
Polynomial Time Near-Time-Optimal Multi-Robot Path Planning in Three
Dimensions with Applications to Large-Scale UAV Coordination

Teng Guo Si Wei Feng Jingjin Yu

Abstract— For enabling efficient, large-scale coordination of
unmanned aerial vehicles (UAVs) under the labeled setting, in
this work, we develop the first polynomial time algorithm for
the reconfiguration of many moving bodies in three-dimensional
spaces, with provable 1.x asymptotic makespan optimality
guarantee under high robot density. More precisely, on an
m1 ×m2 ×m3 grid, m1 ≥ m2 ≥ m3, our method computes
solutions for routing up to m1m2m3

3
uniquely labeled robots

with uniformly randomly distributed start and goal configura-
tions within a makespan of m1 + 2m2 + 2m3 + o(m1), with
high probability. Because the makespan lower bound for such
instances is m1 +m2 +m3− o(m1), also with high probability,
as m1 → ∞, m1+2m2+2m3

m1+m2+m3
optimality guarantee is achieved.

m1+2m2+2m3
m1+m2+m3

∈ (1, 5
3
], yielding 1.x optimality. In contrast, it

is well-known that multi-robot path planning is NP-hard to
optimally solve. In numerical evaluations, our method readily
scales to support the motion planning of over 100, 000 robots in
3D while simultaneously achieving 1.x optimality. We demon-
strate the application of our method in coordinating many
quadcopters in both simulation and hardware experiments.

I. INTRODUCTION

Multi-robot path (and motion) planning (MRPP), in its
many variations, has been extensively studied for decades
[1]–[13]. MRPP, with the goal to effectively coordinate the
motion of many robots, finds applications in a diverse array
of areas including assembly [14], evacuation [15], formation
[16], [17], localization [18], microdroplet manipulation [19],
object transportation [20], search and rescue [21], and human
robot interaction [22], to list a few. Recently, as robots become
more affordable and reliable, MRPP starts seeing increased
use in large-scale applications, e.g., warehouse automation
[23], grocery fulfillment [24], and UAV swarms [25]. On
the other hand, due to its hardness [26], [27], scalable, high-
performance methods for coordinating dense, large-scale robot
fleets are scarce, especially 3D settings.

In this work, we propose the first polynomial time algorithm
for coordinating the motion of a large number of uniquely
labeled (i.e., distinguishable) robots in 3D, with provable
1.x time-optimality guarantees. Since MRPP in continuous
domain is highly intractable [28], we adapt a graph-theoretic
version of MRPP and work with a m1×m2×m3 3D grid with
m1 ≥ m2 ≥ m3. For up to 1

3 of the grid vertices occupied
with robots, which is very high, we perform path planning for
these robots in two stages. In the first phase, we iteratively
apply an algorithm based on the Rubik Table abstraction

G. Teng, A. S. Feng and J. Yu are with the Department
of Computer Science, Rutgers, the State University of New Jer-
sey, Piscataway, NJ, USA. Emails: { teng.guo, siwei.feng,
jingjin.yu}@rutgers.edu. This work is supported in part by
NSF award IIS-1845888 and an Amazon Research Award.

Fig. 1: [left] A real-world drone light show where the UAVs
form a 3D grid like pattern [29]. [right] Our simulated large
UAV swarm in the Unity environment with many tall buildings
as obstacles. A video of the simulations and experiments can
be found at https://youtu.be/v8WMkX0qxXg

[30] to “shuffle” selected dimensions of the 3D grid. Then,
the abstract shuffle operations are translated into efficient
feasible robot movements. The resulting algorithm runs in
low-polynomial time and achieves high levels of optimality:
for uniform randomly generated instances, we show that an
asymptotic makespan optimality ratio of m1+2m2+2m3

m1+m2+m3
is

realized, which is upper bounded by 5
3 . Obstacles can also be

supported without significant impact on solution optimality.
In simulation, our algorithm easily scales to graphs with over
370, 000 vertices and 120, 000 robots. Plans computed using
the two-phase process on 3D grids can be readily transformed
into high-quality robot motion plans, e.g., for coordinating
many aerial vehicles. We demonstrate our algorithm on large
simulated quadcopter fleets in the Unity environment, and
further demonstrate the execution of our algorithm on a fleet
of 10 Crazyflie 2.0 nano quadcopters.

Related Work. The literature on multi-robot coordina-
tion is vast; we focus on graph-theoretic algorithmic and
complexity results here. It has been proven that solving
MRPP optimally is NP-hard [26], [31], even under grid-
based, obstacle-free settings [27]. Furthermore, it is also
NP-hard to approximate within any factor less than 4

3 for
makespan minimization on graphs in general [32].

Recently, many solvers have been developed to solve
MRPP with decent computational efficiency and produce
high-quality solutions. MRPP solvers can be classified as
being optimal or suboptimal. Reduction-based optimal solvers
solve the problem through reducing the MRPP problem to
other problem, e.g., SAT [33], answer set programming [34],
integer linear programming (ILP) [35]. Search-based optimal
MRPP solvers includes EPEA* [36], ICTS [37], CBS [38],
and so on. Optimal solvers have limited scalability due to
the NP-hardness of MRPP. Suboptimal solvers have also

ar
X

iv
:2

20
7.

02
73

5v
3

 [
cs

.R
O

]
 2

8
Ju

l 2
02

2

https://youtu.be/v8WMkX0qxXg

been extensively studied. Unbounded solvers like push and
swap [39], push and rotate [40], windowed hierarchical
cooperative A∗ [41], all return feasible solutions very fast
at the cost of solution quality. Balancing the running-time
and optimality is one of the most attractive topics. Some
algorithms emphasize the scalability without sacrificing too
much optimality, e.g., ECBS [42], DDM [43], EECBS
[44], PBS [45]. Whereas these solvers achieve fairly good
scalability while maintaining 1.x-optimality in empirical
evaluations, they lack provable joint efficiency-optimality
guarantees. As a result, the scalability and supported robot
density of these method are on the low side as compared to our
method. There are also O(1)−approximate or constant factor
time-optimal algorithms proposed, aiming to tackle highly
dense instances, e.g. [27], [46]. However, these algorithms
only achieve low-polynomial time guarantee at the expense
of huge constant factors, making them impractical.

This research builds on [47], which addresses the MRPP
problem in 2D. In comparison to [47], the current work
describes a significant extension to the 3D (as well as
higher dimensional) domain with many unique applications,
including, e.g., the reconfiguration of large UAV fleets, the
optimal coordination of air traffic, and the adjustment of
satellite constellations.

II. PRELIMINARIES

A. Multi-Robot Path Planning on 3D Grids

We work with a graph-theoretic formulation of MRPP,
which seeks collision-free paths that efficiently route
many robots on graphs. Specifically, consider an undi-
rected graph G(V,E) and n robots with start configuration
S = {s1, . . . , sn} ⊆ V and goal configuration G =
{g1, . . . , gn} ⊆ V . A robot i has start and goal vertices
si and gi, respectively. We define a path for robot i as a map
Pi : N→ V where N is the set of non-negative integers. A
feasible Pi must be a sequence of vertices that connect si
and gi: 1) Pi(0) = si; 2) ∃Ti ∈ N, s.t. ∀t ≥ Ti, Pi(t) = gi;
3) ∀t > 0, Pi(t) = Pi(t− 1) or (Pi(t), Pi(t− 1)) ∈ E.

Given the 3D focus of this work, we choose the graph G to
be a 6-connected m1×m2×m3 grid with m1 ≥ m2 ≥ m3, as
a proper discretization of the target 3D domain. Our aim is to
minimize the makespan of feasible routing plans, assuming
that the transition on each edge of G takes unit time. In
other words, we are to compute a feasible path set {Pi} that
minimizes maxi{|Pi|}. For most settings in this work, it is
assumed that the start and goal configurations are randomly
generated. Unless stated otherwise, “randomness” in this
paper always refers to uniform randomness.

B. High-Level Reconfiguration via Rubik Tables in 3D

Our method for solving the graph-based MRPP has two
phases; the first high-level reconfiguration phase utilizes
results on Rubik Table problems (RT3D) [30]. The Rubik
Table abstraction, described below for the k-dimensional
setting, k ≥ 2, formalizes the task of carrying out globally
coordinated token swapping operations on lattices.

Problem 1 (Rubik Table in kD (RTKD)). Let M be an
m1 × . . .×mk table, m1 ≥ . . . ≥ mk, containing

∏k
i=1mi

items, one in each table cell. In a shuffle operation, the items
in a single column in the i-th dimension of M , 1 ≤ i ≤ k,
may be permuted in an arbitrary manner. Given two arbitrary
configurations S and G of the items on M , find a sequence
of shuffles that take M from S to G.

We formulate Problem 1 differently from [30] (Problem
8) to make it more natural for robot coordination tasks. For
convenience, let the 2D and 3D version be RT2D and RT3D,
respectively. A main result from [30] (Proposition 4), applying
to the 2D setting, may be stated as follows.

Proposition II.1 (Rubik Table Theorem, 2D). An arbitrary
Rubik Table problem on an m1 ×m2 table can be solved
using m1 + 2m2 column shuffles.

Denoting the corresponding algorithm for RT2D as
RTA2D, we may solve RT3D using RTA2D as a subroutine,
by treating RT3D as an RT2D, which is straightforward if we
view a 2D slice of RTA2D as a “wide” column. For example,
for the m1×m2×m3 grid, we may treat the second and third
dimensions as a single dimension. Then, each wide column,
which is itself an m2×m3 2D problem, can be reconfigured
by applying RTA2D. With some proper counting, we obtain
the following 3D version of Proposition II.1.

Theorem II.1 (Rubik Table Theorem, 3D). . An arbitrary
Rubik Table problem on an m1 × m2 × m3 table can be
solved using m1m2 +m3(2m2 +m1) +m1m2 shuffles.

1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9

2 4 7
3 6 7
1 6 9
1 2 8
4 5 8
3 6 9
2 4 7
1 5 8
5 3 9

2 4 7
6 3 7
1 9 6
8 2 1
8 4 5
9 6 3
4 2 7
1 8 5
5 9 3

1 2 3
5 4 6
8 9 7
2 3 1
4 6 5
8 9 7
1 2 3
6 4 5
9 8 7

(𝟏𝟏, 𝟏𝟏)
(𝟏𝟏, 𝟐𝟐)
(𝟏𝟏, 𝟑𝟑)
(𝟐𝟐, 𝟏𝟏)
(𝟐𝟐, 𝟐𝟐)
(𝟐𝟐, 𝟑𝟑)
(𝟑𝟑, 𝟏𝟏)
(𝟑𝟑, 𝟐𝟐)
(𝟑𝟑, 𝟑𝟑)

(a) (b) (c) (d) (e)

𝑧𝑧

(𝑥𝑥
,𝑦𝑦

)

Fig. 2: Illustration of applying RTA3D. (a) The initial 3×3×3
table with a random arrangement of 27 items that are colored
and labeled. A color represents the (x, y) position of an
item. (b) The constructed bipartite graph. The right partite set
contains all the possible (x, y) positions . It contains 3 perfect
matchings, determining the 3 columns in (c). (c) Applying
z-shuffles to (a), according to the matching results, leads to
an intermediate table where each x-y plane has one color
appearing exactly once. (d) Applying wide shuffles to (c)
correctly places the items according to their (x, y) values (or
colors). (e) Additional z-shuffles fully sort the labeled items.

Denote the corresponding algorithm for Theorem II.1 as
RTA3D, we illustrate how it works on a 3× 3× 3 table (in
Fig. 2). RTA3D operates in three phases. In the first phase,
a bipartite graph B(T,R) is constructed based on the initial
table configuration where the partite set T are the colors of
items representing the desired (x, y) positions, and the set R
are the set of (x, y) positions of items (Fig. 2(b)). An edge is

added to B between t ∈ T and r ∈ R for every item of color
t in row r. From B(T,R), a set of m1m2 perfect matchings
can be computed, as guaranteed by [48]. Each matching,
containing m3 edges, connects all of T to all of R, dictates
how a x-y plane should look like after the first phase. For
example, the first set of matching in solid lines in Fig. 2(b)
says that the first x-y plane should be ordered as the first table
column shown in Fig. 2(c). After all matchings are processed,
we get an intermediate table, Fig. 2(c). Notice that each row
of Fig. 2(a) can be shuffled to yield the corresponding row
of Fig. 2(c); this is the main novelty of the RTA3D. After
the first phase of m1m2 z-shuffles, the intermediate table
(Fig. 2(c)) that can be reconfigured by applying RTA2D with
m1 x-shuffles and 2m2 y-shuffles. This sorts each item in the
correct x-y positions (Fig. 2(d)). Another m1m2 z-shuffles
can then sort each item to its desired z position (Fig. 2(e)).

III. METHODS

In this section, we introduce the algorithm that integrate
RTA3D algorithm to solve MRPP on 3D grids; the built-in
global coordination capability of RT3D naturally applies to
solving makespan-optimal MRPP. We assume the grid size
is m1 ×m2 ×m3 and there are m1m2m3

3 robots. For density
less than 1

3 , we add virtual robots [46], [49] till reaching 1
3 .

A. RTH3D: Adapting RTA3D for MRPP in 3D

Algorithm 1 outlines the high-level process for multi-robot
routing coordination in 3D. In each x-y plane, we partition
the grid G into 3× 3 cells (see, e.g.,Fig. 4). Without loss of
generality, we assume that m1,m2,m3 are integer multiples
of 3 and first consider the case without any obstacles for
simplicity. In the first step, to make RTA3D applicable, we
convert the arbitrary start and goal configurations (assuming
less than 1/3 robot density) to intermediate configurations
where in each 2D plane, each 3×3 cell contains no more than
3 robots (see Fig. 3). Such configurations are called balanced
configurations [47]. In practice, configurations are likely not
“far” from being balanced. The balanced configurations S1, G1

and corresponding paths can be computed by applying any
unlabeled multi-robot path planning method.

Fig. 3: Applying unlabeled MRPP to convert a random
configuration to a balanced centering one on 6× 6× 3 grids.

After that, RTA3D can be applied to coordinate the robots
moving toward their intermediate goal positions G1. Function
MatchingXY finds a feasible intermediate configuration S2

and route the robots to S2 by simulating shuffle operations
along the z axis. Function XY-Fitting apply shuffle
operations along the x and y axes to route each robot i
to its desired x-y position (g1i.x, g1i.y). In the end, function
Z-Fitting is called, routing each robot i to the desired

g1i by performing shuffle operations along the z axis and
concatenate the paths computed by unlabeled MRPP planner
UnlabeledMRPP.

Algorithm 1: RTH3D
Input: Start and goal vertices S = {si} and G = {gi}

1 Function RTH3D(S,G):
2 S1, G1 ←UnlabeledMRPP(S,G)
3 MatchingXY()
4 XY-Fitting()
5 Z-Fitting()

We now explain each part of RTH3D. MatchingXY uses
an extended version of RTA3D to find perfect matching that
allows feasible shuffle operations. Here, the “item color” of an
item i (robot) is the tuple (g1i.x, g1i.y), which is the desired
x-y position it needs to go. After finding the m3 perfect
matchings, the intermediate configuration S2 is determined.
Then, shuffle operations along the z direction can be applied
to move the robots to S2. The robots in each x-y plane will

Algorithm 2: MatchingXY
Input: Balanced start and goal vertices S1 = {s1i} and

G1 = {g1i}
1 Function MatchingXY(S1, G1):
2 A← [1, ..., n]
3 T ← the set of (x, y) positions in S1

4 for (r, t) ∈ T × T do
5 if ∃i ∈ A where

(s1i.x, s1i.y) = r ∧ (g1i.x, g1i.y) = t then
6 add edge (r, t) to B(T,R)
7 remove i from A

8 compute matchings M1, ...,Mm3 of B(T,R)
9 A← [1, ..., n]

10 foreach Mc and (r, t) ∈Mc do
11 if ∃i ∈ A where

(s1i.x, s1i.y) = r ∧ (g1i.x, g1i.y) = t then
12 s2i ← (s1i.x, s1i.y, c) and remove i from A
13 mark robot i to go to s2i

14 perform simulated z-shuffles in parallel

be reconfigured by applying x-shuffles and y-shuffles. We
need to apply RTA2D for these robots in each plane, as
demonstrated in Algorithm 3. In RTH2D, for each 2D plane,
the “item color” for robot i is its desired x position g1i.x.
For each plane, we compute the m2 perfect matchings to
determine the intermediate position g2. Then each robot i
moves to its g2i by applying y-shuffle operations. In Line 18,
each robot is routed to its desired x position by performing
x-shuffle operations. In Line 19, each robot is routed to its
desired y position by performing y-shuffle operations.

After all the robots reach the desired x-y positions, another
round of z-shuffle operations in Z-Fitting can route the
robots to the balanced goal configuration computed by an
unlabeled MRPP planner. In the end, we concatenate all the
paths as the result.

Algorithm 3: XY-Fitting
Input: Current positions S2 and balanced goal positions G1

1 Function XY-Fitting():
2 for z ← [1, ...,m3] do
3 A← {i|s2i.y = z}
4 RTH2D(A, z)

5 Function RTH2D(A, z):
6 T ← the set of x positions of S2

7 for (r, t) ∈ T × T do
8 if ∃i ∈ A where s2i.x = r ∧ g1i.x = t then
9 if robot i is not assigned then

10 add edge (r, t) to B(T,R)
11 mark i assigned

12 compute matchings M1, ...,Mm2 of B(T,R)

13 A′ ← A
14 foreach Mc and (r, t) ∈Mc do
15 if ∃i ∈ A′ where s2i.x = c ∧ g1i.x = t then
16 g2i ← (s2i.x, c, z) and remove i from A′

17 mark robot i to go to g2i

18 route each robot i ∈ A to g2i
19 route each robot i ∈ A to (g2i.x, g1i.y, z)
20 route each robot i ∈ A to (g1i.x, g1i.y, z)

B. Efficient Shuffle Operation with High-Way Heuristics

In this section, we explain how to simulate the shuffle
operation exactly. We use the shuffle operation in x-y plane
as an example. We partition the grid G into 3× 3 cells (see,
e.g., Fig. 4). Without loss of generality, we assume that m is
an integer multiple of 3 and first consider the case without
any obstacles for simplicity.

We use Fig. 4, where Fig. 4(a) is the initial start con-
figuration and Fig. 4(d) is the desired goal configuration
in MatchingXY, as an example to illustrate how to sim-
ulate the shuffle operations. In MatchingXY, the initial

1 7

2 8

3 9

4 10

5 11

6 12

4 11

2 9

3 8

5 10

1 7

6 12

1 9

2 8

3 10

7 4

5 6

11 12

(a) (b) (c) (d)

11 2 3 4 9 8

7 5 1 10 6 12

Fig. 4: An example of applying RTH2D to solve an instance.
(a) The initial configuration; (b) The intermediate configura-
tion obtained from matching; (d) The desired configuration;

configuration is a vertical “centered” configuration (Fig. 4
(a)). RTA3D is applied with a highway heuristic to get us
from Fig. 4(b) to Fig. 4(c), transforming between vertical
centered configurations and horizontal centered configurations.
To do so, RTA3D is applied (e.g., to Fig. 4) to obtain two
intermediate configurations (e.g., Fig. 4(b)(c)). To go between
these configurations, e.g., Fig. 4(b)→Fig. 4(c), we apply a
heuristic by moving robots that need to be moved out of a
3×3 cell to the two sides of the middle columns of Fig. 4(b),
depending on their target direction. If we do this consistently,

after moving robots out of the middle columns, we can move
all robots to their desired goal 3×3 cell without stopping nor
collision. Once all robots are in the correct 3×3 cells, we can
convert the balanced configuration to a centered configuration
in at most 3 steps, which is necessary for carrying out the
next simulated row/column shuffle. Adding things up, we can
simulate a shuffle operation using no more than m+ 5 steps.

C. Improving Solution Quality via Optimized Matching

The matching steps in RTA3D determine all the interme-
diate positions and therefore have great impact on solution
optimality. Finding arbitrary perfect matchings is fast but
can be further optimized. We replace the matching method
from finding arbitrary perfect matchings to finding a min-cost
matching in both of MatchingXY and RTH2D.

The matching heuristic we developed is based on linear
bottleneck assignment (LBA), which runs in polynomial time.
A 2D version of the heuristic is introduced in [47], to which
readers are referred to for more details. Here, we illustrate how
to apply LBA-matching in MatchingXY. For the matching
assigned to height z, the edge weight of the bipartite graph is
computed greedily. If a vertical column c = (x, y) contains
robots of “color” t, here t = (g2.x, g2.y), we add an edge
(c, t) and its edge cost is

Cct = min
(g2i.x,g2i.y)=t

Czi(λ = 0). (1)

We choose λ = 0 to optimize the first phase. Optimizing
the third phase (λ = 1) would give similar results. After
constructing the weighted bipartite graph, an O(m2.5/ logm)
LBA algorithm [50] is applied to get a minimum bottleneck
cost matching for height z. Then we remove the assigned
robots and compute the next minimum bottleneck cost
matching for next height. After getting all the matchings
Mz , we can further use LBA to assign Mz to a different
height z′ to get a smaller makespan lower bound. The cost
for assigning matching Mz to height z′ is defined as

CMzz′ = max
i∈Mz

Cz′i(λ = 0). (2)

The same approach can also be applied to RTH2D. We denote
RTH3D with LBA heuristics as RTH3D-LBA.

IV. THEORETICAL ANALYSIS

First, we introduce two important lemmas about well-
connected grids which have been proven in [46].

Lemma IV.1. On an m1 × m2 × m3 grid, any unlabeled
MRPP can be solved using O(m1 +m2 +m3) makespan.

Lemma IV.2. On an m1 × m2 × m3 grid, if the under-
estimated makespan of an MRPP instance is dg (usually
computed by ignoring the inter-robot collisions), then this
instance can be solved using O(dg) makespan.

We proceed to analyze the time complexity of RTH3D
on m1 × m2 × m3 grids. The dominant parts of RTH3D
are computing the perfect matchings and solving unlabeled
MRPP. First we analyze the running time for computing the
matchings. Finding m3 “wide column” matchings runs in

O(m3m
2
1m

2
2) deterministic time or O(m3m1m2 log(m1m2))

expected time. We apply RTH2D for simulating “wide
column” shuffle, which requires O(m3m

2
1m2) deterministic

time or O(m1m2m3 logm1) expected time. Therefore, the
total time complexity for Rubik Table part is O(m3m

2
1m

2
2 +

m2
1m2m3). For unlabeled MRPP, we can use the max-flow

based algorithm [51] to compute the makespan-optimal solu-
tions. The max-flow portion can be solved in O(n|E|T) =
O(n2(m1 + m2 + m3)) where |E| is the number of edges
and T = O(m1 +m2 +m3) is the time horizon of the time
expanded graph [52]. Note that any unlabeled MRPP can be
applied, for example, the algorithm in [53] is distance-optimal
but with convergence time guarantee.

Note that the choice of 2D plane can also be x-z plane
or y-z plane. In addition, one can also perform two “wide
column” shuffles plus one z shuffle, which yields 2(2m1 +
m2) +m3 number of shuffles and O(m1m2m

2
3 +m3m1m

2
2).

This requires more shuffles but shorter running time.
Next, we derive the optimality guarantee.

Proposition IV.1 (Makespan Upper Bound). RTH3D returns
solution with worst makespan 3m1 + 4m2 + 4m3 + o(m1).

Proof. The Rubik Table portion has a makespan of (2m3 +
2m2+m1)+o(m1). For the unlabeled MRPP portion, we use
m1 +m2 +m3, which is the maximum grid distance between
any two nodes on the m1 ×m2 ×m3 grid, as a conservative
makespan upper bound. Therefore, the total makespan upper
bound is 2(m1 +m2 +m3)+(2m3 +2m2 +m1)+o(m1) =
3m1 + 4m2 + 4m3 + o(m1). When m1 = m2 = m3 for
cubic grids, it turns out to be 11m3 + o(m3).

We note that the unlabeled MRPP upper bound is actually
a very conservative estimation. In practice, for such dense
instances, the unlabeled MRPP usually requires much fewer
steps. Next, we analyze the makespan when start and goal
configurations are uniformly randomly generated based on
the well-known minimax grid matching result.

Theorem IV.1 (Multi-dimensional Minimax Grid Matching
[54]). For k ≥ 3, consider N points following the uniform
distribution in [0, N1/k]k. Let L be the minimum length such
that there exists a perfect matching of the N points to the
grid points that are regularly spaced in the [0, N1/k]k for
which the distance between every pair of matched points is
at most L. Then L = O(log1/kN) with high probability.

Proposition IV.2 (Asymptotic Makespan). RTH3D returns
solutions with m1+2m2+2m3+o(m1) asymptotic makespan
for MRPP instances with m1m2m3

3 random start and goal
configurations on 3D grids, with high probability. Moreover,
if m1 = m2 = m3, RTH3D returns 5m3 +o(m3) makespan-
optimal solutions.

Proof. First, we point out that the theorem of minimax
grid matching (Theorem IV.1) can be generalized to any
rectangular cuboid as the matching distance mainly depends
on the discrepancy of the start and goal distributions, which
does not depend on the shape of the grid. Using the minimax
grid matching result, the matching distance from a random

configuration to a centering configuration, which is also
the underestimated makespan of unlabeled MRPP, scales
as O(log1/3m1). Using the Lemma IV.2, it is not difficult
to see that the matching obtained this way can be readily
turned into an unlabeled MRPP plan without increasing the
maximum per robot travel distance by much, which remains
at o(m). Therefore, the asymptotic makespan of RTH3D is
m1+2m2+2m3+O(log1/3m1) = m1+2m2+2m3+o(m1)
with high probability. If m1 = m2 = m3, the asymptotic
makespan is 5m3 + o(m3), with high probability.

Proposition IV.3 (Asymptotic Makespan Lower Bound). For
MRPP instances on m1×m2×m3 grids with Θ(m1m2m3)
random start and goal configurations on 3D grids, the
makespan lower bound is asymptotically approaching m1 +
m2 +m3, with high probability.

Proof. We examine two opposite corners of the m1 ×m2 ×
m3 grid. At each corner, we examine an αm1 × αm2 ×
αm3 sub-grid for some constant α � 1. The Manhattan
distance between a point in the first sub-grid and another
point in the second sub-grid is larger than (1 − 6α)(m1 +
m2 +m3). As m→∞, with Θ(m3) robots, a start-goal pair
falling into these two sub-grids can be treated as an event
following binomial distribution B(k, α6) when m→∞. The
probability of having at least one success trial among n trials
is p = 1− (1− α6)n, which goes to one when m→∞.

Because (1 − x)y < e−xy for 0 < x < 1 and y > 0,
p > 1 − e−α

6n. Therefore, for arbitrarily small α, we
may choose m1 such that p is arbitrarily close to 1. The
probability of a start-goal pair falling into these two sub-
grids is asymptotically approaching one , meaning that the
makespan goes to (1− 6α)(m1 +m2 +m3).

Corollary IV.1 (Asymptotic Makespan Optimality Ratio).
RTH3D yields asymptotic 1+ m2+m3

m1+m2+m3
makespan optimal-

ity ratio for MRPP instances with Θ(m1m2m3) ≤ m1m2m3

3
random start and goal configurations on 3D grids, with high
probability.

Proof. If n < m1m2m3

3 , we add virtual robots with randomly
generated start and use the same for the goal, until we
reach n = m1m2m3

3 robots, which then allows us to
invoke Proposition IV.2. In viewing Proposition IV.2 and
Proposition IV.3, solution computed by RTH3D guarantees a
makespan optimality ratio of m1+2m2+2m3

m1+m2+m3
= 1+ m2+m3

m1+m2+m3

as m3 →∞. Moreover, if m1 = m2 = m3, RTH3D returns
5
3 makespan-optimal solution.

Corollary IV.2 (Asymptotic Optimality, Fixed Height). For
an MRPP on an m1 ×m2 ×K grid, m1 > m2 � K, and
1
3 robot density, the RTH3D algorithm yields 1 + m1

m1+m2

optimality ratio, with high probability. If m1 = m2, the
asymptotic makespan optimality ratio is 1.5.

Theorem IV.2. Consider an k-dimensional cubic grid with
grid size m. If robot density is less than 1/3 and start and
goal configurations are uniformly distributed, generalizations
to RTA3D can solve the instance with asymptotic makespan
optimality being 2k−1+1

k .

Proof. By theorem IV.1, the unlabeled MRPP takes o(m)
makespan (note for k = 1, 2, the minimax grid matching
distance is still o(m) [55]). Extending proposition IV.3 to k-
dimensional grid, the asymptotic lower bound is mk. We now
prove that the asymptotic makespan f(k) is (2k−1 + 1)m+
o(m) by induction. The Rubik Table algorithm solves a d-
dimensional problem by using two 1-dimensional shuffles and
one (k − 1)-dimensional “wide column” shuffle. Therefore,
we have f(k) = 2m + f(k − 1). It’s trivial to see f(1) =
m + o(m), f(2) = 3m + o(m), which yields that f(k) =
2k−1m + m + o(m) and makespan optimality ratio being
2k−1+1

k .

V. SIMULATIONS AND EXPERIMENTS

In this section, we evaluate the performance of our
polynomial time, asymptotic optimal algorithms and compare
them with fast and near-optimal solvers, ECBS (w=1.5)
[42] and ILP with 16-split heuristic [35], [56]. For the
unlabeled MRPP planner, we use the algorithm [53]. Though
it minimizes total distance, we find it is much faster than
max-flow method [51] and the makespan optimality is very
close to the optimal one on well-connected grids. All the
algorithms are implemented in C++. We mention that, though
not presented here, we also evaluated push-and-swap [39],
which yields good computation time but substantially worse
optimality (with ratio > 25) on the large and dense settings
we attempt. We also examined prioritized methods, e.g.,
[41], [45], which faced significant difficulties in resolving
deadlocks. All experiments are performed on an Intel®

CoreTM i7-9700 CPU at 3.0GHz. Each data point is an
average over 20 runs on randomly generated instances, unless
otherwise stated. A running time limit of 300 seconds is
imposed over all instances. The optimality ratio is estimated
as compared to conservatively estimated lower bound.

In addition to numerical evaluations, we further demon-
strate using RTA3D-LBA to coordinate many UAVs in the
Unity [57] environment as well as to plan trajectories for
10 Crazyflie 2.0 nano quadcopter in 3D. We will make our
source code available upon the publication of this work.

A. Evaluations on 3D Grids

In the first evaluation, we fix the aspect ratio m1 : m2 :
m3 = 4 : 2 : 1 and 1

3 robot density, and examine the
performance RTA3D methods on obstacle-free grids with
varying size. Start and goal configurations are randomly
generated; the results are shown in Fig. 5. ILP with 16-
split heuristic and ECBS computes solution with better
optimality ratio but have poor scalability. In contrast, RTH3D
and RTH3D-LBA readily scale to grids with over 370, 000
vertices and 120, 000 robots. Both of the optimality ratio
of RTH3D and RTH3D-LBA decreases as the grid size
increases, asymptotically approaching ∼ 1.7 for RTH3D and
∼ 1.5 for RTH3D-LBA.

In a second evaluation, we fix m1 : m2 = 1 : 1,m3 = 6
and robot density at 1

3 , and vary m1. As shown in Fig. 6,
RTH3D and RTH3D-LBA show exceptional scalability and

10 20 30
Grid m3 length

1.0

1.5

2.0

2.5

3.0

3.5

O
pt

im
al

ity
ra

tio

10 20 30
Grid m3 length

10−2

10−1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

ECBS
ILP 16-split
RTH3D
RTH3D-LBA

Fig. 5: Computation time and optimality ratio on grids with
varying grid size and m1 : m2 : m3 = 4 : 2 : 1.

the asymptotic 1.5 makespan optimality ratio, as predicted
by Corollary IV.2.

0 50 100 150
Grid m1 length

1.0

1.5

2.0

2.5

3.0

3.5

O
pt

im
al

ity
ra

tio

0 50 100 150
Grid m1 length

10−2

10−1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

ECBS
ILP 16-split
RTH3D
RTH3D-LBA

Fig. 6: Computation time and optimality ratio on grids with
m1 : m2 = 1 and m3 = 6.

RTH3D and RTH3D-LBA support scattered obstacles
where obstacles are small and regularly distributed. As a
demonstration of this capability, we simulate setting with
an environment containing many tall buildings, a snapshot
of which is shown Fig. 1. These “tall building” obstacles
are located at positions (3i+ 1, 3j + 1), which corresponds
to an obstacle density of over 10%. UAV swarms have to
avoid colliding with the tall buildings and are not allowed
to fly higher than those buildings. We fix the aspect ratio
at m1 : m2 : m3 = 4 : 2 : 1 and robot density at 2

9 . The
evaluation result is shown in Fig. 7.

10 20 30
Grid m3 length

1.0

1.5

2.0

2.5

3.0

3.5

O
pt

im
al

ity
ra

tio

10 20 30
Grid m3 length

10−2

100

102

C
om

pu
ta

tio
n

tim
e

(s
)

ECBS
ILP 16-split
RTH3D
RTH3D-LBA

Fig. 7: Computation time and optimality ratio on 3D envi-
ronments with obstacles. m1 : m2 : m3 = 4 : 2 : 1.

B. Impact of Robot Density

Next, we vary robot density, fixing the environment as a
120× 60× 6 grid. For robot density lower than 1

3 , we add
virtual robots with random start and goal configurations for
perfect matching computation. When applying the shuffle
operations and evaluating optimality ratios, virtual robots are
removed. Therefore, the optimality ratio is not overestimated.
The result is plotted in Fig. 8, showing that robot density
has little impact on the running time. On the other hand, as
robot density increases, the lower bound and the makespan

required by unlabeled MRPP are closer to theoretical limits.
Thus, the makespan optimality ratio is actually better.

0.10 0.15 0.20 0.25 0.30
Robot density

1.55

1.60

1.65

1.70

O
pt

im
al

ity
ra

tio

0.10 0.15 0.20 0.25 0.30
Robot density

4.00

4.25

4.50

4.75

5.00

5.25

5.50

C
om

pu
ta

tio
n

tim
e

(s
) RTH

RTH-LBA

Fig. 8: Computation time and optimality ratio on a 120×60×6
grid with varying robot density.

C. Special Patterns

In addition to random instances, we also tested instances
with start and goal configurations forming special patterns,
e.g., 3D “ring” and “block” structures (Fig. 9). For both
settings, m1 = m2 = m3. In the first setting, “rings”, robots
form concentric square rings in each x-y plane. Each robot
and its goal are centrosymmetric. In the “block” setting, the
grid is divided to 27 smaller cubic blocks. The robots in
one block need to move to another random chosen block.
Fig. 9(c) shows the optimality ratio results of both settings
on grids with varying size. Notice that the optimality ratio
for the ring approaches 1 for large environments.

10 20 30
Grid m3 length

1

2

3

4

5

O
pt

im
al

ity
ra

tio

RTH3D-Rings
RTH3D-LBA-Rings
RTH3D-Blocks
RTH3D-LBA-Blocks

(a) (b) (c)

Fig. 9: Special patterns and the associated optimality ratios.

D. Crazyswarm Experiment

Fig. 10: Crazyflie 2.0
nano quadcopter.

Paths planned by RTA3D can
also be readily transferred to real
UAVs. To demonstrate this, 10
Crazyflie 2.0 nano quadcopters are
choreographed to form the “A-R-
C-R-U” pattern, letter by letter, on
6× 6× 6 grids (Fig. 11).

The discrete paths are computed by RTH3D. Due to
relatively low robot density, shuffle operations are further
optimized to be more efficient. Continuous trajectories are
then computed based on RTH3D plans by applying the
method described in [25].

VI. CONCLUSION

In this study, we proposed to apply Rubik Table results
[30] to solve MRPP. Combining RTA3D, efficient shuffling,
and matching heuristics, we obtain a novel polynomial time
algorithm, RTH3D-LBA, that is provably 1.x makespan-
optimal with up to 1

3 robot density. In practice, our methods
can solve problems on graphs with over 300, 000 vertices

Fig. 11: A Crazyswarm [58] with 10 Crazyflies following
paths computed by RTA3D on 6× 6× 6 grids, transitioning
between letters ARC-RU. The figure shows five snapshots
during the process. We note that some letters are skewed in
the pictures which is due to non-optimal camera angles when
the videos were taken.

and 100, 000 robots to 1.5 makespan-optimal. Paths planned
by RTH3D-LBA readily translate to high quality trajectories
for coordinating large number of UAVs and are demonstrated
on a real UAV fleet.

In future work, we plan to expand in several directions,
enhancing both the theoretical guarantees and the methods’
practical applicability. In particular, we are interested in
planning better paths that carefully balance between the
nominal solution path optimality at the grid level and the
actual path optimality during execution, which requires the
consideration of the dynamics of the aerial vehicles that
are involved. We will also address domain-specific issues
for UAV coordination, e.g., down-wash, possibly employing
learning-based methods [59].

REFERENCES

[1] M. A. Erdmann and T. Lozano-Pérez, “On multiple moving objects,” in
Proceedings IEEE International Conference on Robotics & Automation,
1986, pp. 1419–1424.

[2] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for
multiple robots having independent goals,” IEEE Transactions on
Robotics & Automation, vol. 14, no. 6, pp. 912–925, Dec. 1998.

[3] Y. Guo and L. E. Parker, “A distributed and optimal motion planning ap-
proach for multiple mobile robots,” in Proceedings IEEE International
Conference on Robotics & Automation, 2002, pp. 2612–2619.

[4] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proceedings IEEE
International Conference on Robotics & Automation, 2008, pp. 1928–
1935.

[5] T. Standley and R. Korf, “Complete algorithms for cooperative
pathfinding problems,” in Proceedings International Joint Conference
on Artificial Intelligence, 2011, pp. 668–673.

[6] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” in
Proceedings Workshop on Algorithmic Foundations of Robotics, 2012.

[7] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “CAPT: Concurrent
assignment and planning of trajectories for multiple robots,” Inter-
national Journal of Robotics Research, vol. 33, no. 1, pp. 98–112,
2014.

[8] K. Solovey, J. Yu, O. Zamir, and D. Halperin, “Motion planning for
unlabeled discs with optimality guarantees,” in Robotics: Science and
Systems, 2015.

[9] G. Wagner, “Subdimensional expansion: A framework for computa-
tionally tractable multirobot path planning,” 2015.

[10] L. Cohen, T. Uras, T. Kumar, H. Xu, N. Ayanian, and S. Koenig,
“Improved bounded-suboptimal multi-agent path finding solvers,” in
International Joint Conference on Artificial Intelligence, 2016.

[11] B. Araki, J. Strang, S. Pohorecky, C. Qiu, T. Naegeli, and D. Rus,
“Multi-robot path planning for a swarm of robots that can both fly and
drive,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2017.

[12] S. Tang and V. Kumar, “A complete algorithm for generating safe
trajectories for multi-robot teams,” in Robotics Research. Springer,
2018, pp. 599–616.

[13] H. Wang and M. Rubenstein, “Walk, stop, count, and swap: decen-
tralized multi-agent path finding with theoretical guarantees,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1119–1126, 2020.

[14] D. Halperin, J.-C. Latombe, and R. Wilson, “A general framework for
assembly planning: The motion space approach,” Algorithmica, vol. 26,
no. 3-4, pp. 577–601, 2000.

[15] S. Rodriguez and N. M. Amato, “Behavior-based evacuation plan-
ning,” in Proceedings IEEE International Conference on Robotics &
Automation, 2010, pp. 350–355.

[16] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile sensor
networks,” in Proceedings IEEE International Conference on Robotics
& Automation, 2004.

[17] B. Smith, M. Egerstedt, and A. Howard, “Automatic generation of
persistent formations for multi-agent networks under range constraints,”
ACM/Springer Mobile Networks and Applications Journal, vol. 14,
no. 3, pp. 322–335, Jun. 2009.

[18] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach
to collaborative multi-robot localization,” Autonomous Robots, vol. 8,
no. 3, pp. 325–344, Jun. 2000.

[19] E. J. Griffith and S. Akella, “Coordinating multiple droplets in planar
array digital microfluidic systems,” International Journal of Robotics
Research, vol. 24, no. 11, pp. 933–949, 2005.

[20] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in Proceedings IEEE/RSJ International Conference
on Intelligent Robots & Systems, 1995, pp. 235–242.

[21] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and
rescue with a team of mobile robots,” in Proceedings IEEE International
Conference on Robotics & Automation, 1997.

[22] R. A. Knepper and D. Rus, “Pedestrian-inspired sampling-based
multi-robot collision avoidance,” in 2012 IEEE RO-MAN: The 21st
IEEE International Symposium on Robot and Human Interactive
Communication. IEEE, 2012, pp. 94–100.

[23] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI magazine,
vol. 29, no. 1, pp. 9–9, 2008.

[24] R. Mason, “Developing a profitable online grocery logistics business:
Exploring innovations in ordering, fulfilment, and distribution at ocado,”
in Contemporary Operations and Logistics. Springer, 2019, pp. 365–
383.

[25] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 856–869, 2018.

[26] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[27] E. D. Demaine, S. P. Fekete, P. Keldenich, H. Meijer, and C. Scheffer,
“Coordinated motion planning: Reconfiguring a swarm of labeled robots
with bounded stretch,” SIAM Journal on Computing, vol. 48, no. 6, pp.
1727–1762, 2019.

[28] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; pspace-hardness of
the” warehouseman’s problem”,” The International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[29] “Duke energy drone light show at the st. pete pier,” https://stpetepier.
org/anniversary/, accessed: 2022-02-16.

[30] M. Szegedy and J. Yu, “On rearrangement of items stored in stacks,”
in The 14th International Workshop on the Algorithmic Foundations
of Robotics, 2020.

[31] P. Surynek, “An optimization variant of multi-robot path planning
is intractable,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 24, no. 1, 2010.

[32] H. Ma, C. Tovey, G. Sharon, T. Kumar, and S. Koenig, “Multi-agent
path finding with payload transfers and the package-exchange robot-
routing problem,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

[33] P. Surynek, “Towards optimal cooperative path planning in hard setups
through satisfiability solving,” in Pacific Rim International Conference
on Artificial Intelligence. Springer, 2012, pp. 564–576.

[34] E. Erdem, D. G. Kisa, U. Oztok, and P. Schüller, “A general formal
framework for pathfinding problems with multiple agents,” in Twenty-
Seventh AAAI Conference on Artificial Intelligence, 2013.

[35] J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Transactions on
Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[36] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C.
Holte, and J. Schaeffer, “Enhanced partial expansion a,” Journal of
Artificial Intelligence Research, vol. 50, pp. 141–187, 2014.

[37] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost
tree search for optimal multi-agent pathfinding,” Artificial Intelligence,
vol. 195, pp. 470–495, 2013.

[38] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[39] R. J. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in Twenty-Second International
Joint Conference on Artificial Intelligence, 2011.

[40] B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push and rotate:
a complete multi-agent pathfinding algorithm,” Journal of Artificial
Intelligence Research, vol. 51, pp. 443–492, 2014.

[41] D. Silver, “Cooperative pathfinding.” Aiide, vol. 1, pp. 117–122, 2005.
[42] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants

of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Seventh Annual Symposium on Combinatorial Search,
2014.

[43] S. D. Han and J. Yu, “Ddm: Fast near-optimal multi-robot path planning
using diversified-path and optimal sub-problem solution database
heuristics,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
1350–1357, 2020.

[44] J. Li, W. Ruml, and S. Koenig, “Eecbs: A bounded-suboptimal search
for multi-agent path finding,” in Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 2021.

[45] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig, “Searching with
consistent prioritization for multi-agent path finding,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 7643–7650.

[46] J. Yu, “Constant factor time optimal multi-robot routing on high-
dimensional grids,” 2018 Robotics: Science and Systems, 2018.

[47] T. Guo and J. Yu, “Sub-1.5 time-optimal multi-robot path planning on
grids in polynomial time,” arXiv preprint arXiv:2201.08976, 2022.

[48] P. Hall, “On representatives of subsets,” in Classic Papers in Combi-
natorics. Springer, 2009, pp. 58–62.

[49] S. D. Han, E. J. Rodriguez, and J. Yu, “Sear: A polynomial-time multi-
robot path planning algorithm with expected constant-factor optimality
guarantee,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[50] R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems:
revised reprint. SIAM, 2012.

[51] J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Algorithmic foundations of robotics X. Springer, 2013, pp.
157–173.

[52] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, vol. 8, pp. 399–404, 1956.

[53] J. Yu and M. LaValle, “Distance optimal formation control on graphs
with a tight convergence time guarantee,” in 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC). IEEE, 2012, pp. 4023–
4028.

[54] P. W. Shor and J. E. Yukich, “Minimax grid matching and empirical
measures,” The Annals of Probability, vol. 19, no. 3, pp. 1338–1348,
1991.

[55] T. Leighton and P. Shor, “Tight bounds for minimax grid matching with
applications to the average case analysis of algorithms,” Combinatorica,
vol. 9, no. 2, pp. 161–187, 1989.

[56] T. Guo, S. D. Han, and J. Yu, “Spatial and temporal splitting heuristics
for multi-robot motion planning,” in IEEE International Conference
on Robotics and Automation, 2021.

[57] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar et al., “Unity: A general platform for
intelligent agents,” arXiv preprint arXiv:1809.02627, 2018.

[58] J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in IEEE Int. Conf. on Robotics and
Automation (ICRA), 2017.

[59] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decen-
tralized close-proximity multirotor control using learned interactions,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 3241–3247.

https://stpetepier.org/anniversary/
https://stpetepier.org/anniversary/

	I Introduction
	II Preliminaries
	II-A Multi-Robot Path Planning on 3D Grids
	II-B High-Level Reconfiguration via Rubik Tables in 3D

	III Methods
	III-A RTH3D: Adapting RTA3D for MRPP in 3D
	III-B Efficient Shuffle Operation with High-Way Heuristics
	III-C Improving Solution Quality via Optimized Matching

	IV Theoretical Analysis
	V Simulations And Experiments
	V-A Evaluations on 3D Grids
	V-B Impact of Robot Density
	V-C Special Patterns
	V-D Crazyswarm Experiment

	VI Conclusion
	References

