
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Adaptive Optimization of Autonomous Vehicle
Computational Resources for Performance and

Energy Improvement
Saurabh Jambotkar, Longxiang Guo and Yunyi Jia

Abstract— Autonomous vehicles usually consume a large
amount of computational power for their operations, especially
for the tasks of sensing and perception with artificial intelligence
algorithms. Such a computation may not only cost a significant
amount of energy but also cause performance issues when the
onboard computational resources are limited. To address this
issue, this paper proposes an adaptive optimization method to
online allocate the onboard computational resources of an
autonomous vehicle amongst multiple vehicular subsystems
depending on the contexts of the situations that the vehicle is
facing. Different autonomous driving scenarios were designed to
validate the proposed approach and the results showed that it
could help improve the overall performance and energy
consumption of autonomous vehicles compared to existing
computational arrangement.

Keywords— autonomous vehicles, adaptive optimization,
computational resources.

I. INTRODUCTION

A modern autonomous vehicle requires a large amount of
computational power to run its systems. Subsystems such as
chassis control, perception, motion planning, etc. require
computational resources. Such resources can be bandwidth,
processor cores, memory allocation, etc. By conventional
methods, the allocation of these resources are fixed when
required. Systems such as the visual perception module that
requires a large amount of computational power are given
preference by allocating a larger portion of available resources
and the rest of the systems having lower requirements are
given resources accordingly. However, such resource
requirement changes over time. Limiting the resource
allocated to a system considering only its overall usage rather
than its instantaneous requirement puts restrictions on the
maximum performance of the system.

Many existing research efforts have been focusing on the
adaptive allocation of computational resources, most of which
prioritize cloud computing or internet of things (IOT) related
applications. A two-level resource management frameworks
is used by Kephart in [1] by evaluating system utility function
that consists of system inputs and performance measures. The
system inputs are considered to be power consumption and
performance of the CPU measured by the response time of the
system. Considering the nature of the cloud computation
framework, a priority-based assignment of resources seems

intuitive. Such a study is given by [2] to maximize profit
earned by a cloud server. An approach with a mathematical
model of the system is explored in [3], [4]. The use of discrete
nonlinear and linear models for calculating system response
and job queuing time based on the frequency of the server is
shown in these studies. By utilizing optimal control methods,
the resource allocator optimizes the performance of a local
system that may be further used by the co-operative resource
allocation process over a wide network [5]–[8]. Zhan [9]
demonstrated an approach by applying deep reinforcement
learning for the dynamic resource allocation of federated
learning to achieve better convergence speed and energy
efficiency. Liang [10] used deep reinforcement learning to
optimize the resource allocation in vehicular networks. Huang
[11] and Sun [12] applied deep reinforcement learning to the
autonomous resource slicing for virtualized vehicular
networks.

While those existing cloud computing/IOT related
methods can be applied to inter-vehicle allocation of
computational resources, not many options can be found for
in-vehicle resource allocation. [13] proposed resources
allocation method for vehicular attentive vision system that
emphasized on regions of interest of a visual system and the
resource allocation for analyzing the visual information based
on the criticality of objects, time to collision, and their severity
classification. [14] employed a genetic algorithm-based
resource allocation approach to lower the energy cost of
vehicular applications without violating hard real-time
constraints. [15] and [16] introduced a centralized architecture
for in-vehicle computing and developed optimal resource
scheduling method for the architecture.

Although the problem of managing resources for an
autonomous vehicle seems similar to these studies have
tackled, the challenges offered by it is still unsolved. First,
system performance indices for an automotive are not easy to
observe. For estimating the accuracy of a perception system,
prior data is needed and models must be developed that take
resources available to the system into consideration. To
implement such a concept for onboard resource management,
a large amount of training and testing is needed to obtain
positive results. A priority-based approach is simple and quick
but does not cover multi-objective goals such as safety,
accuracy, and might not give the required robustness. The
energy consideration for an automotive is more of a concern
of total energy consumption rather than power demand.
Unlike a cloud server, the computational load of an
automotive may go down significantly depending on the
scenario vehicle is facing. The resources used can be reduced

Saurabh Jambotkar, Longxiang Guo and Yunyi Jia are with the
Department of Automotive Engineering, Clemson University, Greenville,
SC 29607 USA. (e-mail: sjambot@g.clemson.edu; longxig@clemson.edu;
yunyij@clemson.edu).

and lower resource consumption can result in lower energy
consumption without loss of functional metrics [17].

Therefore, in this paper, an adaptive optimization
approach is proposed to allocate onboard computational
resources and an autonomous vehicle to different subsystems
as the situation changes. For doing so, three performance
metrics of the system are decided that are time, precision, and
energy consumption. The subsystems are prioritized based on
contextual information. Computational resources are
allocated by optimizing system performance functions.
Additionally, a safety metric is proposed and is evaluated in
operational situations. The system performance is simulated
in different scenarios and the results are compared with
conventional resource distribution methods. The contributions
of this paper can be summarized as follows: 1) create
mathematical modeling of computational factors in
autonomous vehicle; 2) propose adaptive computational
resource optimization with context-driven subsystem
prioritization; and 3) evaluate performance and design metrics
for different autonomous driving scenarios.

II. ADAPTIVE COMPUTATION OPTIMIZATION FOR

AUTONOMOUS VEHICLES

A. Problem Statement

The computational resources of an autonomous vehicle
can be distributed amongst all subsystems. This distribution
must be changed as a function of the situation or scenario the
vehicle is facing. To do so, different system performance
parameters can be evaluated. The resource allocation of the
system can then be optimized to give best possible
performance for the whole system. The system performance
is given as a weighted sum of all performance metrics,
calculated across all subsystems.

 𝐽ሺ𝐶ሻ ൌ෍ቐ𝑤௜ ቌ෍𝑍௝ ൈ 𝜎௝

௠

௝ୀଵ

ቍቑ

௡

௜ୀଵ

 (1)

This gives the total system performance measurement for
𝑛 subsystems, each evaluated for 𝑚 performance metrics.
The multiplier 𝑍௝ is 1 when a lower value of performance
metric is desired and -1 when a higher value of performance
matric is desired. Minimizing J in (1) yields desired
computational resource distribution vector C, C ∈ ℝ௡.

The resource distribution is restricted by practical
parameters, safety considerations, or the capacity of the
subsystem themselves. These constraints are given as (2).

𝐶௠௜௡ ൑ 𝐶௜ ൑ 𝐶௠௔௫

෍𝐶௜ ൌ 𝐶௠௔௫

௡

௜ୀଵ

𝐶ଵ ൒ 𝛾ଵ
⋮

𝐶௡ ൒ 𝛾௡

⎭
⎪⎪
⎬

⎪⎪
⎫

 (2)

B. System Framework for Adaptive Optimization

The framework used to calculate optimum resource
allocation is given in Fig. 1. The system consists of camera

sensors amongst which the resources are to be distributed.
Depending on the context of the situation of the surrounding
environment, a contextual priority assignment is given to each
of the 4 systems. This priority index is affected by the distance
of activity of interest on that side of the camera system. A
system model is derived to estimate the performance of the
system upon giving certain inputs such as resources, size of
the neural network, etc. The output parameters of the model
are prediction time required by each subsystem, precision of
detection, and energy consumption while doing so. The
priority index and system model are used to create the system
objective function. This function is developed to maximize
performance and minimize the energy consumption of the
system. The objective function is optimized over certain
constraints that are decided by the limitations on resource

availability and lower bounds on allocation. The performance
of the system is then checked for safety metrics. The safety
metric is evaluated based on the situation and the respective
performance obtained by optimum resource allocation.

C. Modeling of Computational Factors

The performance metrics are calculated as a function of
the computational resources, size of the neural network, and
the camera resolution of each subsystem. Different models
used for time, precision, and energy calculation of each
subsystem are given below.

1) Time Consuming Model
As discussed earlier, the processing time for each system

depends on the resources allocated to that system, the size of
the neural network used, and the resolution of the images. It
is assumed that a simple relation can be made to estimate the
time required. The time required by the 𝑖௧௛ system is taken as
a function of these parameters as given in (3), where 𝐶௜, 𝑆௜,
and 𝑅௜ are the normalized resources allocated, normalized
neural network size, and camera resolution of the 𝑖௧௛
subsystem, respectively. It is assumed that the time required
to analyze one image is directly proportional to the resolution
of the image, inversely proportional to the size of the neural
network used along with the resources available to the
system.

 𝑡௜ ൌ 𝑓௧ሺ𝐶௜ , 𝑆௜ ,𝑅௜ሻ ൌ 𝑡଴ ൅ 𝑡ଵ ൈ ൬
1
𝐶௜
ൈ 𝑆௜ ൈ 𝑅௜ ൰ (3)

2) Precision Model
The precision of image processing depends on the size of

the neural network used and the resolution of the input image.
It is not affected by the computational resource distribution.
Fewer resources will take longer time to analyze the same
information and vice versa. The precision model used for the
𝑖௧௛ system is given in (4). This relation is also assumed to be

Fig. 1. Framework of adaptive optimization

proportional with resolution, i.e., higher resolution gives
better accuracy. The relation with the size of the neural
network is also assumed to be proportional.

 𝑃௜ ൌ 𝑓௣ሺ𝑆௜ ,𝑅௜ሻ ൌ 𝑝଴ ൅ 𝑝ଵ ൈ 𝑆௜ ൈ 𝑅௜ (4)

The image resolution fed to the neural network system
changes as a function of importance factor 𝛼௜ . In our
framework, multiple artificial neural networks with different
image sizes and network dimensions are trained for one given
perception task. The minimum image resolution is given as
𝑅௠௜௡ and the maximum resolution is given as 𝑅௠௔௫ are
constant resolution values. The image resolution of the 𝑖௧௛
system is given by (5).

 𝑅௜ ൌ 𝑚𝑎𝑥ሼ𝑅௠௔௫ ൈ 𝛼௜ ,𝑅௠௜௡ ሽ (5)

The size of neural network changes as a function of
weightages given by (8) between a minimum normalized
value of 𝑆௠௜௡ to 𝑆௠௔௫. System with higher weightage value
gets larger neural network size. The size of neural network of
the 𝑖௧௛ system is calculated by (6).

 𝑆௜ ൌ 𝑚𝑎𝑥ሼ 𝑆௠௔௫ ൈ𝑊௜ , 𝑆௠௜௡ ሽ (6)

3) Energy Consumption Model
The energy required by each system is modeled as a

function of the resources used by it and the frequency of
detection of each subsystem. The frequency of detection is
the number of times a subsystem captures and analyzes visual
information per second. It is changed based on the context of
the situation as well as the speed of the vehicle. High speed
and visually critical scenario demand for higher detection
frequency while at low speeds and situations with low
emphasis on surroundings can use a low detection frequency
for a subsystem. The energy consumption of the 𝑖௧௛
subsystem per second is given by (7), where 𝐹௜ is the
frequency of detection. The energy increases linearly with
detection frequency, and it is proportional to computational
resources being used by the corresponding system.

 𝐸௜ ൌ 𝑓௘ሺ𝐶௜ ,𝐹௜ሻ ൌ 𝑒଴ ൅ 𝑒ଵ ൈ 𝐶௜ ൈ 𝐹௜ (7)

D. Context-driven Priority Assignment

The priority of each subsystem is determined by the
context of the situation the vehicle is facing. The subsystem
that is the most critical from the situational perspective gets
the highest priority. This priority is given as weightages 𝑊௜.
The weightage given for each system depends on the activity
of interest related to each subsystem. The weightage is
limited to a minimum value 𝛼௠௜௡ so that each subsystem gets
minimum importance even when there is no benefit in overall
performance. This is an important consideration for safety.
The weightage then calculated considering the importance
factor of the 𝑖௧௛ system is given by (8).

 𝑊௜ ൌ
𝛼௜

∑ 𝛼௝௡
௝ୀଵ

 (8)

The frequency of detection is determined based on the
context of the situation as well as the speed of the vehicle
given by (9). 𝛼௜ is the importance factor determined from the
situation, 𝑣 is the speed of the vehicle and 𝜈௙೘ೌೣ is the speed

of the vehicle above which maximum detection frequency is
required. 𝐹௠௔௫ is the maximum detection frequency of a
subsystem, and 𝐹௠௜௡ is the minimum detection frequency of
a subsystem. The detection frequency is high when the
vehicle speed is high and also when the importance factor of
the system is high.

𝐹௜ ൌ 𝑓௙ሺ𝛼௜ , 𝑣ሻ ൌ ሺ𝐹௠௔௫ െ 𝐹௠௜௡ሻ ൈ

𝛼௜ െ 𝛼௠௜௡
1 െ 𝛼௠௜௡

ൈ
𝜈

𝜈௙೘ೌೣ

൅ 𝐹௠௜௡
(9)

E. Adaptive Optimization for Computational Resource
Allocation

 The flow of adaptive resource optimization can be
represented by the process given below. The perception
system obtains surrounding data and analyzes each
subsystem for its importance. A priority index is then
assigned to each subsystem. Final system weightage is
determined by comparing the relative importance and
minimum importance factors of all systems. Depending on
the criticality of situation, maximum resources to be
distributed, 𝐶௠௔௫ , is determined. It changes based on the
demand of the situation. For a demanding situation, more
resources can be used while for a situation where the need for
computational power is low, the total resources can be limited
to a lower value. The importance factor 𝛼 of each system can
be used to determine the nature of the situation. The resources
available for distribution are given in (10).

 𝐶௠௔௫ ൌ 𝐶଴ ൅ 𝐶ଵ ∗෍𝛼௜

௡

௜ୀଵ

 (10)

The resource distribution is calculated based on a cost
function that consists of all the three performance metrics, i.e.
time, precision, and energy consumption along with the
priority index that is calculated as explained earlier. The
priority index calculated is used with the precision metric of
each subsystem as it reflects the relative emphasis of each
subsystem. The cost function is developed to minimize time
as well as energy consumption and maximize the precision of
the vehicle. The cost function is given as (11).

𝐽 ൌ෍ሼ𝑎 ൈ 𝑓௧ሺ𝐶௜ , 𝑆௜ ,𝑅௜ሻ െ 𝑏 ൈ 𝑓௣ሺ𝑆௜ ,𝑅௜ሻ𝑊௜

௡

௜ୀଵ
൅ 𝑐 ൈ 𝑓௘ሺ𝐶௜ ,𝐹௜ሻሽ

(11)

where, a, b and c are the weightages that signify the relative
importance of cumulative time, system precision, and energy
consumption, respectively.

𝐶௠௜௡ ൑ 𝐶ଵ ൑ 𝐶௠௔௫
⋮

𝐶௠௜௡ ൑ 𝐶௡ ൑ 𝐶௠௔௫

෍𝐶௜ ൌ 𝐶௠௔௫

௡

௜ୀଵ
𝑎 ൅ 𝑏 ൅ 𝑐 ൌ 1
𝑆𝐹 ൒ 𝑆𝐹஼஼ோ஺

⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (12)

The minimization is constrained by the total resources
distributed, minimum resources per system, weightages of
performance parameters, and operational safety factor
𝑆𝐹஼஼ோ஺ as given in (12).

The resource distribution algorithm works as given in
Algorithm 1. The vehicle receives information about
surrounding traffic objects and other vehicles from sensors.
Based on this information and vehicle speed, the importance
factors 𝛼௜ are calculated for each side. Then the weightage
factors 𝑤௜ are calculated from 𝛼௜ . The detection frequency
for each sensor is determined based on importance and speed
of vehicle. Then maximum resources available for allocation
are determined. Camera resolution and neural network size
are determined based on their importance factor and
weightage. The objective function is then optimized for the
best system performance. Resource allocation is obtained as
an optimization variable.

III. RESULTS AND ANALYSIS

A. Simulation Setup

For the simulation purpose, a system with 4 camera
sensors is in use. Each camera system provides visual input
to the perception system and consumes some of the
computational resources available. Fig. 2 shows an example
of a traffic scenario that the vehicle might be facing. Such a
scenario includes traffic objects such as vehicles, pedestrians,
or bicyclists in the area surrounding the vehicle. The vehicle
receives visual data from onboard camera systems and gets
information about its surroundings.

1) System Models
The calculation time of subsystems varies from 10 to 50

milliseconds. Constants used for the time model, precision
model, and energy model are listed in Table 1.

The weightages used for time, precision, and energy
consumption in optimization function in (11) are listed in
Table 2 along with the weightages used for the time penalty,
precision penalty, and frequency penalty respectively for
safety metric calculation.

2) Context-driven Priority Assignment
The priority assignment for 4 camera system is done

depending on the traffic situation and vehicle behavior. The
importance factors 𝛼௜ vary from 0 to 1, with 0 signifying no
traffic or important activity for that subsystem, and 1
signifying the most critical activity. The importance factors
of all subsystems change as a function of the distance of
activity of interest from the vehicle. All the importance
factors are calculated based on distances given in Fig. 3. If
the vehicle is taking a turn on either side, the corresponding
subsystem is given an importance factor of 1 regardless of its
distance from the vehicle in the left or right lane.

The scenarios used to measure the performance of dynamic
resource distribution consist of the distance of the front
vehicle, the distance of vehicles in the left and right lane, and

Algorithm 1: Adaptive Optimization
Let Vrev be the Vehicle direction Boolean (1 for reverse, 0 for forward)
Let 𝑣 be the speed of the vehicle
Let Dl be the distance of the vehicle on the left side.
Let Dr be the distance of the vehicle on the right side.
Let Df be the distance of the vehicle ahead.
Let N be the number of subsystems for resource distribution
if Vrev then

set front importance factor, 𝛼௙ = 0,
set rear importance factor, 𝛼௕ = 1,

else
set front importance factor, 𝛼௙ = 1
set rear importance factor, 𝛼௕ = 0

end
calculate left importance factor from Dl, 𝛼௟=fimp(Dl)
calculate right importance factor from Dr, 𝛼௥=fimp(Dr)
for i → 1 to N

set minimum importance factor 𝛼௠௜௡, 𝛼௜=max(𝛼௜ , 𝛼௠௜௡)
end
calculate maximum resources, Cmax = fmax recources(∑𝛼௜ ,Cmin)
for i → 1 to N

calculate weightages wi, = 𝛼௜/∑𝛼௜
calculate detection frequency Fi, = fdetection frequency(𝛼௜, 𝑣)
calculate camera resolution Ri, = Fcamera resolution(𝛼௜, Rmin)
calculate the size of the neural network, Si = Fneural network size(wi, Smin)

end
minimize objective function, Ci=minimize { J(Ci, Si, Ri, Fi) }
return Optimum computational resource allocation (Ci)

Fig. 2. Traffic scenario example

TABLE 1
SIMULATION CONSTANTS

Constant Value

Time model
𝑡଴ሺsሻ 0.005

𝑡ଵሺs/MPሻ 0.002

Precision model
𝑝଴ 0.005

𝑝ଵሺ1/𝑀𝑃ሻ 0.3618

Energy model
𝑒଴ 0.005

𝑒ଵሺ𝑠ሻ 0.049
Minimum detection frequency 𝐹௠௜௡ሺ𝐻𝑧ሻ 5
Maximum detection frequency 𝐹௠௔௫ሺ𝐻𝑧ሻ 20

Maximum detection frequency speed 𝜈௙೘ೌೣ
ሺmphሻ 40

Minimum image resolution 𝑅௠௔௫ሺ𝑀𝑃ሻ 5
Maximum image resolution 𝑅௠௜௡ሺ𝑀𝑃ሻ 3

Size of neural network
𝑆௠௜௡ 0.15
𝑆௠௔௫ 1

Maximum resource calculation
𝐶଴ 0
𝐶ଵ 0.3226

Minimum resource 𝐶௠௜௡ 0.1
 MP = Megapixels.

TABLE 2
WEIGHTAGES FOR SIMULATION

Weightages Value
Time weightage a 0.5

Precision weightage b 0.25
Energy weightage c 0.25

Time penalty weightage 𝑊௣ 0.4
Precision penalty weightage 𝑊௧ 0.4
Frequency penalty weightage 𝑊௙ 0.2

the speed of the vehicle. If the vehicle is turning or going in
reverse, it is also considered in the scenario. The 14 scenarios
given in Table 3 represent a 5-minute journey of a passenger
vehicle.

3) Operational Safety Metric
The total resources used by the dynamic resource

allocation change with the scenario. Therefore, it is needed to
maintain operational safety that ensures no subsystem falls
short of resources when the situation is demanding. A safety
metric is used to compare the safety of the system in all cases.
For the safety calculation, a penalty-based approach is used.
When there is a need for a higher emphasis on a particular
system out of the 4 systems, a penalty is given for that
subsystem if its operational metrics are not high enough. This
normalized penalty is a combined measure of precision,

calculational time, and the detection frequency. The weighted
sum of these metrics gives rise to the penalty of that
subsystem. The penalty of the 𝑖௧௛ system is given by (13).
𝑊௣, 𝑊௧, and 𝑊௙ are the weightages given for precision, time,
and frequency penalties. 𝐹௜ௗ௘௔௟ is the ideal detection
frequency calculated from (9).

𝛽௜ ൌ ሺ1 െ 𝑃௜ሻ ൈ𝑊௣ ൅ ሺ𝑡௜ െ 0.01ሻ ൈ 𝑇௡ ൈ𝑊௧

൅
𝐹௜ௗ௘௔௟ െ 𝐹௜
𝐹௜ௗ௘௔௟ െ 𝐹௠௜௡

ൈ𝑊௙
(13)

The total penalty is calculated by adding penalties of all
the subsystems with the weightages given by (8). The initial
normalized safety is taken as 1 and the total penalty is
subtracted to get safety measures of the system. The total
safety metric must always be more than or equal to safety
metrics calculated for constant computational resource
allocation (CCRA) for any given situation. The final safety
for the overall system is calculated as given in (14).

 𝑆𝐹 ൌ 1 െ෍𝛽௜ ൈ𝑊௜

ସ

௜ୀଵ

 (14)

B. Results and Analysis

The optimal resource distribution is calculated for the 12
scenarios given in Table 3. The optimization problem is
solved using the Nelder-Mead simplex algorithm [18]. The
performance of the system is evaluated by metrics of
maximum detection time, cumulative precision of the system,
and energy consumption per second. The safety metric is also
compared for its corresponding value with the conventional
resource allocation system (CCRA). All the performance
metrics are evaluated in terms of normalized values.

The performance of the system with adaptive resource
allocation is given in Table 4. To compare the performance
of the proposed adaptive computational resource allocation
(ACRA) system with CCRA, the performance of a constant
resource allocation system should be evaluated in terms of
the same performance metrics. It is considered that the
resources for a conventional system are distributed equally
amongst all subsystems and do not depend on the scenario.
The size of the neural network will be equally distributed for
each subsystem. The image resolution and the detection
frequency used by such a system is always the maximum.
Regardless of the scenario, the system performance with
CCRA remains constant since there is no change in
parameters such as resource allocation, image resolution, or
detection frequency. The performance of the system with
CCRA is given in the bottom row in Table 4.

The resource distribution with ACRA varies
significantly. As the scenario becomes demanding, such as
for the case of scenario 2, the total resources available for
distribution are high. For a scenario with a lower demanding
situation such as scenario 12, the maximum resources
available for distribution are significantly lower. The rear
visual system gets considerable resources only when the
vehicle is moving in reverse as in scenarios 1 or 14. Thus the
resources available for other systems are higher. When the

Fig. 3. Contextual importance factors for all subsystems

TABLE 3
DRIVING SCENARIOS

Scenario
No.

Speed
(mph)

Direction of
motion

Location of activity
of interest

Distance
(m)

1 5
Reverse and left

turn
Left lane 5

Right lane 10

2 10 Straight
Front 10

Left lane 10
Right lane 10

3 10 Right turn Front 50
4 35 Left lane change Front 10
5 45 Straight Front 32

6 9 Straight
Front 11

Left lane 20
Right lane 20

7 36 Straight
Front 10

Left lane 5
8 45 Right lane change Left lane 20
9 61 Left lane change Left lane 5

10 65 Straight
Front 30

Left lane 42
11 50 Right lane change Front 38
12 45 Straight None -
13 10 Right turn None -

14 7
Reverse and right

turn
Right lane 7

same case is compared with CCRA, the reverse visual system
has access to equal amount of resources. As a result, the
resources are not optimally utilized. The ACRA method is
better in allocating resources where the potential utilization
is better.

The total resources available for ACRA change
depending on the context of situation and complexity. For
critical situations, higher resources are available. For
relatively non-demanding situations, the total resources
available for distribution are lower. Thus, system
performance is maintained by utilizing resources only when
they are necessary. With CCRA, the resources are always
used completely. Thus, underutilization of resources takes
place when there is no need for all the resources to be
allocated.

The detection time of each subsystem depends on the
computational resources allocated, size of neural network,
and camera resolution. As the resources allocated to the
system with lower importance are low, the detection time for
these systems is high. For systems with higher contextual
priority, the detection time is slightly higher than that with
CCRA as a result of lower resources and image resolution.
However, this difference is since the conventional system
always runs with all available resources. In Fig. 4, the total
time of detection for all subsystems combined is given. The
total time for the ACRA method is higher than that for the
CCRA method. However, this is not always favorable since,
for lower demanding situations, the detection time
requirement is not critical. In such a situation, the
performance of subsystems that are relevant to the situational
context plays a role in total system performance.

In table 4, the precision for ACRA system is higher than
CCRA for most of the scenarios. For a system that is
important for the given situation, the precision obtained is
always higher than the respective precision with CCRA
method. Take the example of scenario 8. Here, the vehicle
makes a right lane change. It is thus important to improve the
precision of the right camera system. The results ACRA

method gives higher precision for this system as compared to
the CCRA method. For conventional system, the precision is
low as a result of relatively low resources. It can be observed
that the precision for subsystems that are not relevant from a
contextual point have lower precision as they do not
contribute significantly to the total performance of the
system.

The detection frequency for CCRA is always at the
highest while the detection frequency for the ACRA method
changes as the scenario around the vehicle changes. For
scenarios 9 and 10, the vehicle is traveling at high speed. The
detection frequency of subsystems that are critical for a given
scenario is maintained at high values. The subsystems that do
not play a significant role in the situation operate at lower
detection frequency. Thus, higher detection frequency is used
only when the situation is demanding and/or at high vehicle
speeds. The computational load on the visual system is thus
reduced and unnecessary usage of computational resources is
avoided. Lower detection frequency also improves energy
usage with the ACRA system.

Energy consumed by all the subsystems depends on the
frequency of detection and the resources allocated to each

Fig. 4. Comparison of performance metrics

TABLE 4
PERFORMANCE METRICS OF ACRA AND CCRA METHODS

Scenario
No.

Resources allocated
(normalized) Total

time
(s)

Max
time
(s)

Precision
(normalized)

Detection frequency
(Hz) Total energy

per second
(normalized)

Safety
metric

(normalizedC1
(front)

C2
(left)

C3
(right)

C4
(rear)

Total
P1

(front)
P2

(left)
P3

(right)
P4

(rear)
total

F1
(front)

F2
(left)

F3
(right)

F4
(rear)

1 0.29 0.24 0.24 0.24 1 0.064 0.019 0.17 0.59 0.59 0.59 1.93 5 6.88 6.88 6.88 0.33 0.82
2 0.18 0.18 0.18 0.45 1 0.075 0.023 0.59 0.59 0.59 0.17 1.93 8.75 8.75 8.75 5 0.37 0.81
3 0.14 0.13 0.19 0.13 0.59 0.078 0.033 0.39 0.17 1 0.17 1.72 7.19 5 8.75 5 0.21 0.89
4 0.12 0.12 0.24 0.24 0.71 0.106 0.044 0.83 0.83 0.17 0.17 1.99 18.13 18.13 5 5 0.34 0.9
5 0.11 0.09 0.09 0.09 0.37 0.095 0.049 0.84 0.17 0.17 0.17 1.35 17.4 5 5 5 0.17 0.91
6 0.2 0.18 0.18 0.33 0.89 0.068 0.023 0.66 0.46 0.46 0.17 1.74 8.38 7.73 7.73 5 0.32 0.79
7 0.24 0.11 0.11 0.24 0.71 0.107 0.045 0.17 0.83 0.83 0.17 1.99 5 18.5 18.5 5 0.35 0.9
8 0.22 0.1 0.11 0.22 0.66 0.106 0.048 0.17 0.65 0.88 0.17 1.87 5 17.62 20 5 0.33 0.88
9 0.1 0.11 0.1 0.1 0.42 0.096 0.055 0.17 1 0.17 0.17 1.5 5 20 5 5 0.2 0.93
10 0.11 0.1 0.18 0.18 0.58 0.096 0.043 0.78 0.52 0.17 0.17 1.64 17.92 15.24 5 5 0.28 0.86
11 0.1 0.21 0.11 0.21 0.64 0.103 0.049 0.56 0.17 0.92 0.17 1.81 16.25 5 20 5 0.32 0.88
12 0.03 0.03 0.03 0.03 0.13 0.206 0.052 0.28 0.28 0.28 0.28 1.11 5 5 5 5 0.05 0.93
13 0.09 0.09 0.16 0.09 0.42 0.086 0.039 0.17 0.17 1 0.17 1.5 5 5 8.75 5 0.15 0.94
14 0.15 0.15 0.21 0.21 0.71 0.076 0.027 0.17 0.17 0.83 0.83 1.99 5 5 7.63 7.63 0.25 0.91

CCRA 0.25 0.25 0.25 0.25 1 0.06 0.015 0.457 0.457 0.457 0.457 1.829 20 20 20 20 1 0.778

system along with total resources available. In Fig. 4 it can
be seen that the energy consumed by the adaptive resource
allocation system is always lower than the energy consumed
by vehicle with CCRA. This is because, with the
conventional system, all the subsystems operate at the
maximum possible frequency of detection, and all the
available computational resources are always consumed.

The safety metric with ACRA is always higher than that
for CCRA. This is very important from an operational point
of view. The safety of the vehicle is improved with higher
performance in other aspects. The safety of the vehicle
depends on the performance metrics of the subsystems that
are critical for a given context. With ACRA, the performance
of such subsystems is always better. Thus, the safety metric
is always higher. The safety with the conventional system is
restricted by the equal allocation of resources. The
subsystems that are critical for a given situation receive equal
resources as other systems and thus get restricted in
performance.

IV. CONCLUSIONS

The proposed method for the distribution of on-board
computational resources provides superior performance as
compared to the conventional method. The total resources
available for distribution change as per scenario and optimize
the system performance. A subsystem that is critical for a
given scenario receives higher resources and thus gives better
performance. The ACRA method allocates resources where
their utilization gives optimal system performance and lower
energy consumption. The precision for the proposed
approach varies depending on the complexity of the scenario.
It results in a tradeoff between overall precision for lower
energy consumption when compared with conventional
methods of resource allocation. The dynamic detection
frequency results in lower computational load and energy
consumption for non-demanding situations. With ACRA,
vehicle performance improves for critical situations, and the
safety metric is always maintained higher than conventional
methods of resource allocation. The ACRA method can
optimize the resource allocation of autonomous vehicles with
improved performance, safety, and energy consumption.

REFERENCES
[1] J. O. Kephart et al., “Coordinating multiple autonomic managers

to achieve specified power-performance tradeoffs,” 2007, doi:
10.1109/ICAC.2007.12.

[2] K. C. Gouda, T. V Radhika, M. Akshatha, and others, “Priority
based resource allocation model for cloud computing,” Int. J. Sci.
Eng. Technol. Res., vol. 2, no. 1, pp. 215–219, 2013.

[3] M. Wang, N. Kandasamy, A. Guez, and M. Kam, “Adaptive
performance control of computing systems via distributed
cooperative control: Application to power management in
computing clusters,” in Proceedings - 3rd International
Conference on Autonomic Computing, ICAC 2006, 2006, vol.
2006, pp. 165–174, doi: 10.1109/icac.2006.1662395.

[4] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. Vahdat,

“Model-Based Resource Provisioning in a Web Service Utility.,”
in USENIX Symposium on Internet Technologies and Systems,
2003, vol. 4, p. 5.

[5] M. Thammawichai and E. C. Kerrigan, “Energy-efficient real-
time scheduling for two-type heterogeneous multiprocessors,”
Real-Time Syst., vol. 54, no. 1, pp. 132–165, Jan. 2018, doi:
10.1007/s11241-017-9291-6.

[6] J. Sun, Q. Gu, T. Zheng, P. Dong, and Y. Qin, “Joint
communication and computing resource allocation in vehicular
edge computing,” Int. J. Distrib. Sens. Networks, vol. 15, no. 3,
p. 1550147719837859, 2019.

[7] S. Goudarzi, M. H. Anisi, H. Ahmadi, and L. Musavian,
“Dynamic Resource Allocation Model for Distribution
Operations Using SDN,” IEEE Internet Things J., vol. 8, no. 2,
pp. 976–988, Jan. 2021, doi: 10.1109/JIOT.2020.3010700.

[8] J. Zhang, W. Xia, F. Yan, and L. Shen, “Joint computation
offloading and resource allocation optimization in heterogeneous
networks with mobile edge computing,” IEEE Access, vol. 6, pp.
19324–19337, 2018.

[9] Y. Zhan, P. Li, and S. Guo, “Experience-Driven Computational
Resource Allocation of Federated Learning by Deep
Reinforcement Learning,” in Proceedings - 2020 IEEE 34th
International Parallel and Distributed Processing Symposium,
IPDPS 2020, May 2020, pp. 234–243, doi:
10.1109/IPDPS47924.2020.00033.

[10] L. Liang, H. Ye, G. Yu, and G. Y. Li, “Deep-Learning-Based
Wireless Resource Allocation with Application to Vehicular
Networks,” Proc. IEEE, vol. 108, no. 2, pp. 341–356, Feb. 2020,
doi: 10.1109/JPROC.2019.2957798.

[11] A. Huang, Y. Li, Y. Xiao, X. Ge, S. Sun, and H. C. Chao,
“Distributed Resource Allocation for Network Slicing of
Bandwidth and Computational Resource,” in IEEE International
Conference on Communications, Jun. 2020, vol. 2020-June, doi:
10.1109/ICC40277.2020.9149296.

[12] G. Sun, G. O. Boateng, D. Ayepah-Mensah, G. Liu, and J. Wei,
“Autonomous Resource Slicing for Virtualized Vehicular
Networks with D2D Communications Based on Deep
Reinforcement Learning,” IEEE Syst. J., vol. 14, no. 4, pp. 4694–
4705, Dec. 2020, doi: 10.1109/JSYST.2020.2982857.

[13] S. Matzka, A. M. Wallace, and Y. R. Petillot, “Efficient resource
allocation for attentive automotive vision systems,” IEEE Trans.
Intell. Transp. Syst., vol. 13, no. 2, pp. 859–872, 2012, doi:
10.1109/TITS.2011.2182610.

[14] P. Dziurzanski, A. K. Singh, and L. S. Indrusiak, “Energy-aware
resource allocation in multi-mode automotive applications with
hard real-time constraints,” in Proceedings - 2016 IEEE 19th
International Symposium on Real-Time Distributed Computing,
ISORC 2016, Jul. 2016, pp. 100–107, doi:
10.1109/ISORC.2016.23.

[15] S. Baidya, Y. J. Ku, H. Zhao, J. Zhao, and S. Dey, “Vehicular
and edge computing for emerging connected and autonomous
vehicle applications,” in Proceedings - Design Automation
Conference, Jul. 2020, vol. 2020-July, doi:
10.1109/DAC18072.2020.9218618.

[16] H. Zhao et al., “Towards safety-aware computing system design
in autonomous vehicles,” arXiv Prepr. arXiv1905.08453, 2019.

[17] J. Wang, C. Huang, K. He, X. Wang, X. Chen, and K. Qin, “An
energy-aware resource allocation heuristics for VM scheduling in
cloud,” in Proceedings - 2013 IEEE International Conference on
High Performance Computing and Communications, HPCC 2013
and 2013 IEEE International Conference on Embedded and
Ubiquitous Computing, EUC 2013, 2014, pp. 587–594, doi:
10.1109/HPCC.and.EUC.2013.89.

[18] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the Nelder--Mead simplex method in
low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147,
1998.

