arXiv:2302.03164v1 [cs.RO] 6 Feb 2023

Adaptive Coverage Path Planning for Efficient
Exploration of Unknown Environments

Amanda Bouman', Joshua Ott?, Sung-Kyun Kim?, Kenny Chen*,
Mykel J. Kochenderfer?, Brett Lopez’, Ali-akbar Agha-mohammadi?, Joel Burdick!

Abstract— We present a method for solving the coverage
problem with the objective of autonomously exploring an
unknown environment under mission time constraints. Here,
the robot is tasked with planning a path over a horizon such
that the accumulated area swept out by its sensor footprint is
maximized. Because this problem exhibits a diminishing returns
property known as submodularity, we choose to formulate
it as a tree-based sequential decision making process. This
formulation allows us to evaluate the effects of the robot’s
actions on future world coverage states, while simultaneously
accounting for traversability risk and the dynamic constraints
of the robot. To quickly find near-optimal solutions, we propose
an effective approximation to the coverage sensor model which
adapts to the local environment. Our method was extensively
tested across various complex environments and served as the
local exploration algorithm for a competing entry in the DARPA
Subterranean Challenge.

I. INTRODUCTION

Consider a time-limited mission wherein a ground robot
must autonomously explore an unknown environment with
complex terrain. The robot explores by maximizing the area
observed, or covered, by a task-specific coverage sensor.
This sensor may be a thermal camera for detecting thermal
signatures, an optical camera for identifying visual clues, or
in our case, an omnidirectional range finder for constructing
3D environment maps. As the robot moves, the sensor
footprint sweeps the environment, expanding the covered
area, or more generally, the task-relevant information about
the world. The problem of finding efficient and safe coverage
trajectories is computationally complex [1], [2]- one must
consider the fact that a robot’s observation of the world
affects the utility of future observations, while concurrently
minimizing traversability risk.

Our proposed method quickly finds non-myopic coverage
paths by rolling out future coverage observations using an
effective sensor model. Our model is carefully designed to

*The work is partially supported by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration (80NMO0018D0004), and Defense
Advanced Research Projects Agency (DARPA).

Department of Mechanical and Civil Engineering, California Institute of
Technology (e-mail: {abouman, jwb@robotics }.caltech.edu).

2Department of Aeronautics and Astronautics, Stanford University (e-
mail: {joshuaott, mykel }@stanford.edu).

3NASA Jet Propulsion Laboratory, California Institute of Technology (e-
mail: {sung.kim, aliahga}@jpl.nasa.gov).

4Department of Electrical and Computer Engineering, University of
California Los Angeles (e-mail: kennyjchen@ucla.edu).

SDepartment of Mechanical and Aerospace Engineering, University of
California Los Angeles (e-mail: btlopez@ucla.edu).

Fig. 1: Adaptive coverage range (translucent circle) and resulting
exploratory path (blue) in a locally confined area (A) and a spacious
area (B) during Husky’s autonomous exploration of a limestone
mine in Nicholasville, KY.

replicate critical features of a range finder in a computa-
tionally efficient manner. First, the model is probabilistic —
coverage probability decreases with increasing ray sparsity
along the radial direction. As an effect, the density of cover-
age is dictated by the local environment geometry, and large
topological features in the environment are quickly exposed
and mapped. Second, to account for ray-surface interactions
that regulate surface visibility, the coverage range, or distance
at which a sensor measurement is performed, adapts to the
scale of the local environment. This approach obviates the
need for expensive ray-tracing operations that make forward
rollout algorithms prohibitively slow for a real-time system.

We begin by noting that the coverage task is submodular.
Since the robot must understand the effects of its actions
on the quality of future coverage measurements, we choose
to formulate this problem as a sequential decision process.
To find near-optimal trajectories at high replanning rates, we
use an online forward rollout search algorithm that plans
from the current world-robot state to a travel budget-defined
horizon. Our method was evaluated on hardware in various
environments, and served as the local planner for team
CoSTAR’s entry in the Final Circuit of the DARPA SubT
Challenge [3].

II. RELATED WORK

The problem of finding the optimal sequence of sensing
actions, or viewpoints, in order to maximize some task-

specific information has been extensively studied, both in
computer vision and robotics. In the robotics field, the
problem of viewpoint selection is commonly motivated by
tasks such as surveillance, object inspection, and exploration.
While a variety of viewpoint selection algorithms have been
proposed, we address those used to solve the exploration
problem where policies are constructed in a receding horizon
fashion as the robot gathers more sensory information about
its environment.

Viewpoint selection algorithms employ a sensor model to
determine future sensing locations that maximize scene in-
formation. In the context of exploration, these schemes often
rely on identification of the boundary between unmapped
and mapped space, regions termed frontiers, and seek new
robot poses that extend the boundary of mapped space
[4]. Traditional frontier-based approaches construct one-step
lookahead policies that find the next most favorable sensing
action, the quality of which is determined by the amount of
unmapped area that can be visualized [4], [5]. Underpinning
many approaches is the next-best-view planner (NBV) [6],
where a rapidly exploring random tree is constructed. Each
vertex represents a viewpoint, and the vertex that maximizes
a utility function, weighing volumetric gain against path
distance, is greedily selected as the next goal [7]. Dang
et al. [8] extends this strategy by sampling a set of paths,
and then selects the path which maximizes volumetric gain.
While computationally efficient, NBV-based planners are
greedy and therefore susceptible to local minima, leading to
suboptimal decision making. An accumulation of suboptimal
local decisions can significantly reduce the amount of sensor
information gathered over time.

In order to optimize viewpoint selection over a multi-step
horizon, the exploration problem has been framed as a variant
of the art gallery problem [9]. Here the objective is to find
a minimal set of viewpoints that maximizes coverage of an
area. A critical feature of this problem is the fact that the
marginal benefit of selecting a new viewpoint decreases as
the set of already selected viewpoints increases—a property
known as submodularity. A greedy algorithm has been shown
to provide a good approximation of the optimal solution to
the submodular function maximization problem [10].

Leveraging the effectiveness of greedy methods for sub-
modular maximization, many have adopted a decoupled
approach to the exploration problem [11], [2], [12]. First,
sensing locations are selected using a greedy algorithm. Then
a path through the locations is determined. For instance,
in the work of Cao et al. [11], a set of viewpoints is first
sampled from a grid-based environment representation. Then
viewpoints are selected in order of marginal coverage reward.
To account for submodularity, the coverage rewards of the
remaining viewpoints in the set are recomputed after each
selection. The final ordering of viewpoints is determined by
solving the standard traveling salesman problem. While a
decoupled approach provides a non-myopic solution in a
computationally efficient manner, we contend that it can be
sensitive to model uncertainty, which we discuss in Section
IV-C.

(a) Exact Coverage Range

(b) Static Coverage Range

Fadapl

/7
<

_,/'

(c) Adaptive Coverage Range (Proposed)

Fig. 2: Illustrative example of the effect of different coverage
sensor models on exploration completeness: “exact” observation
where the coverage range is based on ray-tracing (a), approximate
observation where the coverage range is static (b), and our proposed
approximate coverage sensor model where the range adapts to the
local environment. While the exact model provides the best estimate
of future coverage, it is computationally expensive and prevents
proper investigation of the policy space during MCTS. Alternatively,
while the static model is inexpensive, it overestimates the covered
area. As a consequence, the passageway below the robot may not
be explored since it provides erroneously low coverage reward.

The main contribution of our work is a unified approach to
the exploration problem that simultaneously considers envi-
ronment coverage and robot traversability using a rollout-
based search algorithm. The tractability of this approach
relies on an approximation of the robot’s coverage sensor
model, which reduces planning time by adapting to the
local environment. We contend that our unified approach
is more robust to real-world uncertainty than the widely-
adopted decoupled method.

III. PROBLEM DEFINITION

Given a known environment represented by an abstract
graph structure G = (N, E), with free and occupied nodes
Nfree U Nooe = N, the coverage objective is to find a
sequence of nodes p = {ng,...,ng—1} C Nyyee of arbitrary
length k& such that the number of free nodes within an
accumulated coverage sensor footprint F' is maximized,

subject to a budget constraint:

p* = argmax Z F(n;),
P nep 1
subject to a(p) < Gmax,

where a(p) is the path action cost, am, is a user-defined
action cost budget, and the sensor footprint F' maps each
node to a set of “covered” nodes: F'(n;) = (14, , My, -, N,)-

Recall that the coverage problem exhibits submodularity;
that is, the marginal benefit of appending the path with a
node no “close” to n; € p is less than that if ny & p.
To account for this diminishing returns property, we define
marginal coverage as the newly covered area, given all the
previously visited nodes:

F(’I”LZ) :F(nl\no,,nl,l) (2)
Given this definition, we can recast Eq. 1 as a coverage
problem with an additive reward structure:

p* = argmax Z F(ny),
P nsep 3)
subject to a(p) < amax-

We refer to Eq. 3 as our coverage problem for the remainder
of the paper.

IV. METHODOLOGY

We model the coverage problem as a discrete-time se-
quential decision making process where the optimal policy
is a sequence of actions chosen to maximize a cumulative
coverage reward. To find near-optimal policies in real-time,
we employ a rollout-based search algorithm that estimates
the value of an action sequence by simulating interactions
between the robot and world. During a simulated episode, or
rollout, the robot and world states evolve fogether — the robot
executes an action and makes a coverage measurement of its
environment, Eq. (2), which yields a subsequent robot-world
state and reward. Thus, rollouts provide a method of solving
the inherently submodular coverage problem in a unified
manner, i.e. a policy is evaluated on both the accumulated
marginal coverage reward and the path cost.

We introduce our world representation (Section IV-A),
and then model our coverage problem as a Markov decision
process (Section IV-B). To solve this problem in real-time on
a computationally-constrained robot, we propose an effective
approximation to the coverage sensor model, which signifi-
cantly reduces rollout computation. As a result, we are able
to construct high-quality coverage paths at a high planning
rate (Section IV-C).

A. World Representation

We represent the local environment around the robot by
an information-rich graph structure called the Information
Roadmap (IRM) [1], as shown in Fig. 3. The IRM is a
fixed-size lattice graph G = (N, FE) with nodes N and
edges E. Nodes represent discrete areas in space, and edges
represent actions. We store two type of information in the
IRM: (i) the traversability risk of the world with respect

i .
|"'\-\ /fv ,:}r
T'::ﬂl / IIIII :
g - =
,.?r“.i_('-\; :
:??i /?W \

Fig. 3: Information Roadmap (IRM) shown overlaid on the cost
map. The IRM contains world coverage and traversability risk
information. The goal of the coverage planner is to construct paths
on the IRM that convert nodes from uncovered traversable (yellow)
to covered traversable (brown). By constructing coverage paths in
a receding-horizon fashion, the robot extends the boundaries of
explored space.

to the robot’s dynamic constraints, and (ii) what parts of
the environment have been observed, or covered, by a task-
specific coverage sensor. The robot-centered, rolling window
IRM is continuously updated with traversability and coverage
information based on incoming sensor data.

To construct GG, we uniformly sample nodes n; € N in a
neighborhood of the robot, and compute the traversability
risk and coverage probability distribution over a discrete
patch centered at each node, i.e., p.(n;) and p.(n;), which
are stored as node properties. For scalability, we bin node
traversability risk probabilities into three groups: occupied
pr(n;) = 1, unknown p,.(n;) = 0.5, and free p.(n;) = 0.
For an edge e;; € E, we compute and store the traversal
distance d;; and traversal risk p;; between two connected
nodes.

B. Markov Decision Process

A Markov decision process (MDP) is described as a tuple
(S,A,T,R), where S is the set of joint robot-and-world
states, and A 1is the set of robot actions. The motion model
T(s,a,s") = p(s’|s,a) defines the probability of being in
state s’ after taking action a in state s, and the reward
function R(s,a) returns the utility for executing action a
in state s. The objective is to find a mapping from states to
actions, i.e. the policy 7, that maximizes the expected sum
of future reward.

State: The robot-world state is defined as s = (¢, W),
where q is the robot state and W is the world state. We define
g and W in terms of the IRM. The robot state ¢ = (ng, i),
where n, is the node closest to the robot’s current location,

and y is the robot’s heading direction, defined with respect
to the lattice geometry. The world state is W = G, where G
is the IRM containing traversability risk and coverage world
state estimates.

Action: We define an action a as the controlled robot
traversal from node n; € N to neighboring node n; € IV,
along an edge ¢;; € E. A node is directly connected to its
eight neighbors, discretizing the valid action space for a sin-
gle state into movement along the four cardinal/non-diagonal
(N, E, S, W) and four intercardinal/diagonal (NE, SE, SW,
NW) directions. We denote actions along the cardinal and
intercardinal directions by a5 and ay, respectively.

Robot Dynamics: We approximate the robot motion
model T(q,a,q’) as deterministic. Given an action a di-
recting traversal of edge e;;, the robot will reach node n;
with probability 1. Actions that cause the robot to leave the
bounds of G or enter nodes that are unknown or occupied,
pr(n;) = 0.5 or 1, have no effect. Note that while don’t
explicitly model motion stochasticity, we account for it by
planning at a high-rate in a receding-horizon fashion.

Probabilistic Coverage Sensor Model: We model our
coverage sensor as an omnidirectional range finder. The robot
covers nodes within its line-of-sight, computed using ray-
tracing techniques on the traversal risk map {p.(n;)} in
combination with sensor range constraints. To account for
increasing ray sparsity in the radial direction, we compute
the coverage probability for a node as a function of the
robot-to-node distance. Given the robot node 71,4, a node n;
is covered with probability Py (n;| ng). We heuristically
model the coverage probability P, as an S-shaped logistic
function:

1

1+ ek(ri—ro)’ @)

Peov(ni] nq) =

where r; is the euclidean distance between the robot node
ng and node n;, and constants ry and & are the sigmoid’s
midpoint and steepness, respectively. The coverage probabil-
ity distribution over the radial distance from the center of the
sensor in shown in Fig. 2.

World Transition Model: We approximate the world
transition function T (W, a, W’) as deterministic. Function
CoverageUpdate in Alg. 1 presents the process for updating
the world coverage state based upon the the probabilistic cov-
erage sensor model in Eq. (4). When integrating new sensor
measurements, we assume independence and compute the
maximum of the old and new coverage probability (Alg. 1-
line 5). This yields an optimistic estimate of coverage.

Reward Function: We now redefine our marginal cover-
age from Eq. (2) to be the uncertainty reduction in the world
coverage state induced by an action a:

I(s,0) = Y B(pelnila) =pe(n),)

n;EN

where [controls the reward received from covering a node
based on its occupancy status. Due to its sparsity, the IRM
sometimes fails to identify nodes as occupied in high risk
regions. For instance, in Fig. 3, the environment boundary is

Algorithm 1 World Coverage Update

Function CoverageUpdate
Input: robot node n,
world state G
maximum Sensor range 'max

1: for all angles 0, of range finder do

2 for all nodes n; along ray from ng in direction 65 do
3 Compute robot-to-node euclidean distance r;

4 if pr(ni) < pmax and 73 < Tmax then

5: pe(ni) < max[pe(ni), Peov(ni| ng)] > Eq. (4)
6 else

7 break

8: return {p.(n;)'}

(b) Coverage Probability
(Discretized)

(a) Coverage Probability
(Continuous)

(¢) Non-Diagonal Action aj (d) Diagonal Action a V3

Fig. 4: Our coverage sensor model, based on Eq. (4), displayed
over continuous space (a), and over the discretized lattice graph
world representation (b). The diffused color map mimics the cov-
erage probability curve— darker shades indicate higher coverage
probabilities. The marginal coverage after a non-diagonal action
(c) and diagonal action (d) is represented by the shaded gray cells.
Note that the ratio of marginal coverage to distance traveled over
the lattice is not equivalent for non-diagonal and diagonal actions:
I(s°,a,5)/dij # I(s°,a1)/dij, where s° indicates a risk-free
world. We address this discrepancy with Eq. (7).

not fully represented by occupied nodes. To stay robust to
this unreliable world model, we define the value of 3 to be
larger for nodes of known occupancy (occupied, uncovered-
free, and covered-free), when compared to the value of 3 for
unknown nodes. As a result, the constructed coverage paths
are more likely to stay within the traversable space of the
environment.

The reward function is defined as a weighted sum of
marginal coverage and action penalties:

R(s,a) = krI(s,a) — [kadij + kp pij + ku Au], (6)

where d;; is the traversal distance, p;; traversal risk, and A,
is the cost of rotation due to the robot’s non-holonomic con-
straints. Constants k7, kq, k,, and k,, weigh the importance
of coverage, traversal distance, risk, and motion primitive
history on the total reward.

Given a coverage sensor with a circular field-of-view, the
uncovered area after a diagonal and non-diagonal action
should scale equivalently with distance traveled. However,
since Eq. (5) is evaluated over a discretized space G, the ratio
of marginal coverage to distance traveled is not equivalent for
all actions on the lattice, as illustrated in Fig. 4. Given this
marginal coverage discrepancy between actions, we define
kq as a function of coverage parameters in order to ensure
non-diagonal (a;) and diagonal actions (a,/) are equally
rewarding; that is, R(s,a1) = R(s,a ;) for the same p;;
and A,,. If w is the width of a grid cell in G, then we define
kg as:

ki 1(s%a,5) —1(s% a1)
kg = L.)
w (1-+2)
where state s° denotes a risk-free world where the only
covered region is aligned with the robot’s current sensor
footprint.

Optimal Policy: It is fundamentally infeasible to solve
an unknown environment coverage problem over an infinite
horizon since information about the world is incomplete,
and often inaccurate, at runtime. Instead, in such domains, a
Receding Horizon Planning (RHP) scheme has been widely
adopted as the state-of-the-art [6]. The optimal policy with
RHP is:

4T
Tiepr(s) = argmax Z Y ' R(sp,m(ser)), (8)

well.eq T t—t

where T is a finite planning horizon for a planning episode
at time ¢. Given the policy from the last planning episode,
only a part of the optimal policy, 7, , A, for At € (0,77,
will be executed at runtime. A new planning episode will
start at time ¢ + At with updated robot-world state.

C. Online Planning

We now discuss our proposed online coverage planner
algorithm, which runs in real-time on hardware. Alg. 2
presents the major components of the planner.

Search Algorithm: In order to solve Eq. (8), we use
Monte Carlo tree search (MCTS) [13]. Refer to Function
MCTS in Alg. 2. During every planning episode, a lookahead
tree, rooted in an initial robot-world state, is iteratively
constructed by simulating action sequences using a random
rollout policy 7,o110u¢- During a single iteration, rollouts
and tree expansion stop when a predefined depth, or our
path budget, is reached. Given a state s and action a, a
generative model G (i.e. the black box simulator of the
MDP) provides a sample successor state s’ and reward r.
Since we do not have access to the ground truth state of the
environment, our generative model is an estimate based on
the most recent robot sensor measurements used to construct

Algorithm 2 Coverage Planner

Function CoveragePlan
repeat
Obtain: state s = (ng, 1, G)
pointcloud scan {z;}
#1 Generate Coverage Mask
Compute adaptive coverage range Tagap in Eq. (10)
{m;} < CoverageUpdate(ng, O, Tagapt) > Alg. 1
> where O = pc(n;) =pr(n;)) =0V n; € N
#2 Find Planning Root
N+, pbr < RootNode(s, aj,) > see PLGRIM in [1]
s < (nr, pr, G) > update robot state to root parameters
#3 Plan and Execute
T, < MCTS(s, {mi})
Extract action sequence a7,y from T
#4 Prep for Next Episode
CL; N < a1:N
until timeout

Function RootNode
Input: state s = (nq, p, G)
previous action sequence a.

Extract path ag, y > ng is path node closest to nq
Initialize path risk ppan and distance dpan to O
for action e;; in path ag,. do
Ppath += pij/dij; dpan += dij
if pPpath > Pmax O dpah > dmax then
Assign root node n, < n;
Find root orientation p, > if nr = ng, then pu, + p
return n-, g,

Function MCTS
Input: state s = (ng, u, G)
coverage mask {m;}
Initialize empty lookahead tree 7'-
repeat
T, < SIMULATE(s; G)
> estimated generative model G given by
Simulate(s, {m; }; Troliout)
until timeout
return T

Function Simulate
Input: state s = (nq, p, G)
coverage mask {m;}
policy m
iy (g,)
{pe(ni)'} + {max[mi, pc(ni)]} > fast coverage update
r < R(s,a) > Eq. (6)
return s’ r

the world representation G. MCTS terminates after reaching
a user-defined maximum number of simulations.

Action Sequence Extraction: The action sequence with
the highest estimated value is extracted from the lookahead
tree (Alg. 2—#3). Then the first N actions from that se-
quence, aj.y, is sent to the robot for execution. The number
of actions N is defined such that R(s;,a;) >y Vi€ {l:
N}, where + is an empirically selected one-step reward lower
bound. This cropping of the action sequence is critical to
global exploration performance; it ensures the local coverage
path uncovers “enough” area to justify the path travel cost. If
aj.n is empty, then a global planner takes control and guides
the robot to areas with high expected information gain.

Planning Root Update: At the end of every planning
episode, aj., is stored and then used to update the root of
the lookahead tree during the subsequent episode (Alg. 2—
#2). Our root update approach is based on a receding-
horizon policy reconciliation method proposed by [1]. Fig.
6 demonstrates the effectiveness of this root update method.

Adaptive Coverage Range: While MCTS is an anytime
algorithm, meaning construction of the tree can terminate
at any point and a solution will be recovered, it only
converges to the optimal solution with a sufficient number
of simulations. Although it may be infeasible to reach the
optimal solution given time constraints, estimates of the
action values become increasingly more reliable with more
simulations, leading to a higher quality coverage path. In
order to find quality solutions at high planning rates, a real-
time system must find a good balance between the fidelity
of a simulation (e.g. how accurately we model the coverage
observation) and the number of simulations.

To maximize the number of simulations within a suitable
planning time, we propose an approximation of the coverage
model that reduces the time complexity of the generative
model G. Our approximate world coverage update obviates
the need for expensive ray-tracing operations in Alg. 1. First,
we estimate the spaciousness 7y, of the local environment
[14]. Then we adapt the distance at which a range-finder
coverage measurement is performed based on 7. We
denote this adaptive coverage distance by 7agapi. See Fig. 2
as an example of our adaptive coverage range approach.

Given a range-finder 3D pointcloud scan {z;} where z; is
the point at which a ray intersects an obstacle, we compute
spaciousness as:

Tspac = f (median{d(z;)}), 9)

where d(z;) is the euclidean distance between the range-
finder origin and a ray intersection-point z;, and f is a low-
pass filter: f(x;) = oy f(x1—1) + ag 2 with constants oy =
0.95 and oo = 0.05. The median is robust to outliers in a
potentially noisy pointcloud, and gives a notion of the current
scale of the local environment around the robot. Then, given
T'spac, W€ COMPULE Tagapt AS

(10)

otherwise,

: T
Q - T'spac if T'spac S :fx
Tadapt =
T'max

where « is an empirically tuned scaling constant, and 7,
is our model-defined maximum sensor range. Equipped with
Tadapt, W€ generate a probabilistic coverage mask {m;},
detailed in Alg. 2—#1. The mask serves as an input to the
generative model Function Simulate in Alg. 2, which updates
the world coverage state using inexpensive matrix operations.

Discussion: A decoupled approach to the coverage plan-
ning problem leverages a greedy algorithm for non-myopic
viewpoint selection, as detailed in Section II. This approx-
imation relies on the fact that selecting more viewpoints
never reduces the total coverage reward, since Eq. 3 exhibits
monotonicity [10], [15]. While true in theory, this conjec-
ture falters in a real-world exploration domain where the

E

(b) Decoupled Coverage Planner

Fig. 5: For two planning episodes at ¢; and t2 during Husky’s
autonomous exploration of a real-world mine, we show the coverage
path constructed using our proposed unified approach (a) and the
commonly-adopted decoupled approach (b) for solving the sub-
modular coverage problem. In (a), the robot collects the remaining
coverage reward at the end of the passage, before continuing to the
large, unexplored passage to the left. In (b) at snapshot ¢, the robot
incorrectly detects openings at the end of the passage due to bad
sensor measurements and selects a set of viewpoints accordingly.
The shortest path through the poorly-selected viewpoints guides the
robot through a narrow passage to the right, which is both riskier
and less rewarding than the passage to the left.

robot only has partial information about the world. In this
setting, the inclusion of risky or low quality viewpoints, i.e.,
those evaluated using unreliable world estimates, can have
adverse effects on the final policy and the robot’s ability to
collect coverage reward over an exploration mission. More
concretely, the policy constructed by a decoupled approach
does not consider that: (i) the robot may fail during execution
of the path, (ii) world coverage and traversability estimates
become increasingly unreliable with increasing distance from
the robot, and (iii) the world model (i.e. Local IRM) changes
dynamically as the robot uncovers and maps new regions.

In order to address the aforementioned issues, the proposed
approach to the coverage planning problem exhibits the
following properties that make it suitable for a real-world
exploration domain.

1) Viewpoint Selectiveness: A policy is evaluated by com-
puting the marginal coverage reward and path cost
for each successive action, or viewpoint, in the policy
(Eq. 6). Understanding coverage interdependency be-
tween successive viewpoints lifts the burden of needing
to fully cover the current graph with a single policy —
an unproductive and potentially harmful ambition in
the presence of uncertainty. As a result, viewpoints
that do not provide sufficient coverage utility within

(a) t = 00:00 (b) t = 00:30

(c) t =00:31 (d) t = 01:46

Fig. 6: Snapshots of robot’s navigation through rocks and debris during its exploration of a limestone mine. The coverage path (blue)
and the planning root node (green circle) are shown. Note that (b) and (c) are from consecutive planning episodes as the robot turns a
corner, receives new sensor information, and updates the world risk state. The policy constructed in (c) is evaluated in (b)’s updated world
estimate. The root node location is based on this evaluation (See Function RootNode in Alg. 2).

a time-budget, or jeopardize the robot’s safety, can be
discounted from the final policy, while still preserving
MCTS near-optimality.

2) Robustness to Uncertainty: The lookahead tree is rooted
at (or very near to) the robot’s current location. Hence,
MCTS visits nodes close to the robot more frequently,
effectively focusing its search time in areas of the en-
vironment where world coverage and traversability risk
estimates are more reliable. Moreover, due to a discount
factor in the problem objective Eq. (8), policies that shift
coverage reward earlier in time are more rewarding.
By incorporating this near-sighted incentive, the robot
accounts for stochasticity in sensing and motion control,
as well as the fact that the world model will evolve as
undetected areas are exposed.

Fig. 5 compares paths constructed by our approach and
a decoupled approach during a real-world exploration mis-
sion. Recall that the decoupled approach greedily selects
viewpoints in order of highest marginal coverage reward.
Therefore, rather than discounting viewpoints far from the
robot where world estimates are poor, the decoupled ap-
proach actually prioritizes distant points since there is less
sensor overlap at these locations with the robot’s current
field-of-view. The path planner is then “locked into” these
viewpoints, and optimistically reasons over this potentially
unreliable search space.

V. EXPERIMENTAL RESULTS

In order to evaluate our proposed approach, we per-
formed simulation studies and real-world experiments with a
four-wheeled vehicle (Clearpath Robotics Husky robot) and
quadruped (Boston Dynamics Spot robot). Both robots are
equipped with custom sensing and computing systems [16],
[3], [17]. The entire autonomy stack runs in real-time on
an Intel Core i7 processor with 32 GB of RAM. The
stack relies on a multi-sensor fusion framework, the core
of which is 3D point cloud data provided by LiDAR range
sensors [18]. During testing, the proposed (or comparative
baseline) approach was integrated as the local planner within
the hierarchical planning framework PLGRIM [1].

A. Simulation Evaluation

We evaluated the proposed planner against the baseline
planner Ours-LF: the proposed rollout-based method with
a low-fidelity coverage sensor model, i.e. non-probabilistic
and static coverage range 7. All tests were performed in
a simulated maze environment, as shown in Fig. 7. The maze
consists of a large irregular network of large spaces and nar-
row passages, many of which are connected by sharp bends.
This geometry exposes the weaknesses of a rollout-based
planner where the coverage sensor model does not effectively
approximate the actual range finder sensor. The long-range
Ours-LF planner (7,4, = 8m) overestimates the coverage
sensor range and, therefore, fails to detect openings at the
sharp bends. As a result, large swaths of the environment
are not exposed, and the robot terminates exploration early.
Alternatively, the short-range Ours-LF planner (7,4, = 4m)
performs significantly better since it can expose and explore
all narrow passages. However, since it underestimates the
coverage sensor range, it finds redundant trajectories in the

8000
= Qurs
7000 = Ours-LF (fpax = #m)
6000 = Ours-LF (e = 8m)
=~
-
E s000
3 *
% 4000 \
S -
g 3000 1
=
2000 :
1000 \'
5 50 m
0 5 10 15 —
Time (min)

Fig. 7: Results from simulated exploration runs in the simulated
maze (shown at top right). We define our coverage metric to be the
accumulated area within an 8m radius of the robot. Each curve is
the average of 2 runs.

large spaces, which contributes to a slight degradation in
performance.

Our proposed solution can handle all settings, since it
neither over- or under-estimates the true coverage range
in exchange for reducing computation. Moreover, since the
model is probabilistic, it inherently adjusts its coverage
density to the local environment. As a consequence, when
the robot approaches a sharp bend, it travels deep enough to
“see” uncovered space around the corner, which is critical to
exposing the entire environment.

B. Real-World Evaluation

Our solution was extensively tested on physical robots
in real-world environments. In particular, we present results
from the exploration of a limestone mine (Figs. 8 and 6) in
the Kentucky Underground, Nicholasville, KY.

2000

15004

Limestone Mine

0 20 40 60
Time (mim

Fig. 8: Proposed coverage planner’s navigation of a limestone
mine during a 60 min. exploration mission. The coverage paths
down the main corridor exhibit a wave-like shape. When the robot
encounters a junction, it moves toward the corner in order to
maximize coverage of both branches, and then re-aligns with the
centerline of the main corridor. In the exploration metric (bottom
right), pink denotes the time intervals where the the PLGRIM
global planner is directly guiding the robot. The starting location
of snapshot (a) in Fig. 6 is indicated.

VI. CONCLUSION

We present an approach for solving the coverage problem
for time-constrained autonomous exploration of unknown
environments. We solve this problem, which is submodular
in nature, using a unified rollout-based search algorithm. This
formulation allows us to evaluate the effects of the robot’s
actions on future world coverage states, while simultaneously
accounting for traversability risk and the dynamic constraints
of the robot. In order to adequately investigate the search
space, we reduce rollout computation using an effective
approximation to the coverage sensor model which adapts the

coverage range to the local environment. As a result, we can
solve the submodular coverage problem in a unified manner,
which we contend is more robust to real-world uncertainty
than decoupled approaches.

ACKNOWLEDGMENTS

We acknowledge Mamoru Sobue, Harrison Delecki, Ori-
ana Peltzer and all team members of Team CoSTAR for the
DARPA Subterranean Challenge, and the resource staff at
the Kentucky Underground facility, Nicholasville, KY.

REFERENCES

[1] S.-K. Kimx*, A. Boumanx, G. Salhotra et al., “PLGRIM: Hierarchical
value learning for large-scale exploration in unknown environments,”
in International Conference on Automated Planning and Scheduling
(ICAPS), vol. 31, 2021, pp. 652-662.

[2] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual
exploration and coverage with a micro aerial vehicle in unknown
environments,” in IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2015, pp. 1071-1078.

[3] A. Agha-mohammadi and et al., “NeBula: Quest for robotic autonomy
in challenging environments; TEAM CoSTAR at the DARPA subter-
ranean challenge,” Journal of Field Robotics, 2021.

[4] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in IEEE International Symposium on Computational Intelligence in
Robotics and Automation, 1997, pp. 146-151.

[5] H. H. Gonzélez-Banos and J.-C. Latombe, “Navigation strategies for
exploring indoor environments,” International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 829-848, 2002.

[6] A. Bircher, M. Kamel, K. Alexis et al., “Receding horizon “next-best-
view” planner for 3D exploration,” in icra, 2016, pp. 1462-1468.

[7]1 C. Witting, M. Fehr, R. Béhnemann ef al., “History-aware autonomous
exploration in confined environments using mavs,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1-9.

[8] T. Dang, M. Tranzatto, S. Khattak et al., “Graph-based subterranean
exploration path planning using aerial and legged robots,” Journal of
Field Robotics, vol. 37, no. 8, pp. 1363-1388, 2020.

[91 S. K. Ghosh, Visibility algorithms in the plane. Cambridge University
Press, 2007.

[10] A. Krause and D. Golovin, “Submodular function maximization.”
Tractability, vol. 3, pp. 71-104, 2014.

[11] C. Cao, H. Zhu, H. Choset, and J. Zhang, “Tare: A hierarchical
framework for efficiently exploring complex 3d environments,” in
Robotics: Science and Systems Conference (RSS), Virtual, 2021.

[12] J. Faigl and M. Kulich, “On determination of goal candidates in
frontier-based multi-robot exploration,” in 2013 European Conference
on Mobile Robots. 1EEE, 2013, pp. 210-215.

[13] C. B. Browne, E. Powley, D. Whitehouse er al, “A survey of
Monte Carlo Tree Search methods,” IEEE Transactions on Computa-
tional Intelligence and Al in games, vol. 4, no. 1, pp. 1-43, 2012.

[14] K. Chen, B. T. Lopez, A.-a. Agha-mohammadi, and A. Mehta, “Direct
lidar odometry: Fast localization with dense point clouds,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 2000-2007, 2022.

[15] M. Roberts, D. Dey, A. Truong et al., “Submodular trajectory opti-
mization for aerial 3d scanning,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 5324-5333.

[16] K. Otsu, S. Tepsuporn, R. Thakker et al., “Supervised autonomy for
communication-degraded subterranean exploration by a robot team,”
in IEEE Aerospace Conference, 2020.

[17] A. Boumanx, M. Ginting*, N. Alaturx et al., “Autonomous Spot:
Long-Range Autonomous Exploration of Extreme Environments with
Legged Locomotion,” in iros, 2020.

[18] K. Ebadi, Y. Chang, M. Palieri et al., “LAMP: Large-scale autonomous
mapping and positioning for exploration of perceptually-degraded
subterranean environments,” in icra, 2020.

	I Introduction
	II Related Work
	III Problem Definition
	IV Methodology
	IV-A World Representation
	IV-B Markov Decision Process
	IV-C Online Planning

	V Experimental Results
	V-A Simulation Evaluation
	V-B Real-World Evaluation

	VI Conclusion
	References

