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Abstract— Robots and artificial agents that interact with
humans should be able to do so without bias and inequity,
but facial perception systems have notoriously been found to
work more poorly for certain groups of people than others. In
our work, we aim to build a system that can perceive humans
in a more transparent and inclusive manner. Specifically, we
focus on dynamic expressions on the human face, which are
difficult to collect for a broad set of people due to privacy
concerns and the fact that faces are inherently identifiable.
Furthermore, datasets collected from the Internet are not
necessarily representative of the general population. We address
this problem by offering a Sim2Real approach in which we use
a suite of 3D simulated human models that enables us to create
an auditable synthetic dataset covering 1) underrepresented
facial expressions, outside of the six basic emotions, such as
confusion; 2) ethnic or gender minority groups; and 3) a wide
range of viewing angles that a robot may encounter a human
in the real world. By augmenting a small dynamic emotional
expression dataset containing 123 samples with a synthetic
dataset containing 4536 samples, we achieved an improvement
in accuracy of 15% on our own dataset and 11% on an external
benchmark dataset, compared to the performance of the same
model architecture without synthetic training data. We also
show that this additional step improves accuracy specifically
for racial minorities when the architecture’s feature extraction
weights are trained from scratch.

I. INTRODUCTION

There has been an increasing interest in using robots in
everyday social environments like hospitals, retail stores,
and homes. As a result, it has become essential for robots
to communicate and interact socially for various human-
robot interaction (HRI) applications and understand people’s
nonverbal expressions. For instance, imagine a restaurant
service robot seeing a look of confusion wash over your
face as you look at the menu. It detects your hesitation and
proactively offers assistance: “Do you have any questions
I can answer?” This simple scenario plays out between
humans each day all over the world, but robots are still far
from capable of performing this kind of proactive assistance
in a robust manner. Several major challenges prevent such
systems from being deployed in the real world.

Firstly, a recent review has argued that state-of-the-art
facial emotion classifiers cannot be applied effectively to
human emotion analysis in the wild [3]. One underlying
reason is that in HRI, as stated in a review by [22], “there
are a wide range of possible affective levels expressed by
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people in human-robot interaction that the robot needs to
understand in order to participate in a natural bi-directional
social interaction with humans.” In other words, real-world
interactions comprise a rich and subtle set of expressions,
while most datasets focus on collecting the prototypical
set of emotions [3] of happiness, sadness, anger, surprise,
fear, disgust, and neutral [17], [34], [40], [19], Specifically,
to the best of our knowledge, there is no public video
dataset containing confusion [38] nor any comparison bench-
mark [15] for these dynamic facial expressions [16], [8].
Strategies are needed to effectively create video datasets for
the many underrepresented emotional expression categories
that actually occur in the wild with robots, such as the 28
social signals identified in Saheb Jam et al. [30], including
confused, worried, skeptical, and so on. Indeed, prototypical
sadness or fear were not seen in these real-world human-
robot interactions, and we do not focus on these emotions in
this paper.

Secondly, social robots should also have the ability to
evaluate human affective expressions fairly, without discrim-
inating against underrepresented groups. A recent survey
on automatic multi-modal emotion recognition in the wild
shows that inclusivity of all ethnicities remains a chal-
lenge in facial expression recognition systems and should
be further investigated [32]. According to [27], [5], racial
bias is apparent in current machine learning methods in
general, especially those involving the face. One major
cause of this bias is that major facial expression recognition
(FER) datasets are underrepresentative of genders and non-
Caucasian backgrounds [36]. As faces are inherently iden-
tifiable, ethical and privacy concerns arise when requiring
real humans to provide their data [18], yet anonymizing the
face can remove important facial features. Data collection to
reduce bias in face-related algorithms is, therefore, a major
ethical challenge.

Finally, mobile robots can potentially view humans from
various viewing angles and in varied lighting conditions.
Collecting and labeling large amounts of naturalistic videos
for facial expression recognition is challenging due to several
reasons. First, creating datasets for spontaneous (rather than
posed) user affective states is very time-consuming [33].
Additionally, facial emotional expressions are difficult to
label due to the subjective nature of annotation, compared
to those in domains where deep learning has been most
successful, such as in object recognition. Thus, data aug-
mentation techniques are expected to be particularly useful
to help facial expression recognition succeed in the wild.

In this paper, we employ a simulation to reality (Sim2Real)
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Fig. 1: Circumplex Model of Affect adapted from [29].

approach to address the previously mentioned challenges.
Sim2Real approaches have performed well in different do-
mains such as hand tracking [23] and text detection [13]. For
face recognition and facial feature detection, studies have
attempted to address some of these problems by creating
static, synthetic image datasets [11], [1], [14], [20]. We
extend these approaches into the video emotion recognition
domain by i) identifying facial movements and social signals
of the desired dynamic emotional expressions from real data,
ii) converting the identified social signals into renderable
animations, iii) generating virtual human models of various
and specific ethnicities, iv) rendering the animations into
videos of all virtual human models from multiple viewing
angles, v) pretraining a dynamic emotion classifier model on
the synthetic videos, vi) retraining and testing the model on
the real dataset.

We generate an inclusive synthetic facial expression
dataset from virtual humans that specifically incorporates
new expressions outside of the prototypical set of six basic
emotions, underrepresented ethnicities, and varied camera
angles. As a proof-of-concept, we detect the dynamic social
signal of confusion. In order to evaluate the model, anger and
disgust were chosen from the 6 basic emotions as challenging
emotion expression confounders due to their similarity to
confusion. Characteristics of these three emotions overlap,
and expressions can be easily mistaken for one another, as
illustrated in the Circumplex Model of Affect (CMA) shown
in Fig. 1. The circumplex model is a graphical representation
of affective states on the 2-D plane of arousal (vertical) and
valence (horizontal).

Our contributions are as follows:

1) We propose the first video dataset of the understudied
emotional expression of confusion (as well as nearby
social signals “disgust” and “anger” as shown in the
circumplex model in Fig. 1). We first gather a real
dataset, then augment this limited data using Sim2Real
to produce a much larger synthetic dataset. Our dataset
also addresses the critical issue of racial bias, which
is apparent in existing real-world data, by comprising
faces of underrepresented ethnicities, including Black,

Asian and Hispanic individuals.
2) We explore the effect of adding synthetic data on

improving fairness using a CNN+Time Series Classi-
fication (TSC) network architecture. Our experiments
demonstrate that: 1) training on a combination of real-
world data and a randomly selected portion of synthetic
data (changing every epoch) achieves the highest per-
formance and 2) fine-tuning on a pre-trained CNN with
unfrozen face feature extraction weights decreases racial
bias.

The Sim2Real approach would allow us to create even
larger synthetic datasets in future, because of the flexibility
to be applied to any desired emotion or ethnicity. This
is feasible due to the fact that facial movements (action
units) associated with any emotion can be extracted either
automatically using OpenFace [2] or by manual observation.
Additionally, the wide modification range of the MakeHuman
toolkit [4] allows for the generation of several human models
to incorporate other ethnicities.

II. METHODOLOGY

The methodology behind our Sim2Real approach is ex-
plained in this section. An overview of our dataset generation
and preparation, as well as an overview of our deep-learning-
based dynamic facial expression recognition model, is pro-
vided. The synthetic data pretraining step of the Sim2real
approach is explored in Section III.

A. Dataset Generation

In this section, we describe the collection of in-the-
wild emotionally expressive videos and the generation of
synthetic videos using a suite of simulated humans. We
focus this study on confusion, a dynamic social signal which
is underrepresented in datasets and lacks examples on the
web [15], yet is common in HRI [30].

1) Collection of in-the-wild confusion, anger, and disgust
videos: Confusion is an affective state conveyed through
varied and multiple expressions, as are both anger and
disgust. Some of these expressions (such as frowning) are
common between the three, resulting in some expressions
being easily mistaken as another emotion, possibly due to
these three emotions appearing very close together in the
CMA [29]. We therefore focus on making a dataset for these
three emotions.

We collected short video clips (1-3s) from YouTube.com
and Giphy.com using search tags such as “angry”, “con-
fused”, and “disgust” reactions to gather human facial ex-
pressions of our desired social signals, as shown in Fig. 2.
This search resulted in 153 clips. Each video was then
labeled for the conveying facial expression, by two annota-
tors identifying with Canadian culture (inter-rater agreement
kappa score=.88), and low confidence videos were discarded.

We created a multi-ethnicity dataset of real human videos
expressing the three social signals of confusion (41 videos),
anger (41 videos), and disgust (41 videos). The final dataset
contains 123 videos, of which 26 are of non-Caucasian
individuals.



Fig. 2: Examples of real videos: the first row is for angry,
second for disgusted, and third row for confused expressions

2) Generation of augmented dynamic social signal video
dataset: The task of creating desired social signals videos
is made possible using the MakeHuman toolkit [4] and
the FACSHuman plugin [12]. MakeHuman toolkit is an
open-source and free 3D computer graphics toolset designed
for prototyping human-like models. FACSHuman offers the
possibility of manipulating the Action Units (AU) presented
in the Facial Action Coding System (FACS) [9] on the 3D
models created in the MakeHuman software. This manipu-
lation of AUs is a key component of our Sim2Real process.
FACSHuman enabled us to generate social signal animations
that can be rendered into videos or frames on a selected
human virtual model from any viewing angle. We created a
script plugin that used this capability to render 4536 synthetic
videos from the combination of 24 human virtual models, 21
social signals (facial movement animations), and 9 viewing
angles.

Creation of a suite of simulated humans: The overarch-
ing vision of this work is to create a large, auditable suite of
human models to represent people from many different back-
grounds. As a first step, we create 24 simulated human adult
models balanced on gender and four different ethnicities
(Caucasian, Black, Asian, and Hispanic). The MassProduce
plugin within the MakeHuman application was then used to
create several randomly generated human models of multiple
ethnicities and different ages and skin colors. Out of all those
generated human-like models, we selected 24 models for our
study based on the realism of action unit manipulation on
the model (8 samples are shown in Fig. 3). We chose to
use 3D models as we hope to eventually use them in HRI
simulators, to create expressive virtual humans with facial
expressions. These models are provided on Github1 so that
researchers can also import the 24 virtual humans with 21
dynamic expressions (7 social signals per emotion), to replay
them in front of their virtual robot.

1https://github.com/sabaak95/confusionDetection

Fig. 3: Sample of generated human-like models

Fig. 4: (a) Chin raiser, (b) Lip tightener , (c) Jaw drop, (d)
Eyes left, (e) Eyes right, (f) Lid tightener, (g) Inner brow
raiser, (h) Brow lowerer

Multiple social signals per emotion: We used the FAC-
SHuman software to create 21 different social signal anima-
tions, 7 for each emotional class. These animations convey
multiple variations of social cues of confusion, anger, and
disgust. These 21 social signals were manually animated over
25 frames and were created via inspection of the in-the-wild
real human dataset. For example, Fig. 4 shows the AUs that
were used to create dynamic confusion social signals. Varied
AU combinations and sequences were used to animate the
21 social signals, validated by an annotator with Canadian
culture. An example is a side-eye movement confusion
state made by a timed sequence of the following AUs:
AU61, AU62, AU61. While future work should automatically
perform the animation creation process from video data,
the manual animation creation step in this study allows us
to validate the Sim2Real portion given human-level feature
extraction, enabling us to identify specific underlying social
signals for each emotion (7 for each emotion), which are now
available for use in our 3D models. The dataset is available
for download.2

Multiple viewing angles: As robots may view a human
from varied angles, it is important that our generated dataset
incorporate varied perspectives. Our dataset was therefore
expanded by creating videos of the same facial gesture from
9 viewing angles, to make our network invariant to the face
viewing angle, as shown in Fig. 5. The camera movement
included horizontal rotations of −40,−20, 0, 20, 40 degrees
and vertical rotations of −30, 15, 0, 15, 30 degrees. The

2https://www.rosielab.ca/datasets/
confusion-in-the-wild

https://github.com/sabaak95/confusionDetection
https://www.rosielab.ca/datasets/confusion-in-the-wild
https://www.rosielab.ca/datasets/confusion-in-the-wild


Fig. 5: The 9 viewing angles used to generate our augmented
dataset.

Fig. 6: Image preprocessing and augmentation.

nine combinations of (Hrotation, Vrotation)={(−40,−30),
(−20,−15), (0, 0), (20, 15), (40, 30), (40,−30), (20,−15),
(20,−15), (40,−30)} were selected as our viewing angles
in degrees, as shown in Fig. 5.

B. Data preparation

In order to refine the data and remove any unimportant
or unrelated information in the images, we used Multi-task
CNN (MTCNN) to detect and crop the faces before feeding
frames to our network [41] and resized images to 160 ×
160. Additional transforms were also applied to the images
randomly on each epoch, including cropping, perspective,
affine transform, horizontal flip, and color transforms (shown
in Fig. 6).We ensured that the same transformations were
applied to all the frames from the same video.

C. Model Architecture

We developed a basic framework for our video classifi-
cation problem to test the Sim2Real strategy. Existing work
can extract valuable frame-based facial features from a face
image, such as FaceNet [31] and OpenFace [2]; one of
these models can be used to first extract each frames’ facial
features. After frame-based feature extraction, we model the
problem as Time Series Classification. Sections II-C.1, II-
C.2 are dedicated for further exposition on our selections for
this architecture.

Fig. 7: Model architecture for FaceNet+InceptionTime

1) Facial Feature Extraction Network: We used the pre-
trained FaceNet [31] architecture as our facial feature extrac-
tor. FaceNet uses an InceptionResnetV1 architecture trained
on the VGGFace2 dataset. Each video is given to FaceNet
frame by frame, and the output feature arrays are con-
catenated together across the time dimension to create a
multivariate time series array.

2) Time Series Classifier Network: Further processing of
this output requires a time series classification algorithm.
K-Nearest Neighbor (KNN) algorithm with Dynamic Time
Warping (DTW) [39] metric is one of the earliest techniques
for this task that is still used, specially when working with
relatively small datasets. Many machine learning algorithms
have also been applied to this problem, such as ResNet and
FCN [37]. However, we opted to use InceptionTime [10]
as our classifier because it has proven to be a versatile and
promising machine learning solution for many Time Series
Classification tasks, based on its performance results on the
UCR [7] benchmark collection datasets.

3) Proposed and Baseline Architectures: Our proposed
DNN structure is the combination of FaceNet [31] and In-
ceptionTime128 [10]. This structure is shown in Fig. 7. This
model is referred to here as FN+INC25 or FN+INC64. The
two numbers of 25 and 64 indicate the required number of
frames for the video input. Videos shorter than the indicated
number are padded to the required input length, and the
longer videos are cropped. This procedure is explained in
Section III. We included two instances of these models in
our experiments. In one instance, the FaceNet weights are
frozen. In the main instance, the FaceNet weights are not
frozen, and are tuned alongside the InceptionTime weights.
We hypothesized that the addition of synthetic data would
allow us to tailor the FaceNet weights in favor of this dataset.

The second DNN architecture included in our experiments
is I3D [6], an advanced video classification method that
applies combined temporal and spatial processing using 3D
convolutional layers. This addition enabled us to evaluate
the problem using a model not already affected by previous
facial information knowledge.

Finally, we included a KNN classifier architecture appli-
cable to the small real dataset. This model uses FaceNet [31]
for frame facial feature extraction and a KNN with DTW [39]



metric as the video classifier. We propose this baseline
model, FN+KNN, for comparison.

III. EXPERIMENTS AND RESULTS

In this section, we evaluate our network on the created
real dataset. We performed several experiments varying the
architecture, input length, and the use of only synthetic,
synthetic plus real, or only real training data. We used 5-
fold cross-validation on the real dataset to compare the
performance of different approaches, with one fold consisting
primarily of expressions by non-Caucasian individuals.

We explored three training strategies for our experiments.
In the first strategy, the algorithms are only trained on the
small real dataset. The baseline KNN model was tested under
this strategy. In the second strategy, the networks are first
trained on synthetic data, then fine-tuned on the real dataset.
The second strategy was developed to add and assess the
addition of synthetic data. Third, the strategy was to combine
the real training data set with the synthetic dataset and pass
them to the network alongside each other. This strategy
was designed to explore if a higher performance could be
achieved by creating ratioed synthetic and real data training.
Instead of combining the whole synthetic dataset with the
real data, we trained the network with one-fourth of the
synthetic dataset. In the next test, the ratio of the synthetic
dataset was set to half. Finally, in the last test, the ratio of the
synthetic dataset was set to one, meaning the whole synthetic
dataset was included.

One important factor in our training and testing processes
is setting the input video length to a fixed number of frames
L. Input videos shorter than the set length were looped until
they reached length L. The way we dealt with longer videos
differed depending on the training phase. In the training
phase, we randomly selected L consecutive frames from the
lengthier videos. For a video with N frames, frames n to
n+L− 1 are cropped. The n is selected randomly on each
epoch between 0 and N −L. However, in the testing phase,
we only selected the middle L frames as the representative
sequence in each video. In our experiment, we set L to two
values: 25 and 64. We selected 25 because the number of
frames in our synthetic videos was 25. The choice of 64 was
reliant on two factors. First, 64 was long enough to include
a majority of the input video while small enough to keep
computational cost and time consumption adequate. Second,
the I3D network used in some of our experiments was de-
signed for 64 frame inputs. In the following subsections, we
elaborate on the latter two training strategies: (i) fine-tuning
the synthetic trained network on real data and combined
synthetic. (ii) Combined synthetic and real data training.

A. Fine-tuning the synthetic trained network on real data

In this experiment, the model was first trained on the
synthetic dataset alone. The simulated human models were
randomly divided into two sets of 19 and 5 models. All of
the generated videos using simulated human models in the
larger set were used for training, and those in the smaller
set were used for validation. The respective numbers for the

TABLE I: Performance comparison of all models

Network Length Syn1 %Prc2 %Rec3 %Fs4 %Acc5

FN(FZ*)+KNN 25 7 75 71 70 72

FN(FZ*)+KNN 64 7 79 74 73 74

FN(FZ*)+KNN 283 7 77 71 69 71

FN(FZ*)+IN25 25 7 76 73 73 73

FN(FZ*)+IN25 25 3 82 79 79 80

FN(FZ*)+IN64 64 7 86 71 71 72

FN(FZ*)+IN64 64 3 85 82 82 82
FN+IN25 25 7 78 74 74 74
FN+IN25 25 3 90 89 89 89
FN+IN64 64 7 81 77 76 77
FN+IN64 64 3 88 87 87 87
I3D 64 7 66 63 60 66
I3D 64 3 85 83 83 83
* Frozen FaceNet weights 1 Synthetic-Data
2 Precision 3 Recall 4 F-score 5 Accuracy

TABLE II: Effect of the addition of synthetic data and weight
unfreezing on the non-Caucasian Fold

NET Len Synth %Acc %Acc Increase

FN(FZ)+IN25 25 7 72 Base
FN(FZ)+IN25 25 3 80 +8
FN+IN25 25 7 80 +8
FN+IN25 25 3 88 +16
FN(FZ)+IN64 64 7 64 Base
FN(FZ)+IN64 64 3 72 +8
FN+IN64 64 7 80 +16
FN+IN64 64 3 88 +24

videos in the training and validation data were 3591 and
945. The training was done over 20 epochs with the learning
rate of 10−4 and the categorical cross-entropy loss function.
The batch size was set to 8. After the training on synthetic
data, we fine-tuned the model on the four selected training
folds of the real dataset, over 50 epochs. The model is tested
on the remaining single test fold. This operation is repeated
5 times each time a new fold is selected as the test fold.
Learning rates and parameters were chosen empirically.

The results averaged over all 5 runs for these experiments
are shown in Table I. FZ specifies the instances where
FaceNet weights were frozen to treat FaceNet purely as
a feature extraction network, with weights of the rest of
the network updated during training. Table I also includes
experiments in which the synthetic data training step was
skipped to highlight its effect. Additionally, we compared our
methods with the baseline FN+KNN classifier applied only
to the real data. Our results show that the models trained on
synthetic data outperformed their counterparts only trained
on the real data. The unfrozen FN+IN25 model achieved an



89% accuracy on the real data when trained on synthetic
data. In the frozen weights instances, the inception models
perform similarly to the KNN models when trained only on
the real data. However, the addition of synthetic data training
improved the FZ model accuracy up to 83% in the case of
FN(FZ)+INC64. This addition also significantly impacted the
I3D model, and its accuracy of 83% outperforms all models
not influenced by the synthetic data. Interestingly, this model
even outperforms the FZ models trained on the synthetic
data. This is quite impressive because I3D was designed for
video action recognition tasks. Unlike the other models, the
I3D had no prior information about the facial features.

In Table II we explored the effect of unfreezing the
FaceNet weights and the addition of synthetic data on the
non-Caucasian data fold. We created one test fold which
included 25 videos of the underrepresented ethnicities. The
FN(FZ)+IN models trained without synthetic data are high-
lighted as the base models in this table. This table shows
that the addition of synthetic data combined with unfreezing
of the pre-trained weights has the highest impact on the
correct classification of the non-Caucasian data samples
(24% increase). The addition of synthetic data alone has a
limited beneficial impact; it can not alter the dataset bias
effect of the original dataset on which the FaceNet was
trained.

B. Combining synthetic and real data for training

We designed another experiment to investigate how the
accuracy changes with the addition of synthetic data. A
portion of the synthetic data was randomly selected and
combined with the real training data to create a new data set.
The model was trained on this new training data and tested
only on the real test data sample. We applied this training
strategy to our most satisfactory model, input length 25
FaceNet + InceptionTime. In our first experiment, we set the
ratio of selected synthetic data portion to 0.25. This ratio was
doubled in the next experiment and doubled again in the last
one. In each epoch bratio× 24c human-like models were
randomly selected. For every selected human-like model,
out of the nine videos of that human-like model expressing
a specific expression from multiple angles, only one was
chosen randomly. This selection method means that only
bratio× 24c × 21 synthetic videos are used in the models
training alongside the real data in that epoch. This number
equals 126 for the ratio of 0.25, roughly equal to the number
of real training videos. The selected human-like models and
viewing angles were refreshed at the start of each epoch.

The results for these experiments are shown in Table III.
These results show that doubling the synthetic data ratio from
0.5 to 1 increases the model’s performance. However, this
does not apply to the change from 0.25 to 0.5. In the case of
FaceNet+Inception64, the synthetic ratio of 0.25 results in
the highest performing network. This model achieved a 94%
accuracy, which shows an 18% increase over the performance
of the same model trained without the synthetic data. The
combined confusion matrix of all the folds for this highest
performing network is shown in Fig. 8.

TABLE III: Performance comparison for the combined real
and synthetic training method for the FN+INC models.

Ratio*Length %Precision %Recall %F-score %Accuracy

0.25 25 89 87 87 87
0.25 64 95 94 94 94
0.5 25 88 86 86 86
0.5 64 89 88 88 88
1 25 89 87 87 88
1 64 89 88 88 88

* The ratio for the selected proportion of the synthetic data.
The 0.25 equals to 126 synthetic samples.

Fig. 8: Combined confusion matrix of all the folds for the
FN+INC64

C. Evaluating the Sim2Real approach on GIFGIF dataset

To evaluate the generalization of our Sim2Real approach
and model, we selected an external dataset for validation,
GIFGIF [28].3 As previously noted, there are currently no
video datasets with confusion samples [38]. GIFGIF [28]
has video-level annotations and contains 2 of our emotions
of interest (“anger” and “disgust”).

This dataset is a collection of 3,858 cropped short videos
with annotation scores for 17 emotions. We used GIFGIF
API to get the first 400 highest-ranking videos for the
“disgust” emotion. These videos were filtered down to 75
based on the following criteria: 1) contains a human face
reaction video, 2) must not hold a higher score in other
categories. Similarly, we chose the top 75 “anger” videos.
The Arousal-Valence distribution of all these 150 samples is
displayed in Fig. 9. The Arousal-Valence values are extracted
using Emonet [35]. Fig. 9 suggests that this evaluation
dataset is severely challenging.

For this evaluation, no additional training was performed.

3We also considered AffWild, EmoReact, ElderReact, but their data did
not contain anger or confusion, or their annotation schemes were not directly
comparable with our data (e.g., frame-based). CK+ [21], Oulu-Casia [42],
and MMI [26] were also not selected since they are all acted/posed and we
focus on in-the-wild interactions.



TABLE IV: Evaluation of Sim2Real effect on the model’s
performance on unseen data

NET Len Synth1 Prc2 Rec3 Fs4 Acc5

FN+INC25 25 7 74 64 67 64

FN+INC25 25 3 83 75 77 75
1 Synthetic-Data 2 Precision 3 Recall 4 F-score
5 Accuracy

Fig. 9: Arousal-valence distribution of anger and disgust
videos in GIFGIF [28] using EmoNet [35] on CMA.

We tested the two FN+IN25 models presented in Table I
on this dataset. One model was trained on our real dataset,
another model was pretrained on the synthetic dataset then
trained on the real dataset. The GIFGIF dataset was used as a
test dataset for these models. The results for this experiment
are shown in Table IV. The FN+IN25 model pretrained on
synthetic data achieved a 75% accuracy. Out of 150 videos,
this model misclassified 7 disgust videos and 2 anger as
confusion. The same model without synthetic pretraining
achieved a 64% accuracy and misclassified 14 disgust and 4
anger videos as confusion. Therefore, without any additional
transfer learning, we showed that our Sim2Real approach
improved FN+INC25 performance on this dynamic FER task
by 11%.

IV. DISCUSSION AND LIMITATIONS

In this section, we elaborate on insights that we found
while doing experiments and after analyzing the results. Our
experiments showed that additional synthetic data is similar
to have an extensive dataset, and the generalization of the
final model is increased.

An interesting finding in our experiments was that all the
models with frozen FaceNet weights performed worse than
their counterparts with unfrozen weights or even I3D. This
was especially the case when considering non-Caucasian
samples, which was an unexpected result because FaceNet
was trained on a vast face recognition dataset. This shows

Fig. 10: Sample of wrongly classified videos from our dataset

that although the FaceNet feature embedding performs well
on facial recognition tasks, it may not be entirely related to
the facial changes of a specific emotional expression. How-
ever, more research is needed to investigate these hypotheses.

Another interesting point was the misclassification of
specific samples that were revealed after we looked deeper
into the results. These samples were classified wrongly even
in our best model with an average accuracy of 94%, Fig. 10
show three examples of the eight wrongly classified videos
from all folds. From left to right, each column corresponds to
the first, middle, and last frame. The incorrect classification
of the first video might be related to the minimal movement
of the face. The generated synthetic dataset that we used
lacks fully static samples. Additionally, the main concept
behind the proposed model was the focus on dynamic move-
ments. The incorrect prediction of the second video relates
to its head movement. The dynamic movement of the expres-
sion is done over frames involved with head movement. This
adds fluctuation to the inception model’s multivariant time-
series input that may not relate to the emotion. The OpenFace
algorithm [2] uses perspective transform to make all of the
input images have a frontal face view. The addition of this
step may help deal with these types of videos. However, we
believe the ultimate solution is in designing a model that can
predict from shorter video snippets inputs. Poor prediction
of the third video relates to the movement of hand midway
through the video. Face occlusion is a challenge in FER, and
even though new studies focus on reducing or removing the
occlusions [25], [24], their advancement has been minimal.

An interesting notion observed in the annotation of the real
dataset was that annotators had trouble distinguishing be-
tween disgust and confusion in some cases. However, when
the audio was played alongside the video, this confusion
was resolved. This could mean that the next step for more
inclusive and accurate facial expression recognition systems
could incorporate audiovisual data processing.

One of the main components of this work was the
generation of synthetic data. The MakeHuman application
limitation highly affects this component. More advanced
applications can be used for this task to generate more



realistic synthetic datasets, and to explore other variations
including age, non-binary gender, or conditions impacting
facial development. Another point worth mentioning is that
while we understand that the relatively small size of our
dataset (synthetically generated dataset plus the real human
dataset gathered from YouTube and Giphy) might be a
limiting factor, this is sufficient to illustrate the proposed
approach as a proof-of-concept.

V. CONCLUSIONS AND FUTURE WORK

We showed that our Sim2Real approach improves
FN+INC64 performance on our dynamic FER task by 11-
18%, up to 94% on our internal test dataset, and up to 75%
on a previously unseen dataset, compared to the performance
of the same model architecture without synthetic training
data. This performance was achieved by mixed synthetic
and real data training. Additionally, it was shown that the
proposed FN+INC model along with our Sim2Real approach
is less sensitive to dataset ethnicity bias. This study was a
first step towards emotion recognition in the wild, and future
work can explore applying our approach and test the trained
classifiers to data gathered from real-world HRI scenarios
[30]. Another notion that can be explored in the future is to
observe the effects of replacing the face feature extractor
model with a static FER feature extractor. An increased
number of simulated human models may improve the overall
accuracy, especially if they can be made with photo-realistic
3D model generating engines such as MetaHuman creator
from Unreal Engine4. Automated animation generation from
real videos can also be the next step for this study.
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