
On CAD Informed Adaptive Robotic Assembly

Yotto Koga1, Heather Kerrick2 and Sachin Chitta3

Abstract— We introduce a robotic assembly system that
streamlines the design-to-make workflow for going from a
CAD model of a product assembly to a fully programmed and
adaptive assembly process. Our system captures (in the CAD
tool) the intent of the assembly process for a specific robotic
workcell and generates a recipe of task-level instructions. By
integrating visual sensing with deep-learned perception models,
the robots infer the necessary actions to assemble the design
from the generated recipe. The perception models are trained
directly from simulation, allowing the system to identify various
parts based on CAD information. We demonstrate the system
with a workcell of two robots to assemble interlocking 3D
part designs. We first build and tune the assembly process
in simulation, verifying the generated recipe. Finally, the real
robotic workcell assembles the design using the same behavior.

I. INTRODUCTION

Traditionally, automated assembly processes are imple-
mented using fixed automation, requiring considerable effort
for each product to ensure robust and reliable execution.
However, the needs of ever more demanding and discerning
customers are pressuring manufacturers to provide customiz-
able product offerings. As a result, product cycles are short-
ening, and manufacturers must often retool and re-program
their assembly lines to automate production for high-mix,
low volume products. However, frequent assembly workcell
changes are cost-prohibitive because of the required time,
material, and programming. Simplifying the programming
workflow for automated assembly will lead to a new gener-
ation of easy-to-deploy and flexible automation systems.

This paper describes our efforts toward simplifying the
design-to-make workflow using robots through a novel mix
of planning, perception, and interactive authoring tools. The
interactive tools are designed to allow automation designers
to easily specify desired actions at a high level, using their
expertise to augment the automated capabilities of our system
- e.g. the designer can specify the assembly sequence order of
parts while planning techniques are used to find intermediate
waypoints for the robot putting the parts into the assembly.

Through the interactive tools, the designer further sim-
plifies the assembly problem into three separate robotic
manipulations tasks, picking up the part, re-grasping the part
to obtain the required goal grasp for part insertion, and finally
inserting the part into its goal location in the assembly.

We use depth images from an RGBD camera capturing a
collection of parts to feed a fully convolutional DenseNet
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model to identify part classes and to infer collision-free
grasp locations on the parts. This provides automated part
picking and adaptation to variations in the part locations. We
also feed depth images of grasped parts and the assembly
with another DenseNet model (trained differently than the
grasping model) to infer 6 DOF pose estimates. Combined
with a simple graph-based regrasp sequence planner, this
provides automated re-grasping of parts to the desired goal
grasp. With pose estimates of the grasped part and the
assembly area, the robot can deliver the part through its
waypoints into the assembly. We demonstrate our approach
by automating a challenging assembly of a set of interlocking
part designs with a multi-robot workcell.

Finally, our system makes extensive use of CAD informa-
tion: (1) In the interaction tool to specify high-level input for
the assembly process, (2) In the perception pipeline to enable
part manipulation based solely on CAD data of the part for
training DenseNet models, and (3) In the planning pipeline to
simulate and validate feasible grasps, assembly paths and re-
grasping behaviors. We believe a CAD to assembly pipeline
of this form will improve the accessibility of assembly
automation systems to non-expert users.

In summary, the contributions in this paper are: (1) A
novel end-to-end design-to-adaptive-make workflow aug-
menting designer input with planning and perception, (2)
A system that can deal with uncertainties arising from part
presentation, from pickup to re-grasping to insertion, (3) A
precise pose estimator that allows the robots to assemble the
parts of the design using only positional control, and (4) A
demonstration of the system on a challenging assembly task
with a dual-arm robotic workcell.

II. RELATED WORK

Using CAD information for inferring the assembly se-
quence has been studied in early work [4], [2] where the
concept of assembly by disassembly was used. This approach
draws on the fact that part motions are significantly con-
strained in the disassembly phase, reducing the complexity
of finding a solution. Other work inferred feasible assemblies
using geometric descriptions and constraints of the parts
[7], [19]. Knepper et al. built on this approach in [10] to
coordinate a team of robots building furniture.

In [15], Michniewicza et al. outlined the development of
a system that combined task and functional primitives into a
directed graph called an Augmented Assembly Priority Plan.
The plan can consider constraints (e.g., workspace, collision)
and allocate resources (e.g., robots, conveyors, grippers, etc.).
Individual operations (called skills – e.g., fastening, insertion,
etc.) are sequenced appropriately to complete the assembly.

ar
X

iv
:2

20
8.

01
77

3v
1 

 [
cs

.R
O

] 
 2

 A
ug

 2
02

2



We rely on the designer to provide the assembly sequence
order and allocation of resources for assembly tasks.

In [13], Lozano-Pérez et al. described a robot manipulation
system called HANDEY. They integrated vision, path plan-
ning, grasp planning, regrasp planning, and motion control
to pick, regrasp, and place shapes using multiple robot
arms. Re-grasping of parts was done by placing them on
a table. In [1], Alami et al. presented a unified framework
for planning manipulation tasks for picking, re-grasping,
and placing objects using a robot arm. In [11], Koga and
Latombe developed a manipulation planner for multi-arm
robotic systems. They demonstrated simulated results of
multiple arm robotic systems with up to 24 degrees of
freedom, grasping an object, transferring it to some goal
location, and initiating re-grasping motions as needed to
complete the task. We are similar in spirit to the HANDEY
system and decompose the assembly problem into separate
tasks, in contrast to the unified and challenging task and
manipulation planning approach.

In [20], Wan et al. described a regrasp planning component
for finding sequences of robot poses and grasp configurations
to reorient a part to some goal pose. They construct the prob-
lem as a graph search problem. Our re-grasping approach
is very similar, except that we search the graph to find a
sequence to reach a goal grasp of the part.

Deep learning models to infer grasp location on parts
from RGBD images is a popular method for robotic part
picking tasks [17], [14], [23]. In particular, Redmon and
Angelova [17] described a model to regress RGBD image
data into 2D grasp proposals represented by a grasp rectangle
(x, y, θ, h, w). Our grasping model is a simple extension of
[17] to 3D grasp proposals. We replace their model backbone
with the DenseNet segmentation model [9] and use dense
prediction from a depth image of part collections (presented
as a heightmap) to grasp rectangle point clouds. The inferred
grasp rectangle point cloud is the 3D grasp proposal for the
associated part.

For pose estimation of objects, there are several techniques
to employ such as registration using ICP [21], PointNetLK
[10], or PVN3D [8]. Our pose estimation task is for non-
occluded single objects, so PointNetLK, PVN3D, and similar
pose estimation models are excessive for our needs. ICP has
challenges with local minima and slow running speeds. For
our pose estimation needs, we modified our training data
pipeline for the DenseNet grasp proposal model to produce
a pose rectangle point cloud label associated with the view
of the part. Given the offset between the pose rectangle and
the part frame, we extract a reliable pose estimate of the part
after PCA.

In [6], Gorjup et al. described the system they developed
for the IROS 2019 Robotic Grasping and Manipulation Com-
petition. The competition consisted of four representative
classes of assembly tasks, fastener threading, insertion, wire
routing, and belt threading and tensioning. A CAD file de-
scribed the tasks’ layout, ground truth pose, and goals. Their
first place system consisted of a CAD interface to extract the
ground truth data, a specialized gripper to handle multiple

tasks, and compliance control to recover from calibration
errors. In [5], Drigalski et al. described the system they
built for the World Summit 2018 World Robot Challenge.
The set of tasks for this competition was similar to [6].
Likewise, we have created workflow and tools to simplify
the task of setting up automated adaptable robotic assembly
of designs. We incorporate many of the same components,
although we tackle a more unconstrained problem where
parts are arbitrarily presented to the system, which requires
solutions for tilting the gripper fingers to pick up the parts
successfully, and re-grasping of parts. We also only require
positional control to assemble the design.

III. APPROACH
For this work, the assembly tasks we consider require

picking up parts, re-grasping if necessary, and then inserting
parts into the assembly without fasteners like bolts or clips.
We consider only parallel-jaw gripper fingers. We assume
there are at least two robots in the workcell with a common
workspace where they can pass the part between each other
for re-grasping. We demonstrate the system using two robot
arms to assemble interlocking block designs called Yinan
blocks, named after their inventor [22].

In this section, we first describe the authoring steps to
specify the high-level instructions for the assembly process.
We then describe our method of using planning techniques
and perception models to fill in the details for the actual
robots in the workcell to complete the assembly.

Fig. 1. A digital twin of a physical robotic workcell with custom made
fingers and camera fixtures. The authored pickup area and camera and
fingers used to grasp the parts are highlighted in blue.

A. Authoring Steps

Our approach starts with the designer specifying high-level
steps for the assembly process. We assume that the robotic
workcell is modeled and available to the designer as a digital
twin (see Fig. 1). The authoring steps of this workflow are
the following:

1) In the CAD tool, the designer specifies the disassembly
sequence for the parts and sub-assemblies using a
simple point and click visual interface (see Fig. 2). The
authoring tool hides the selected parts to facilitate the
specification of the disassembly sequence. Reversing
this sequence yields the assembly sequence.



Fig. 2. A disassembly sequence for a design made with Yinan blocks.
Sequence goes for a) to f).

2) The designer authors a set of grasps for each part
using the specific fingers in the workcell. A grasp in
this set can be a single position and orientation of the
fingers with respect to the part or a range between
two endpoints. We rely on the designer’s judgment to
author stable grasps of the part with the fingers of the
gripper. We assume an authored grasp can be flipped
by 180 degrees around the fingers’ z-axis (see Fig. 3)
and still be valid, so each authored grasp adds two
entries into the set. An example of authored grasps in
a set is shown in Fig. 3.

3) The designer can additionally specify locations for
the parts (pickup area), the cameras available in the
workcell, the assembly location in the workcell, a re-
grasping area, and other workcell parameters, includ-
ing choice of cameras and robots for different parts of
the assembly process (see Figs. 1 and 4).

4) In the final step, the designer stitches the assembly
behaviors together following the sequential task-level
goals. We provide task-level APIs to simplify the
scripting task.

Fig. 3. Examples of authored grasps. The upper left cell shows the reference
frame for the fingers. The frame origin is at the midpoint between the two
fingertips.

The authored steps describe the high-level intent of the
assembly process. At each stage, a validation check is run
to verify that the assembly sequence, with the robot, their
fingers, and cameras in the workcell can reach, insert and
view the parts in the specified areas in a collision-free
manner. Upon verification of all steps, a recipe of sequential

task-level goals for assembling the design is generated. For
each part, the instructions include its type, its general location
in the workcell, which camera to use to locate the part, the
fingers that will grasp it, the camera which will be used to get
its pose estimate, the goal grasp to insert it into the assembly,
and finally, the intermediate waypoints to insert it into the
assembly. Our system requires the designer to reauthor steps
due to failures in the validation stage. Incorporating designer
feedback in this manner allows our system to draw on the
skills and experience of the designer in the areas that they
are most skilled at while providing an additional checkpoint
before executing the behaviors in the robot workcell.

Fig. 4. An example of the location and the specified cameras and fingers
used to drive regrasp actions of parts (highlighted in blue).

B. Robot Steps

At each stage of the assembly process, parts need to move
from the pickup area to the assembly area and be inserted
into the assembly. This is a manipulation planning problem
[1], [11] which aims to find the robot motions to grasp the
part and transfer it to the goal location in a collision-free
manner. Reaching the goal may require the re-grasping of the
part using stable placement areas or an extra gripper to hold
the part. We simplify the problem by breaking this end-to-
end consideration into three separate tasks, 1) grasping and
pickup of the part, 2) insertion of the part into the assembly,
and if necessary, 3) re-grasping of the part to the required
grasp for part insertion.

To pick up the part, we use a perception model to find
the required part in the pickup region and infer its collision-
free grasp for the user-specified robot. We then move the
robot and gripper to this location to grasp and pick up the
part. For part insertion, we use a motion planner with grasp
constraints for the user-specified insertion robot to find the
required grasp of the part for insertion and its waypoints
into the assembly. We then move the robot and the grasped
part (with the goal grasp) through the waypoints into the
assembly. If the goal grasp differs from the pickup grasp, we
first move the grasped part into the user-specified regrasping
area. A regrasp planner is used to find the sequence of re-
grasping steps to achieve the required goal grasp for the
insertion robot. We then move the robots through the re-
grasping steps. We now describe the key components in more
detail.



1) Grasp Inference: We want our system to be able to
pick up tilted parts from a pile using a parallel-jaw gripper.
This requires finding grasps that orient in 3D and account
for tilt to maximize the chance for successful grasps.

Fig. 5. A part pile heightmap (blue points) and the associated 3D grasp
proposals (red points). The blue points are the input to the model, and the
red points are the output.

Our grasp perception model is a simple extension of the
work from Redmon and Angelova [17]. We replace their
model backbone with the DenseNet segmentation model [9]
and use dense prediction from a depth image of piled parts
(presented to the model as a heightmap) to get 3D grasp
proposals for the parts. A 3D grasp proposal represents the
stable and collision-free grasp region of the associated part
for the fingers of the robot. The model produces the proposal
as a rectangular point cloud (see Fig. 5). For each rectangular
point cloud, we use PCA to get its 3D center, 3D orientation,
width, and height of the grasp proposal. The center and
normal vector for the rectangular region are the proposal
frame origin and z-axis direction, respectively. The points in
the proposal are located at the pixel coordinates of the dense
prediction. The height value at the output pixel is the height
of that point in the rectangular point cloud. Also, the part
class id of the associated part is concatenated by the model
to each pixel height value.

The frame of the grasp proposal (see Fig. 6) defines the
location of the finger frame for grasping (see Fig. 3). From
just the rectangular point cloud, the direction for the fingers
to close on the part is ambiguous. Is it along the width or
height of the proposal? A value gradient over the proposal
gives this direction and the model concatenates gradient
samples to the pixels’ height and class id values (see Fig. 7).
The x-axis direction for the grasp proposal (the finger closing
direction) is along the gradient going from biggest to smallest
value.

Fig. 6. The grasp proposal frame associated with a heightmap of a part.

The training data is generated synthetically by randomly
placing and piling the CAD model of the parts in the
pickup area in different orientations. We use a 3D OpenGL-
based renderer to create the depth data of the parts from
the view of the perspective camera for a given sample. To

Fig. 7. The grasp x-gradient.

facilitate the transfer of the learned model to work with
actual camera depth data, we add noise to the rendered
depth map by downsampling the resolution and adding Perlin
noise to its depth values. We convert the depth image into
an orthographic heightmap representing the parts’ structured
2.5D point cloud.

The associated grasp proposal label for the sample is
computed in the following manner. For each part in the pile,
the CAD model of the grasping fingers is positioned at each
grasp in the set authored for that part. A grasp is considered
valid if the CAD model of the fingers grasping the part does
not collide with any other parts or the environment. When a
grasp defines a range between two endpoints of the fingers
along the part, we discretize the range into a few steps and
check if each step is valid. Consecutive, valid tests for a
grasp are grouped to create the grasp proposal. The grasp
proposal frame is the fingers’ tip frame at the midpoint of the
span. Since the finger frame can be rotated by 180 degrees
around its z-axis and be the same grasp, we avoid ambiguity
in the label by constraining the proposal frame to have its
x-axis direction always pointing towards the right half of
the camera view. The dimension of the proposal in its x-
axis is the spacing between the fingers for the grasp, and the
dimension in its y-axis is the finger width plus the span of
consecutive, valid tests. For all valid proposals, we check for
any overlap between proposals from the camera view. If there
is an overlap, we discard the bottom proposal. We then render
the remaining proposals into a heightmap that matches the
associated part heightmap sample (rendered from the same
camera viewpoint). We save the label in an image format.
The height of the grasp proposal pixels are encoded in the
alpha channel of the rendered result. The grasp proposal x-
axis direction gradient is encoded in the red channel. And
finally, the part class associated with the proposal pixels are
encoded in the green channel.

For each set of parts in an assembly process, we synthesize
roughly 600,000 samples of these parts and their associated
labels. Our loss function used in training the DenseNet model
is the sum of the cross-entropy loss of the height, class, and
gradient value in the dense prediction. We scale the loss
by the number of points with non-zero height values in the
label to account for the sparseness of the proposals. Our data
generation pipeline creates training data at a fixed camera
distance from the part pile and generates the associated grasp
region labels with a specified finger CAD model. The model
take about 12 hours to train on an Nvidia V100 GPU.

We make grasp inference by capturing a heightmap from
the specified camera for part pickup and then feeding it to
the model. We use 2D clustering techniques to isolate each
grasp proposal in the result. We then use PCA on the points



to get the center and tilted orientation of the proposal in the
camera frame. The part class associated with the proposal
is the max class value. The x-axis direction for the frame
comes from the gradient direction embedded in the proposal
and is updated accordingly.

To grasp a particular part by class, we look at the grasp
proposals with the desired part class and choose the one with
its center closest to the camera. The grasp pose is mapped
to the workcell frame, the fingers open to the value given by
the grasp proposal (plus some extra padding), and the robot
moves the fingers into position to grasp and pick up the part.

Fig. 8. A part designed in a CAD tool where the primary motion directions
for insertion into the assembly are also the axes of its local frame (the red,
blue, and green arrows).

2) Motion Planning for Assembly: After the designer
authors a disassembly sequence, we use a motion planner
to verify that the disassembly sequence is correct. We ap-
proximate the test by running a best-first-search [12] with
three translation degrees of freedom along the axes of the
part local frame (see Fig. 8). This requires that the part axes
are aligned with the directions in which the part comes out
of the assembly. This seems to be a reasonable requirement
regarding how CAD models are created in practice. This
allows us to orient the part in its final pose and discretize
the translation search space around the tight thresholds of the
parts in the assembly and maximize the chance of finding
collision-free paths in the discretized configuration space. If
a collision-free path to extract the part (to some free space
outside the assembly) cannot be found, then an error is com-
municated to the designer that the sequence is incorrect. We
require the designer to re-author the disassembly sequence
to correct the failure. Parts that need twisting or tilting into
the assembly will require a more exhaustive search routine.
In complicated cases, we would have the designer author
the waypoints. Despite this limitation, we were still able to
explore interesting assembly tasks.

We also add a grasping constraint to the motion planning
problem. The grasp constraint requires that the robot and
gripper fingers maintain the grasp of the part during the
search. The part, robot, and fingers must also be collision-
free throughout the path. The disassembly sequence for the
design is verified if we can find a collision-free extraction
motion and meet the grasp constraint criteria for all parts,
running the planner multiple times with the entire design
in different random starting poses in the assembly area. If

multiple grasps exist, we choose the grasp with the fingers’
x-axis aligned with any insertion motion. This is the stable
grasp to keep the part from twisting between the fingers
during contact with the insertion surfaces.

The grasp associated with the resulting collision-free path
is the goal grasp. The motion planning search is biased
to find straight-line motions with the minimum number
of direction changes. The ends of the straight-line motion
become waypoints for the disassembly of a part. The reverse
order of waypoints becomes the robot’s insertion instructions
to move the part into the assembly. For example, the insertion
waypoints for the block in Fig. 8 in the assembly shown in
Fig. 2, is a downward motion with the nub of the part moving
through the vertical slot and then sliding horizontally through
the horizontal slot embedded inside the assembly to its goal.

Note that we only use the motion planner to find the
part’s goal grasp and generate the waypoints to deliver the
part to the assembly from just above the assembly area. We
use simpler straight-line motions of the fingers or cameras
for gross robot motion in the workcell. For uncluttered
workcells, this seems sufficient to generate collision-free
trajectories. As such, gross motion planning was not a focus
of this work, but, in more cluttered workcells, we aim to
integrate standard motion planning techniques in the future
(e.g., using open-source packages like MoveIt! [18]).

3) Re-grasp Planning: The parts in the pickup area can
have arbitrary positions and orientations. The grasp chosen
for pickup may differ from the required grasp for part
insertion necessitating a re-grasping step. To re-grasp the
part, we use two robots to move through a sequence of
alternating grasps until the desired grasp is achieved (see
Fig. 9).

Fig. 9. An example re-grasping sequence of a part with the two robot
fingers to achieve the goal grasp. Sequence goes from a) to i).

We cast the problem into a graph search to find the re-
grasping steps. We construct the graph by first specifying
where re-grasping occurs in the workcell. The part will be
centered at this location but can have different orientations.
We require a finite set of varying part poses to seed the
graph. For re-grasping, one robot will always hold the part.



We compute the associated grasp pose for the given part
pose for each grasp definition in the grasp set. We test
if this grasp pose for the fingers is achievable. We then
test if the robot and fingers are collision-free with the
environment for achievable grasps. If these conditions are
met, this (grasp, partpose, finger) tuple becomes a node
in our graph. To manage grasp definitions that allow the
fingers to be in a range along an edge of a part, we break
up the range into three samples, the grasp at two endpoints
along the part and the midpoint.

Two nodes of the graph are connected when they share
the same part pose, the fingers in the nodes are different (i.e.
the robots in the nodes are different), and the robots, fingers,
and any attached peripherals to the robots grasping the part
simultaneously do not collide with each other (see Fig. 4).
This edge type is a re-grasp step. Nodes with the same grasp
and fingers are also connected if the fingers (and associated
robot) can move the part from the pose in the first node to
the second node in a collision-free and reachable manner.
This edge type is a repose step.

Assuming we can determine the initial grasp definition of
the part with the fingers, we find the nodes in the graph with
the same grasp, finger pair. For each node in this set, we
can traverse edges of the graph using best-first search and
find the minimal number of re-grasp steps to achieve the
desired goal grasp of the part if a path exists. The path with
the minimum number of re-grasp steps is chosen if multiple
paths exist.

To get the initial grasp definition of the part after pickup,
we first get its pose estimate. This gives us an estimate of the
offset between the grasping fingers’ frame and the part. We
then visit the nodes in the graph with the free fingers (the
fingers not grasping the part). For the associated part pose,
we determine if the grasping fingers can repose the part to
that pose and that the grasp for the free fingers will be clear
of the current fingers. For nodes that pass this test, we search
the graph to find the node that yields the shortest re-grasp
sequence. We then re-grasp the part according to that node.
This gives us the initial grasp definition of the part.

For re-grasping the part, we first move the part into the
shared part pose associated with the edge using the fingers
currently grasping the part. Next, we move the free fingers
in a linear motion to a hovering position just above its grasp
pose with the fingers opened slightly greater than its grasp
definition. Then, we move the fingers in a linear motion to the
grasp pose and close the fingers around the part. The other
fingers release the part, and we move it in a linear motion
just above its last grasp. Finally, we move the fingers to an
area away from the part to give clearance for the reorienting
part. We repeat this process until the goal grasp is reached.

4) Part Pose Estimation Model: We need a precise in-
hand pose estimate of the grasped part for the robot to
accurately deliver the fingers to their re-grasp locations and
the part to its insertion location. Note that the pose estimate
only needs to be precise since we can rely on the precision
of the robots and calibration to deliver the fingers and the
part accurately to their goal location.

We re-use the DenseNet grasp proposal model and change
the training dataset to have the model produce the part pose
estimate. The basic idea is to feed the model a point cloud
of the part (presented as a heightmap) and have it produce
a rectangular point cloud attached to the part for the given
view direction (see Fig. 10). We call this rectangular point
cloud a pose proposal. We extract the part pose estimate from
the pose proposal in the following manner.

Fig. 10. The pose proposal (red points) associated with the heightmap of
the part (blue points). This pose proposal is for the viewing directions from
the top side of the part.

We partition any view directions of the part into a top,
bottom, left, right, front and back direction. These correspond
to the six primary viewing directions of the part along the
frame axes of the part. A view direction of the part that is
within a 45-degree frustum of a primary direction is said to
have that primary view direction. For example, in Fig. 10, all
views of the part within 45 degrees of the top side direction
are considered a top view direction.

For each primary view direction, there is one associated
pose proposal. The model produces the pose proposal for
the view direction of the input part heightmap. Each pose
proposal has a fixed offset from the part frame, so using
PCA to get the center and 3D orientation of the proposal
(in the exact manner as grasp proposals) and applying the
offset, we can infer the pose estimate of the part.

The synthetic training data is generated by sampling a
heightmap of each part randomly positioned in front of the
camera. The distance between the parts and the camera is
controlled in a fixed interval that ensures all parts are fully
viewable by the camera and fills roughly a third of the
view. The height map samples are generated using the same
renderer as the grasping dataset.

The associated pose proposal label for the sample is
computed as follows. We first create the pose proposal for
each primary view direction for each part. This is done by
taking the bounding box of the part and making each face the
pose proposal for the associated view direction. For example,
the bounding box face on the top side is the pose proposal
for the top view direction. The frame for each pose proposal
is centered on the face, with the x and y axes aligned with
the width and height directions and the z-axis along the face
normal. The width and height of the face are the width and
height of the associated pose proposal. We record the offset
between the part frame and each of the six pose proposal
frames. We then determine the primary view direction for the
given heightmap sample of the part. For that view direction,
we take the associated pose proposal, position it with respect



to the part frame and then render the rectangular pose
proposal into a heightmap that matches the associated part
heightmap sample. The height of the pose proposal pixels
are encoded in the alpha channel of the rendered result. The
pose proposal x-axis direction gradient is encoded in the
red channel. And finally, the part class and primary view id
associated with the proposal pixels are encoded in the green
channel. The combined id is: id = viewid+ 6 ∗ partid.

Some view directions of the parts have rotational symme-
try order greater than 1. For example, each view direction of
a cube shape will have rotational symmetry of 4. We handle
this ambiguity by constraining the direction of the x-axis
of the pose proposal during data generation. For example,
a view direction with rotational symmetry of order 2, we
constrain the x-axis direction of the proposal to point towards
the right half of the camera view.

For each set of parts in an assembly process, we synthesize
roughly 400,000 samples and their associated labels. We use
the same loss function from the grasping model. The model
take about 12 hours to train on an Nvidia V100 GPU.

We estimate the pose by capturing a heightmap of the part
at roughly the same camera distance as in the training set. We
use PCA on the points of the generated pose proposal to get
the center and tilted orientation of the proposal in the camera
frame (the x-axis direction is determined from the gradient
values). The part class and view direction id associated with
the proposal is the max class value. The offset of the pose
proposal to the part frame is retrieved using the part and
view direction id. The part pose is then transformed into the
camera frame.

IV. EXPERIMENTS

We implemented the end-to-end workflow using an inter-
nal robotics research platform. The authoring and simulation
tools are integrated into Autodesk Fusion 360.

For the assembly demonstration, we used two shapes
which we call Yinan blocks (see Figs. 4 and 8), and a fixed
base to support the assembly (see Fig. 2f). The design we
assembled is shown in Fig. 2a. We calibrated the workcell
shown in Fig. 11 to create the digital twin shown in Fig. 1.
We use a UR10 and a XArm-6 robot, with the Robotiq Rq140
and Rq85 grippers attached to each robot, respectively. The
fingers are custom printed for grasping the blocks (see
Fig. 3). We used the Intel RealSense SR-300 cameras for
depth sensing. A camera is attached to the end of each robot
with a fixture. The Yinan blocks are small (about one in.)
and interface with each other along particular pairs of faces.
The parts are initially located in random piles in an input
area, i.e., the parts are not nicely presented to the robot.

We authored the disassembly sequence for the design
by selecting the parts in the order shown in Fig. 2. The
behavior script corresponding to the generated recipe for this
experiment is represented in Fig. 12.

We first ran the behavior in simulation using the digital
twin of our workcell to verify that the assembly process was
correct. We randomly piled the blocks in the pickup area and
then successfully ran the behavior on the actual workcell.

Fig. 11. The assembly workcell with two robot arms.

sequence = recipe.get assembly sequence()
camera = recipe.assembly camera
WTB = camera.get pose(recipe.assembly area)
while s in sequence do

s.fingers.pickup part(recipe.pickup area, s.camera, s.part class)
PTF = s.fingers.regrasp(s.goal grasp,

s.camera,
s.other fingers,
s.other camera)

while WTF in s.insertion waypoints(WTB ,P TF ) do
s.goal fingers.move to(WTF )

end while
s.goal fingers.release()

end while

WTB - fixed base transform in the workcell frame
PTF - finger transform in the part frame
WTF - finger transform in the workcell frame

Fig. 12. Pseudo-code of the assembly behavior for the experiment.

To accurately re-grasp and insert the grasped parts into the
fixed base (tight tolerances), we had to add a correction map
to compensate for the cascading calibration errors between
the various fingers, cameras, and robot base offsets. It took
9 minutes for the robots to complete this assembly task
(Fig. 13). Inference time for grasp and pose estimation is
roughly 50 ms on an Nvidia V100. To capture a clean depth
image from the cameras, though, we wait for the robot to
stop moving and settle, which adds an extra second to the
total inference time. See https://youtu.be/hoAJPZuMmJ0 to
view the assembly behavior in action.

The success rate data for the pickup, re-grasp, and inser-
tion tasks are in Table I. We ran six consecutive end-to-end
assembly of the design. On failure, we tried the task again
by resuming the assembly sequence from the pickup task.
We count each individual re-grasp step. Note that this data
was collected with the Xarm replaced with another UR10.

V. DISCUSSION

There are avenues for improvement and further work.
The assembly process is slow, and we’re working towards
improving cycle times for the task. The system is sensitive
to the calibration of the robots, their cameras, and each
other - e.g., failures during re-grasping are when the part is



Fig. 13. Snapshots from the assembly process. The upper left cell is the
first step where the fixed base pose is acquired. The lower right cell is the
completed assembly.

TABLE I
TASK SUCCESS RATE

Task Success Failure Success Rate
Pick 47 2 96%

Regrasp 130 17 88%
Insertion 30 0 100%

rotated from its pose estimate, and the re-grasping finger has
to rotate accordingly. This rotation accentuates calibration
errors causing the re-grasping fingers to miss their mark.
We plan to use visual servoing to remove the need for the
correction maps and the dependency on accurate calibration.
We are working towards further automating parts of the
workflow that may need input from the designer. This in-
cludes determining grasp poses for different parts and motion
planning for gross robot motion. We’d also like to improve
our grasping and pose estimation models’ performance,
accuracy, and generality. Currently, our perception models do
not generalize to unseen objects. Characterizing the range of
shapes our perception models can handle is another area of
future work. Our system relies on clean depth images, and we
are working towards identifying the right visual sensors for
different materials and parts’ surface finishes. For insertion
tasks that are highly occluded or require tighter tolerances,
we aim to explore F/T sensing and insertion policies that
could be learned using reinforcement learning techniques.

Assembly sequence planning is another area of interest for
further automation. CAD information for most assemblies is
often incomplete and inaccurate. Individual parts may not be
annotated or labeled correctly, and constraints between parts
can often be represented in multiple ways. Furthermore, there
is often a mismatch between CAD and real models. We aim

to explore these areas using tools from simulation, control,
and reinforcement learning. We also aim to explore more
complex assemblies in the industrial domain to highlight the
advantages of our approach over traditional fixed automation.
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