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Abstract— Multi-objective optimization models that encode
ordered sequential constraints provide a solution to model
various challenging problems including encoding preferences,
modeling a curriculum, and enforcing measures of safety.
A recently developed theory of topological Markov decision
processes (TMDPs) captures this range of problems for the case
of discrete states and actions. In this work, we extend TMDPs
towards continuous spaces and unknown transition dynamics
by formulating, proving, and implementing the policy gradient
theorem for TMDPs. This theoretical result enables the creation
of TMDP learning algorithms that use function approximators,
and can generalize existing deep reinforcement learning (DRL)
approaches. Specifically, we present a new algorithm for a policy
gradient in TMDPs by a simple extension of the proximal policy
optimization (PPO) algorithm. We demonstrate this on a real-
world multiple-objective navigation problem with an arbitrary
ordering of objectives both in simulation and on a real robot.

I. INTRODUCTION

In recent years, the theoretical foundations of Markov
decision processes (MDPs) [1] and reinforcement learning
(RL) [2] algorithms have grown to practical robotic ap-
plications in domains ranging from autonomous helicopter
flight [3] to autonomous vehicles [4]. However, larger real-
world domains often must consider multiple objectives such
as in energy, comfort, and noise management in buildings [5]
and hybrid electric vehicles [6]. In reinforcement learning,
approaches like curriculum learning [7] and incorporating
safety considerations [8] often sequentially learn differing
objectives to incrementally develop skills. The topological
MDP (TMDP) [9], [10] is a general model that captures
this space of problems. There are various methods for
multi-objective learning strategies such as constrained policy
optimization [11] for non-incremental constrained MDPs
(CMDPs) for related problems like robot walking [12].
However, there exists a gap in the theoretical foundation
for solving these general multi-objective models with policy
gradient-based algorithms, consequently limiting the princi-
pled development of deep RL solutions.

In a TMDP, multiple objectives are ordered in a di-
rected acyclic graph (DAG) [9]. The ordering can capture
preference, constraint, curriculum, or safety. A slack term,
or equivalently budget, is assigned to each edge in the
DAG. It represents the allowable deviation in value of an
optimal policy in a parent objective to improve the value
of a child objective. This flexible structure generalizes the
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constrained MDP (CMDP) [13], which is a fan-structured
DAG, and a lexicographic MDP (LMDP) [10], which is a
chain-structured DAG (Figure 1). The agent can learn all the
objectives simultaneously [13], or it can incrementally step
down the DAG in the order implied by its edges and learn
each parent objective before moving on to its children [10].

Consider a robot navigation domain where the robot can
be tasked with navigating to a goal location, monitoring
a particular room, and avoiding another room, all based
on a customer’s preferences. Each customer may have a
preference, such as for example prioritizing monitoring over
navigation or navigation over avoiding a region. In each case,
they may also have a tolerance allowing one objective to
be reduced in favor of improving another. These preference
structures and tolerances can be captured within a TMDP and
provided to the agent as it learns to complete its objectives.

In practice, solving these kinds of multi-objective prob-
lems optimally is not feasible because all of the objec-
tives depend on the current policy [14], [10], [11]. Chain-
structured approaches that modify the value have been con-
sidered in the tabular case [14].

Local action restriction (LAR) [10], [15] is a scalable
approximate method to solve TMDPs. It moves the global
constraint into a set of local constraints over the states. This
reformulation removes the dependence of the policy on the
constraints’ values. Fan-structured approaches (Figure 1 (b))
have considered policy gradients, such as in CPO [11]. How-
ever, the method only works for CMDPs and cannot model
a DAG’s topologically ordered constraints as in TMDPs.
Also, it requires computing expensive second-order terms as
a Hessian to approximate constraint satisfaction (see Section
6.1 [11]). In general, these approaches are computationally
expensive and/or do not admit a direct policy gradient.

The goal of this work is to provide a multiple objective
generalization of the policy gradient theorem for any given
DAG of constraints and slack values. Our theorem derives
a policy gradient that performs an accurate optimization
of the objectives, each being subject to the constraints of
their ancestors. We apply this general result in the specific
case of extending proximal policy optimization (PPO) [16]
for use in TMDPs. The resulting new algorithm is called
topological policy optimization (TPO), integrating the new
policy gradient into the PPO objective.

Our main contributions include: (1) a formal definition and
derivation a multi-objective policy gradient within a TMDP
(Section III); (2) the deep reinforcement learning algorithm
called TPO using this new policy gradient (Section IV);
(3) experiments demonstrating the success of TPO in both
simulation and on a real robot (Section V).
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Fig. 1. Example TMDP objective Vi nodes and edges with slacks δij .

II. BACKGROUND

A. Markov Decision Process (MDP)

A Markov decision process (MDP) is defined by the
tuple 〈S,A,T,R〉. S is a set of states. A is a set of actions.
T (s′ |s,a) is a Markovian state transition that captures the
probability of transitioning to a successor state s′ given that
action a was taken in state s. R(s,a) is a reward function
that describes the effect of performing an action a in a state
s. For discounted MDPs, γ∈ [0,1) is a discount factor on the
reward over time. It is also common to have an initial s0.

Reinforcement learning can be described as the collection
of algorithms that do not assume T is provided [2]. More-
over, many of these algorithms do not assume S, A, or R are
fully provided a priori either. Instead, they are only observed
upon visiting a state and performing an action.

A policy π(a |s) maps each state s to a probability of per-
forming each action a. Let τ=〈s0,a0, r0,s1,a1, r1, . . .〉 de-
note a trajectory with each state at∼π(· |st), rt=R(st,at),
and st+1∼T (· |st,at). The goal in reinforcement learning is
to explore and use experienced trajectories τ to find a policy
π∗ that maximizes expected reward.

Thus, the agent seeks an optimal policy π∗ such that:

π∗=argmax
π

E
[ ∞∑
t=0

γtR(st,at) |π,s0
]
.

Let the value V π :S→R of a policy π be its expected re-
ward. Given the model, we can solve the MDP by iteratively
applying the Bellman optimality equation at states s:

V π(s)=max
a
Qπ(s,a)

Qπ(s,a)=R(s,a)+γ
∑
s′

T (s′ |s,a)V π(s′)

with V ∗ and Q∗ denoting optimal values. The advantage is
defined as Aπ(s,a)=Qπ(s,a)−V π(s) [16] and is useful in
describing the advantage in value of one action over another.

B. Policy Gradient

Policy gradient methods improve the policy along a gra-
dient and forms the foundation for function approxima-
tion [17]. It assumes the policy π is parameterized by
parameters θ. Let ρ(π)=V π(s0) be the value of the initial
state s0 following a policy π. The policy gradient is:

∂ρπ

∂θ
=
∑
s

dπ(s)
∑
a

∂π(a |s)
∂θ

Qπ(s,a)

with dπ denoting the stationary state distribution of π.

C. Topological Markov Decision Process

A topological Markov decision process (TMDP) [9]
generalizes the MDP to multiple objectives and is defined
by 〈S,A,T,R,E,δ〉. R :S×A→Rk emits k rewards; each
i∈K={1, . . . ,k} can be written as Ri(s,a). E⊆K×K
forms a directed acyclic graph (DAG) over the rewards, with
one leaf node, assumed to be k without loss of generality.
δ={δwv|(w,v)∈E} denotes the set of slack variables—
allowable deviation from optimal value—for each parent-
child objective pair. The objective in a TMDP is: for each
objective i∈K, following the order of the DAG E, we solve:

maximize
π

V πi (s0) (1)

subject to V ∗w(s
0)−V πw (s0)≤δwv, ∀v∈Ai∪{i},∀w∈Pv

with Pv,Ai⊂K denoting the parents and ancestors of v
and i in E respectively; and V ∗j (s

0) denoting the optimal
value of j following this same constrained objective. In other
words, the constraints state that every vertex v must satisfy
the slacks ηwv from its parents w following an edge e=
(w,v). Also, let Ei={e=〈w,v〉∈E |v∈Ai∪{i} and w∈
Pv} denote all i’s ancestral edges in E. An optimal policy
π∗ is the policy π∗k computed by the leaf node k in E. The
leaf optimizes V ∗k (s

0) ensuring that the union of all ancestral
constraints are satisfied.

Local action restriction (LAR) [10], [9] is an approx-
imation that restriction actions locally by a local slack η,
rather than a global slack δ. It has been shown that if
ηi=(1−γ)δi, then global slack can be preserved, if desired.
LAR enables scalable algorithms to be devised. The resulting
TMDP objective for each objective i becomes:

maximize
π

V πi (s0) (2)

subject to V ∗w(s)−Q∗w(s,π(s))≤ηwv,
∀v∈Ai∪{i},∀w∈Pv,s∈S

TMDPs generalize both LMDPs and feasible CMDPs. See
Figure 1 for examples.

III. POLICY GRADIENT THEOREM FOR TMDP

Solving the LAR optimization in Equation 2 can be done
using a modified Bellman optimality equation for tabular
policy [10], [15], [9]. This formulation does not admit
function approximation, or specifically, the use of a policy
gradient or deep reinforcement learning methods. Our main
result in this section is a formulation and proof of a policy
gradient theorem to solve Equation 2.

The goal is to prove a TMDP policy gradient theorem.
To accomplish this, we need to formulate a constrained
Bellman optimality equation corresponding to Equation 2.
LAR allows us to move the constraints into the Bellman
optimality equation [9]. However, this becomes a constrained
optimization problem. We seek to reduce this to an un-
constrained optimization problem in order to leverage the
abundant prior work on (approximate) policy gradients [18],
[16]. We convert the constrained Bellman equation into an
unconstrained Bellman equation using Lagrange multipliers.



However, the standard approach results in the reward itself
being penalized by an arbitrary amount based on the an-
cestors’ advantages. Consequently, this would change the
optimization’s value function.

We provide a solution that will not affect the reward in this
manner. This requires both: (1) the Lagrange multiplier to be
assigned properly via a bound, and (2) the constraint term to
be transformed such that it is zero when the constraint is not
violated. We derive a bound on the Lagrange multiplier to
ensure it is large enough such that any action that violates the
constraint will not be chosen. We prove that the transformed
constraint term preserves the original constraint satisfaction.
When these facts are combined, the result is that the original
value is preserved and the constraints are satisfied.

With this new Bellman optimality equation, Lagrange
multiplier bounds, and transformed constraint, we prove the
constrained policy gradient theorem for the TMDP.

A. Lagrangian Bellman Optimality Equation

We need to derive the corresponding Bellman optimality
equation. However directly writing a Bellman equation for
the unconstrained optimization formulation in Equation 1 can
be onerous due to the extra terms. Instead, as shown in prior
work [10], [9], we can leverage LAR to move the constraints
in Equation 2 into the Bellman optimization problem over
actions. Ensuring the original constraints are satisfied at each
state, implies they are satisfied for the original optimization.
This Bellman optimality equation with LAR at a state s is
the constrained optimization [9]:

maximize
a

Qπi (s,a)=Ri(s,a)+γ
∑
s′

T (s′ |s,a)V πi (s′)

subject to −A∗w(s,a)≤ηwv,∀w,v (3)

with V πi (s)=Qπi (s,a
∗) for constraint-optimal action a∗.

The naive use of Lagrange multipliers would result in the
undesirable Equation 4 below that arbitrarily modifies the
rewards, affecting the values as a consequence:

Vπi (s)=max
a

(
Ri(s,a)+γ

∑
s′

T (s′ |s,a)Vπi (s′)

−
∑
v,w

βwvs(−A∗w(s,a)−ηwv)
)

(4)

with Lagrange multipliers βwvs≥0 and Lagrangian value
function Vπi . To illustrate the issue, consider two cases. If
objective i chooses an action beyond the budgeted slack ηwv ,
then there should be a penalty. Otherwise, there should not be
an increase in the reward for an action less than the budgeted
slack. Instead, the agent should simply maximize its original
reward. Thus, crucially, the extra constraint terms should
only be a penalty if the constraint is violated. Otherwise,
the reward should remain unaffected. To accomplish this,
we need to transform the constraint as follows.

Proposition 1: For an objective i and state s, the opti-

mization in Equation 3 is equivalently solved by:

maximize
a

Qπi (s,a)=Ri(s,a)+γ
∑
s′

T (s′ |s,a)V πi (s′)

subject to Cwv(s,a)≤0,∀w,v (5)

with Cwv(s,a)=max{0,−A∗w(s,a)−ηwv}.
Proof: The TMDP Bellman optimality equation with

LAR at a state s follows Equation 3. By definition, for the
optimal policy’s values, −A∗w(s,a)=V ∗w(s)−Q∗w(s,a)≥0
and there always exists an action a∗ such that −A∗w(s,a)=0.
Thus this optimization always feasible and we have:

−A∗w(s,a)≤ηwv⇒−A∗w(s,a)−ηwv≤0

⇒max{0,−A∗w(s,a)−ηwv}≤0

⇒Cwv(s,a)≤0

This lets us rewrite the optimization problem as in Equa-
tion 5, yielding our result.

Now we can compute the Lagrangian of the constrained
optimization problem in Equation 5. The Lagrangian Bell-
man optimality equation is:

Vπi (s)=max
a

(
Ri(s,a)+γ

∑
s′

T (s′ |s,a)Vπi (s′)

−
∑
v,w

βwvsCwv(s,a)
)

(6)

For notational convenience, for any objective j∈K, the
Lagrangian Q-value is Qj(s,a) and the Lagrangian ad-
vantage is: Aj(s,π(s))=Qj(s,π(s))−Vj(s). In practice,
Aj can be computed using a new form of generalized
advantage, discussed in the next section.

Equation 6 has two main properties. First, it converted
the original constrained optimization problem into an un-
constrained Bellman optimality equation. Second, if its con-
straints are satisfied, then it preserves the original reward;
otherwise it penalizes the reward.

The scale of the constraint terms Cwv(s,a) can be arbitrary
based on the scale of the values. If we do not select a
sufficiently large multiplier, then it is possible that the penalty
will not be enough to ensure constraint-violating actions are
never chosen.

Thus, we derive a lower bound on βwvs such that the
application of the Lagrangian Bellman optimality equation
(Equation 6) will never select constraint-violating actions.
This is derived in Proposition 2.

Finally, we must also prove that it preserves optimality
of the original problem. In summary, the use of Equation 6
with βwvs as described below will converge to the correct
values and simultaneously enforce the LAR constraints. This
is proven in Theorem 1.

Proposition 2: Given objective i, state s, ancestor edges
〈w,v〉∈Ei, values Qi, at least one constraint-violating action
(infeasibility) exists, and optimal constraint-satisfying action
â∗, if all βwvs satisfy:

βwvs≥max
a

{
Qi(s,a)−Qi(s,â

∗)∑
v,wCwv(s,a)

if
∑
v,wCwv(s,a)>0

0 otherwise
(7)



then no constraint-violating actions â will be chosen, i.e.,
maxaQ

π
i (s,a)=Qπ

i (s, â
∗).

Proof: At any iteration of the Bellman equation, for
any states s′, assume no other states have chosen suboptimal
action. By Proposition 1 and Equation 6, the Lagrangian
values are identical to the constrained optimization problems’
values Vπ

i (s
′)=V πi (s′).

Below, let Qi(s,a) be the result of applying the standard
Bellman equation. Let â∗ be the optimal constraint-satisfying
action solving Equation 3. Note that both Qi(s,a) and â∗ can
be computed separately without depending on the equation
being considered (Equation 6).

Consider the application of the Lagrangian Bellman opti-
mality equation on a state s (Equation 6). Assume the exis-
tence of a constraint violating action â. (By construction in
Proposition 1, any constraint-satisfying action will result in
the penalty constraint terms being 0.) For this maximization,
it is sufficient to compare the actions â∗ and â:

Qπ
i (s, â

∗)≥Qπ
i (s, â)

Ri(s, â
∗)+γ

∑
s′

T (s′ |s, â∗)Vπi (s′)−
∑
v,w

βwvsCwv(s, â
∗)

≥Ri(s, â)+γ
∑
s′

T (s′ |s, â)Vπi (s′)−
∑
v,w

βwvsCwv(s, â)

Since Vπ
i (s
′)=V πi (s′) and Cwv(s, â∗)=0, we have:

Ri(s, â
∗)+γ

∑
s′

T (s′ |s, â∗)V πi (s′)−
∑
v,w

βwvs0

≥Ri(s, â)+γ
∑
s′

T (s′ |s, â)V πi (s′)−
∑
v,w

βwvsCwv(s, â)

Qi(s, â
∗)−Qi(s, â)+

∑
v,w

βwvsCwv(s, â)≥0

Let βs be the same constant used for all βwvs, yielding:

Qi(s, â
∗)−Qi(s, â)+βs

∑
v,w

Cwv(s, â)≥0

βs≥
Qi(s, â)−Qi(s, â∗)∑

v,wCwv(s, â)

This inequality must be satisfied for all â, enforcable with a
maximization over actions. This results in Equation 7.

Theorem 1: Lagrangian Bellman optimality Equation 6
solves the optimization in Equation 2.

Proof: By Proposition 2, there exists a βwvs such
that the use of the Lagrangian Bellman optimality equation
(Equation 6) ensures the constraints: Cwv(s,a)≤0,∀w,v, are
always satsified.

Since the constraints are satisfied, by construction Equa-
tion 6 has constraint terms 0, implying Q∗i (s, â

∗)=
Q∗i (s, â

∗)−0=Q∗i (s, â
∗). Thus it solves the optimization in

Equation 5.
By Proposition 1, it also solves the optimization problem

in Equation 3. By construction of Equation 3’s constraints,
for all states s, −A∗w(s,a)≤ηwv , and again V∗i (s,a)=
V ∗i (s,a). Thus, all constraints of the original optimization in
Equation 2 are satified and return the same resulting policy
at all states, solving this original optimization.

Algorithm 1 Topological policy optimization
Require: k: Number of objectives
Require: E: DAG of objective relationships
Require: δ: Slacks for each objectives
Require: θ0: Initial policy parameters

1: πθ,V̂ ← πθ0 , ∅
2: for i← TOPOLOGICALSORT(E) do
3: // Âi is a function of trajectories computed during
4: // PPO’s rollouts; it uses the learned ancestral
5: // critics’ set V̂ as a parameter
6: Âi ← Eq. 10 using this iteration’s V̂ in Cwv
7: πθ, V̂i ← PPO(πθ, Âi) // Use Âi for PPO’s adv.
8: V̂ ← V̂∪{V̂i} // Extend critic set for descendants
9: return πθ, V̂

B. Multi-Objective Lagrangian Policy Gradient Theorem

We have changed the objective into a form involving addi-
tional ancestor objectives. Consequently, it is not a given that
parameterized policies learning from samples—such as in the
case of deep reinforcement learning—is able to converge to
the optimal policy. Here we present a novel policy gradient
theorem [17] for any algorithm using this Lagrangian TMDP
objective. This multi-objective Lagrangian policy gradient
theorem is presented in Proposition 3 below.

Proposition 3: For any TMDP, with an discounted infinite
horizon objective (or an average-reward objective), for each
objective i:

∂ρπi
∂θ

=
∑
s

dπ(s)
∑
a

∂π(a |s)
∂θ

Qπ
i (s,a). (8)

Proof: We begin by rewriting Equation 6:

Vπi (s)=max
a

(
Ri(s,a)+γ

∑
s′

T (s′ |s,a)Vπi (s′)
)

with Ri(s,a)=Ri(s,a)−
∑
v,w βwvsCwv(s,a). Consider

the partial derivative of Ri with respect to policy parameters
θ. First, ∂

∂θRi(s,a)=0. Second, by definition in Equation 5,
each Cwv does not depend on the current policy parameters
θ, as it is proportional to the optimal advantages and slacks of
ancestors: Cwv(s,a)=max{0,−A∗w(s,a)−ηwv}. We have
∂
∂θCwv(s,a)=0. Thus, ∂

∂θRi(s,a)=0.
The rest of this proof follows directly from the original

policy gradient theorem’s proof [17], using Ri as the reward
and the fact that ∂

∂θRi(s,a)=0.

IV. TOPOLOGICAL POLICY OPTIMIZATION

Proximal policy optimization (PPO) [16] uses a (clipped)
surrogate objective, computing an approximate policy gra-
dient over batch trajectories τ of length h, and using a
generalized advantage estimation. We apply our Lagrangian
Bellman equation results from the previous section to PPO.
The following equations refer to this novel contribution.
At time step t, the objective i’s Lagrangian surrogate
objective is:

Li(θ)= Êt
[
logπθ(a

t|st)Ât
i

]
(9)
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Fig. 2. Results for four different DAGs and slack assignments on the robot navigation domain. The x-axis denotes slack η. The y-axis denotes values for
all three objectives: Vavoid (red), Vmonitor (blue), and Vgoal (green). Note that the units of the values for the three objectives are distinct from one another.

with Ât
i denoting advantages computed by generalized

Lagrangian advantage estimation (Equation 10 below).
The generalized Lagrangian advantage estimation de-

fines Ât
i=δ

t
i+(γλ)δt+1

i + · · ·+(γλ)h−t+1δh−1i with sin-
gle advantage estimates δki =rki +γV

π
i (s

k+1)−Vπ
i (s

k). The
sample-based estimate for this expression is computed by:

Ât
i=

h−1∑
k=t

(γλ)kδki =

h−1∑
k=t

(γλ)k
(
rki +γV

π
i (s

k+1)−Vπ
i (s

k)
)

=

h−1∑
k=t

(γλ)k
(
rki −

∑
v,w

βwvskCwv(s
k,ak)

+γ(V πi (sk+1)−
∑
v,w

βwvsk+1Cwv(s
k+1,ak+1))

−(V πi (sk)−
∑
v,w

βwvskCwv(s
k,ak))

)
=

h−1∑
k=t

(γλ)k
(
rki +γV

π
i (sk+1)−V πi (sk)

−γ
∑
v,w

βwvsk+1Cwv(s
k+1,ak+1)

)
(10)

with Cwv incorporating the ancestral advantages Awv as
defined by Equation 5.

Additional components of PPO and similar algorithms
may be used, which are applied inside of the PPO routine
in line 6, Algorithm 1. Specifically, we employ PPO’s policy
gradient entropy term and its clipped ratio for the policy.

V. EXPERIMENTS

In this section, we consider experiments in the multi-
objective robot navigation [19] domain, which is fully im-
plemented on a real robot acting in an actual household
environment. Importantly, the main contribution of this paper
remains the multi-objective policy gradient’s theoretical re-
sults and formulation, rather than the implementation of the

approach in TPO and a real world navigation domain. These
results are included to provide evidence of the approach’s
usefulness and build intuitions in modeling objective struc-
tures and behavioral customizability using slack.

A. Multi-Objective Robot Navigation Domain

We consider navigation domains in which a robot is pro-
vided with the tuple 〈M,L0,Lg,Ra,Rm〉. M∈{0,1}m×n
is a map, described here as a occupancy grid (or binary
matrix), with a starting location L0∈M and a goal location
Lg∈M. All this information and the state transitions, which
describe the robot’s movement dynamics and its interaction
with walls or obstacles in the map, are unknown a priori.

The goal objective is to navigate from L0 to Lg as fast
as possible. The robot receives a −1 for any non-goal state,
including when interacting with walls or obstacles. Once the
robot reaches the goal Lg , its navigation ends.

Two additional objectives are also provided. The avoid
objective is to penalize entering a rectangular regionRa. The
robot receives a −1 for each time step in this region. The
monitor objective is to encourage entering into a rectangular
region Rm. The robot receives a +1 for each time step in
this region. For both objectives, any interaction with walls
or obstacles is still met with a penalty of −1.

This domain builds on prior work on multi-objective
(PO)MDPs for home healthcare robots [19]. In particular,
the navigation of a home healthcare robot can be tailored to
different homes via the mapM; delivering medicine through
the assignment of L0 and Lg; the preference of the human(s)
or patients to avoid traversing rooms via Ra; the preference
to monitor rooms while navigating via Rm; and so on.

B. Experimental Setting

The thesis of this paper is to propose a novel multi-
objective policy gradient formulation for the new TMDP
model, for which no algorithm currently exists for continuous
state spaces. Therefore, the theoretical result and formulation



Fig. 3. Experiments that implement home navigation on a real robot in an actual household environment. This uses the M→A→G DAG with two
paths: (1) constrained-to-monitor (blue path) with η1=η2=0, and (2) constrained-to-avoid (red path) with η1=100 and η2=0. The start point (S), goal
point (G), avoid region, and monitor region are shown.

must ideally be evaluated by comparing its efficacy at
modeling different permutations of multiple objective DAGs
and slack assignments. Thus, the primary metrics must be the
values of all three objectives: Vavoid, Vmonitor, and Vgoal. The
results indicate how effective the approach is at capturing
the slack and the preferences encoded by each of the DAGs.

The implementation of this theoretical approach is the
approximate TPO algorithm. For each of the configurations
of DAG and slacks, the algorithm is trained for 300000
iterations. The experiments compute the value for each
objective via Monte Carlo simulations using the agent’s final
policy network. Analysing convergence is left to future work.
The approach is implemented in Julia 1.6.1 on Ubuntu 18.04.

C. Results and Discussion

Figure 2 provides results of four distinct constraint DAGs,
with each varying the slack values. This figure illustrates the
effect of the topological structure of the constraint DAG and
the slack assignments on the three objectives’ values.

In Figures 2 (a) and (b), we see the desired effect:
increasing the slack of the constraining objectives avoid (A)
and monitor (M ) reduces their value and enables the goal
(G) objective to improve its value. Figure 2 (d) shows a
similar effect, except with a different fan DAG structure. In
this case, the result DAG structure enables a more drastic
change. In Figure 2 (c), the goal is the first objective. We
observe now that by increasing the slack of the G, the other
two objectives (A and M ) are able to increase their values.

Figure 3 demonstrates the implementation of the approach
on an actual robot acting in a real household environment.
With zero slack, the primary monitor objective is favored,
forcing the avoid objective to experience a penalty. However
when provided slack, the avoid objective is able to direct the
path away from the region while navigating to the goal.

VI. CONCLUSION

This paper presents a policy gradient approach for cap-
turing rich multi-objective preference structures in rein-
forcement learning. While primarily a theoretical paper, the
method is demonstrated in a real robot navigation domain.
With this paper’s established theoretical foundation, future
work will introduce applications of this approach for a range
of reinforcement learning problems including formulations of
curriculum learning and imitation learning.
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