) methods cannot provide their

scale and alignment; we applied them to the Sim(3) alignments estimated on the training dataset. Pose Sup. represents the pose supervision (pGT:
pseudo-ground-truth poses, [3]: ORB-SLAM3, [55]: COLMAP.) is used.

Method Pose Scene
Sup. Chess Fire Heads Office Pumpkin Redkitchen Stairs

Su
pe

rv
is

ed

PoseNet2 [10] pGT 0.13m, 4.5◦ 0.27m, 11.3◦ 0.17m, 13.0◦ 0.19m, 5.6◦ 0.26m, 4.8◦ 0.23m, 5.4◦ 0.35m, 12.4◦
MapNet [12] pGT 0.08m, 3.3◦ 0.27m, 11.7◦ 0.18m, 13.3◦ 0.17m, 5.2◦ 0.22m, 4.0◦ 0.23m, 4.9◦ 0.30m, 12.1◦
NN-Net [13] pGT 0.13m, 6.5◦ 0.26m, 12.7◦ 0.14m, 12.3◦ 0.21m, 7.4◦ 0.24m, 6.4◦ 0.24m, 8.0◦ 0.27m 11.82◦
ReLocNet [16] pGT 0.12m, 4.1◦ 0.26m, 10.4◦ 0.14m, 10.5◦ 0.18m, 5.3◦ 0.26m, 4.2◦ 0.23m, 5.1◦ 0.28m, 7.5◦
CamNet [17] pGT 0.04m, 1.7◦ 0.03m, 1.7◦ 0.05m, 2.0◦ 0.04m, 1.6◦ 0.04m, 1.6◦ 0.04m, 1.6◦ 0.04m, 1.5◦
DSAC* [24] pGT 0.02m, 1.1◦ 0.02m, 1.2◦ 0.01m, 1.8◦ 0.03m, 1.2◦ 0.04m, 1.4◦ 0.03m, 1.7◦ 0.04m, 1.4◦
- ORB-SLAM3 [3] 1.23m, 38.6◦ 1.28m, 59.1◦ 0.42m, 21.1◦ 1.42m, 48.4◦ 1.29m, 36.6◦ 1.72m, 37.7◦ 0.63m, 157.9◦
- COLMAP [56] [55] 0.04m, 1.4◦ 0.02m, 1.1◦ 0.01m, 1.5◦ 0.08m, 3.0◦ 0.07m, 3.1◦ 0.06m, 3.2◦ 0.05m, 1.9◦

U
ns

up
.

ORB-SLAM3 [3] 0.91m, 27.3◦ 0.92m, 29.3◦ 0.17m, 5.0◦ 0.19m, 5.5◦ 0.43m, 10.0◦ 0.87m, 25.4◦ 0.63m, 175.3◦
monodepth2† [2] 0.34m, 15.7◦ 0.40m, 20.6◦ 0.26m, 12.0◦ 0.70m, 50.9◦ 0.53m, 12.5◦ 0.66m, 16.1◦ 0.44m, 37.4◦
Ours (full) 0.08m, 3.1◦ 0.18m, 7.2◦ 0.12m, 7.8◦ 0.56m, 39.6◦ 0.18m, 4.6◦ 0.21m, 7.0◦ 0.42m, 27.5◦
- w/o DSC 0.24m, 9.4◦ 0.55m, 36.3◦ 0.20m, 9.5◦ 0.29m, 9.8◦ 0.38m, 10.4◦ 0.53m, 12.5◦ 0.41m, 38.6◦
- w/o LCVS 0.14m, 5.9◦ 0.30m, 15.1◦ 0.15m, 9.2◦ 0.56m, 32.5◦ 0.28m, 8.0◦ 0.37m, 14.7◦ 0.43m, 31.5◦

Fig. 5. Qualitative results of camera re-localization on 7-scenes test dataset [4]. Blue lines represent pseudo-ground-truth camera trajectories, and red
points represent predicted camera poses by our method and re-localization of ORB-SLAM3 [3]. Gray lines represent errors between predicted poses and
corresponding pseudo-ground-truth poses. We output the pose of the most matched key-frame in the candidates retrieved by BOW as an estimated pose
when the camera re-localization of ORB-SLAM3 fails. Therefore, many frames are matched to a key-frame pose which has much features.

framework for camera re-localization based on the directed
scene coordinates and loop closed view synthesis.

Performance of our method degrades on the ‘Office’ and
‘Stairs’. This is because there is a similar view on different
poses in the scenes. ‘Office’ has similar desks put in different
positions in the room. ‘Stairs’ are very repetitive sequences
because the camera goes up or down the stairs. Addressing
these repetitive structures will be the scope of our future
work.

The qualitative results of camera re-localization are shown
in Fig. 5. As can be seen from the figures, our method
can predict camera poses consistently in all frames. In con-
trast, ORB-SLAM3 cannot perform camera re-localization
on many frames, the most matched candidates which are the
alternative outputs cause the degradation in the performance.
These results suggest the robustness of our camera re-
localization.

Comparing the supervised and unsupervised methods, we
can see how challenging unsupervised camera re-localization
is. Nevertheless, our methods outperformed several previous

supervised camera re-localization methods, such as PoseNet2
[10], MapNet [12], NN-Net [13], and ReLocNet [16], in
most scenes. Although it does not achieve the performance
of state-of-the-art supervised camera re-localization, such as
CamNet [17] and DSAC* [24], the fact that our unsupervised
learning can achieve an accuracy approaching that of super-
vised camera re-localization is a significant achievement.

From this result, the DSAC* [24] can provide accurate
results with COLMAP [55], however, it cannot be trained
correctly with ORB-SLAM3 [3]. This denotes the perfor-
mances of supervised methods depend on the accuracy of
localization methods. Our method does not achieve the ac-
curacy of DSAC* based on COLMAP, however, it facilitates
estimating the depth accurately online.

We also listed results of our ablation study:
- w/o DSC This represents our method without a directed
scene coordinate network (DSC). The pose network is the
same as in monodepth2†.
- w/o LCVS This represents our method without loop closed
view synthesis (LCVS). The photometric re-projection losses



TABLE II
Quantitative results for depth-estimation performance. Comparison of our method to monodepth2 [2] on 7-scenes test dataset [4]. The predicted depth

maps are scaled by a scalar that matches the median with the ground-truth for each frame. Standard deviations per median (std/med) of scale factors
representing scale consistency are also shown. The evaluation was performed in the range of 0.1 m - 10 m, and averaged over scenes.

Method Scale factor Error metric Accuracy metric
std / med Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

monodepth2 [2] 0.080 0.212 0.412 0.638 0.275 0.761 0.908 0.958
monodepth2† 0.044 0.220 0.445 0.663 0.270 0.748 0.913 0.961
Ours (full) 0.017 0.135 0.059 0.308 0.178 0.825 0.962 0.992
- w/o DSC 0.030 0.171 0.164 0.432 0.218 0.771 0.942 0.982
- w/o LCVS 0.022 0.145 0.065 0.325 0.189 0.798 0.959 0.991

are calculated from two relative poses between three images
as same as monodepth2† [2].

The benefits of DSC and LCVS are clearly shown in Table
I, respectively. Focusing on each scene, we can see that the
effectiveness of both methods is different for each scene.
The effectiveness of DSC on ‘Fire’ and ‘Pumpkin’ is better
than that of LCVS, however, DSC suffers from repetitive
environments such as ‘Office’ and ‘Stairs.’ As mentioned
above, addressing these repetitive structures will be the scope
of future work. Although the best method is different for each
scene, our full method achieved the best average performance
by combining DSC and LCVS.

2) Depth Estimation Performance: Next, we evaluated the
depth estimation performance using ground-truth depth in
the 7-scenes dataset [4]. In this evaluation, we compared
our method to a recent monocular depth estimation method,
monodepth2 [2], trained on the 7-scenes dataset as follows:
monodepth2 [2] Monodepth2 evaluated here is trained by
all train sequences for 7-scenes, because it is difficult to
train by sequences from each scene respectively. The training
was performed in 500 epochs. The monodepth2 uses three-
frame image sequences for training; however, the sampling
rate of the 7-scenes dataset is too high to train monodepth2.
Therefore we generate a three-frame image sequence within
10 step intervals for training.

Table II shows the evaluation results of the depth estima-
tion using the 7-scenes test dataset. Because neither model
provides the depth scale, we multiply the predicted depth
maps by a scalar that matches the median with the ground-
truth for each frame. The relative standard deviations of the
scale factors are listed in Table II.

As shown in Table II, our models outperformed mon-
odepth2 on all metrics. It should be noted that with regards
to the standard deviation of the scale factor, our model has
a much smaller relative standard deviation of scale factors
than the monodepth2 model, indicating that our models can
predict depth with a more consistent scale across frames.
Thus, our method can predict a better and more consistent
depth than monodepth2 in known scenes.

We also performed an ablation study for the depth estima-
tion. The benefits of DSC and LCVS for the depth estimation
are also clearly shown in Table II, respectively. Our full
method achieved the best performance by combining DSC

Fig. 6. Qualitative results of depth on 7-scenes test dataset [4]. Our
method has fewer artifacts than monodepth2 [2].

and LCVS.
The qualitative results are shown in Fig. 6, which shows

our method has fewer artifacts than monodepth2 [2]. These
results suggest that the proposed framework can train a depth
network with better performance than a recent monocular
depth estimation for indoor scenes. Note that the depth
estimation of the proposed framework is trained jointly with
camera re-localization; therefore, the depth model is also
limited to the trained scene.

V. CONCLUSION

In this study, we present an unsupervised simultaneous
learning framework for camera re-localization and depth
estimation from unlabeled video sequences. Our method
simultaneously trained two networks for directed scene co-
ordinates and depth map by view synthesis via a video
sequence. Camera re-localization is performed by geometri-
cally combining the directed scene coordinates and the depth
map. To the best of our knowledge, this is the first study
to propose a camera re-localization training method without
supervised learning.

We evaluated our method on the 7-scenes dataset [4],
and demonstrated its performance in camera re-localization
and depth estimation. The results show that our method
outperformed the camera re-localization embedded in ORB-
SLAM3 [3]. Moreover, despite unsupervised learning, our
method outperforms several previous supervised camera



re-localization methods. In addition, it also outperformed
monodepth2 [2] on monocular depth estimation in known
environments.

However, the current learning framework is limited to
frequent and small indoor camera sequences, because the
learning framework depends on the overlap of the viewed
scene between three or more camera images. Thus, future
research will aim at improving the method for applicability
to wider scenes and data.
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