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Abstract— Autonomous vehicles usually consume a large 
amount of computational power for their operations, especially 
for the tasks of sensing and perception with artificial intelligence 
algorithms. Such a computation may not only cost a significant 
amount of energy but also cause performance issues when the 
onboard computational resources are limited. To address this 
issue, this paper proposes an adaptive optimization method to 
online allocate the onboard computational resources of an 
autonomous vehicle amongst multiple vehicular subsystems 
depending on the contexts of the situations that the vehicle is 
facing. Different autonomous driving scenarios were designed to 
validate the proposed approach and the results showed that it 
could help improve the overall performance and energy 
consumption of autonomous vehicles compared to existing 
computational arrangement. 

Keywords— autonomous vehicles, adaptive optimization, 
computational resources. 

I. INTRODUCTION 

A modern autonomous vehicle requires a large amount of 
computational power to run its systems. Subsystems such as 
chassis control, perception, motion planning, etc. require 
computational resources. Such resources can be bandwidth, 
processor cores, memory allocation, etc. By conventional 
methods, the allocation of these resources are fixed when 
required. Systems such as the visual perception module that 
requires a large amount of computational power are given 
preference by allocating a larger portion of available resources 
and the rest of the systems having lower requirements are 
given resources accordingly. However, such resource 
requirement changes over time. Limiting the resource 
allocated to a system considering only its overall usage rather 
than its instantaneous requirement puts restrictions on the 
maximum performance of the system. 

Many existing research efforts have been focusing on the 
adaptive allocation of computational resources, most of which 
prioritize cloud computing or internet of things (IOT) related 
applications. A two-level resource management frameworks 
is used by Kephart in [1] by evaluating system utility function 
that consists of system inputs and performance measures. The 
system inputs are considered to be power consumption and 
performance of the CPU measured by the response time of the 
system. Considering the nature of the cloud computation 
framework, a priority-based assignment of resources seems 

intuitive. Such a study is given by [2] to maximize profit 
earned by a cloud server. An approach with a mathematical 
model of the system is explored in [3], [4]. The use of discrete 
nonlinear and linear models for calculating system response 
and job queuing time based on the frequency of the server is 
shown in these studies. By utilizing optimal control methods, 
the resource allocator optimizes the performance of a local 
system that may be further used by the co-operative resource 
allocation process over a wide network [5]–[8]. Zhan [9] 
demonstrated an approach by applying deep reinforcement 
learning for the dynamic resource allocation of federated 
learning to achieve better convergence speed and energy 
efficiency. Liang [10] used deep reinforcement learning to 
optimize the resource allocation in vehicular networks. Huang  
[11] and Sun [12] applied deep reinforcement learning to the 
autonomous resource slicing for virtualized vehicular 
networks. 

While those existing cloud computing/IOT related 
methods can be applied to inter-vehicle allocation of 
computational resources, not many options can be found for 
in-vehicle resource allocation. [13] proposed resources 
allocation method for vehicular attentive vision system that 
emphasized on regions of interest of a visual system and the 
resource allocation for analyzing the visual information based 
on the criticality of objects, time to collision, and their severity 
classification. [14] employed a genetic algorithm-based 
resource allocation approach to lower the energy cost of 
vehicular applications without violating hard real-time 
constraints. [15] and [16] introduced a centralized architecture 
for in-vehicle computing and developed optimal resource 
scheduling method for the architecture.   

Although the problem of managing resources for an 
autonomous vehicle seems similar to these studies have 
tackled, the challenges offered by it is still unsolved. First, 
system performance indices for an automotive are not easy to 
observe. For estimating the accuracy of a perception system, 
prior data is needed and models must be developed that take 
resources available to the system into consideration. To 
implement such a concept for onboard resource management, 
a large amount of training and testing is needed to obtain 
positive results. A priority-based approach is simple and quick 
but does not cover multi-objective goals such as safety, 
accuracy, and might not give the required robustness. The 
energy consideration for an automotive is more of a concern 
of total energy consumption rather than power demand. 
Unlike a cloud server, the computational load of an 
automotive may go down significantly depending on the 
scenario vehicle is facing. The resources used can be reduced 
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and lower resource consumption can result in lower energy 
consumption without loss of functional metrics [17]. 

Therefore, in this paper, an adaptive optimization 
approach is proposed to allocate onboard computational 
resources and an autonomous vehicle to different subsystems 
as the situation changes. For doing so, three performance 
metrics of the system are decided that are time, precision, and 
energy consumption. The subsystems are prioritized based on 
contextual information. Computational resources are 
allocated by optimizing system performance functions. 
Additionally, a safety metric is proposed and is evaluated in 
operational situations. The system performance is simulated 
in different scenarios and the results are compared with 
conventional resource distribution methods. The contributions 
of this paper can be summarized as follows: 1) create 
mathematical modeling of computational factors in 
autonomous vehicle; 2) propose adaptive computational 
resource optimization with context-driven subsystem 
prioritization; and 3) evaluate performance and design metrics 
for different autonomous driving scenarios. 

II. ADAPTIVE COMPUTATION OPTIMIZATION FOR 

AUTONOMOUS VEHICLES 

A. Problem Statement 

The computational resources of an autonomous vehicle 
can be distributed amongst all subsystems. This distribution 
must be changed as a function of the situation or scenario the 
vehicle is facing. To do so, different system performance 
parameters can be evaluated. The resource allocation of the 
system can then be optimized to give best possible 
performance for the whole system. The system performance 
is given as a weighted sum of all performance metrics, 
calculated across all subsystems. 
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This gives the total system performance measurement for 
𝑛  subsystems, each evaluated for 𝑚  performance metrics. 
The multiplier 𝑍௝  is 1 when a lower value of performance 
metric is desired and -1 when a higher value of performance 
matric is desired. Minimizing J in (1) yields desired 
computational resource distribution vector C, C ∈ ℝ௡. 

The resource distribution is restricted by practical 
parameters, safety considerations, or the capacity of the 
subsystem themselves. These constraints are given as (2). 
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B. System Framework for Adaptive Optimization 

The framework used to calculate optimum resource 
allocation is given in Fig. 1. The system consists of camera 

sensors amongst which the resources are to be distributed. 
Depending on the context of the situation of the surrounding 
environment, a contextual priority assignment is given to each 
of the 4 systems. This priority index is affected by the distance 
of activity of interest on that side of the camera system. A 
system model is derived to estimate the performance of the 
system upon giving certain inputs such as resources, size of 
the neural network, etc. The output parameters of the model 
are prediction time required by each subsystem, precision of 
detection, and energy consumption while doing so. The 
priority index and system model are used to create the system 
objective function. This function is developed to maximize 
performance and minimize the energy consumption of the 
system. The objective function is optimized over certain 
constraints that are decided by the limitations on resource 

availability and lower bounds on allocation. The performance 
of the system is then checked for safety metrics. The safety 
metric is evaluated based on the situation and the respective 
performance obtained by optimum resource allocation. 

C. Modeling of Computational Factors 

The performance metrics are calculated as a function of 
the computational resources, size of the neural network, and 
the camera resolution of each subsystem. Different models 
used for time, precision, and energy calculation of each 
subsystem are given below. 

1) Time Consuming Model 
As discussed earlier, the processing time for each system 

depends on the resources allocated to that system, the size of 
the neural network used, and the resolution of the images. It 
is assumed that a simple relation can be made to estimate the 
time required. The time required by the 𝑖௧௛ system is taken as 
a function of these parameters as given in (3), where 𝐶௜, 𝑆௜, 
and 𝑅௜  are the normalized resources allocated, normalized 
neural network size, and camera resolution of the 𝑖௧௛ 
subsystem, respectively. It is assumed that the time required 
to analyze one image is directly proportional to the resolution 
of the image, inversely proportional to the size of the neural 
network used along with the resources available to the 
system. 

 𝑡௜ ൌ 𝑓௧ሺ𝐶௜ , 𝑆௜ ,𝑅௜ሻ ൌ 𝑡଴ ൅ 𝑡ଵ ൈ ൬
1
𝐶௜
ൈ 𝑆௜ ൈ 𝑅௜  ൰ (3) 

2) Precision Model 
The precision of image processing depends on the size of 

the neural network used and the resolution of the input image. 
It is not affected by the computational resource distribution. 
Fewer resources will take longer time to analyze the same 
information and vice versa. The precision model used for the 
𝑖௧௛ system is given in (4). This relation is also assumed to be 

Fig. 1. Framework of adaptive optimization 



proportional with resolution, i.e., higher resolution gives 
better accuracy. The relation with the size of the neural 
network is also assumed to be proportional. 

 𝑃௜ ൌ 𝑓௣ሺ𝑆௜ ,𝑅௜ሻ ൌ 𝑝଴ ൅ 𝑝ଵ ൈ 𝑆௜  ൈ 𝑅௜ (4) 

The image resolution fed to the neural network system 
changes as a function of importance factor 𝛼௜ . In our 
framework, multiple artificial neural networks with different 
image sizes and network dimensions are trained for one given 
perception task. The minimum image resolution is given as 
𝑅௠௜௡  and the maximum resolution is given as 𝑅௠௔௫  are 
constant resolution values. The image resolution of the 𝑖௧௛ 
system is given by (5). 

 𝑅௜ ൌ 𝑚𝑎𝑥ሼ𝑅௠௔௫ ൈ 𝛼௜ ,𝑅௠௜௡ ሽ (5) 

The size of neural network changes as a function of 
weightages given by (8) between a minimum normalized 
value of 𝑆௠௜௡ to 𝑆௠௔௫. System with higher weightage value 
gets larger neural network size. The size of neural network of 
the 𝑖௧௛ system is calculated by (6).  

 𝑆௜ ൌ 𝑚𝑎𝑥ሼ 𝑆௠௔௫ ൈ𝑊௜ , 𝑆௠௜௡ ሽ (6) 

3) Energy Consumption Model 
The energy required by each system is modeled as a 

function of the resources used by it and the frequency of 
detection of each subsystem. The frequency of detection is 
the number of times a subsystem captures and analyzes visual 
information per second. It is changed based on the context of 
the situation as well as the speed of the vehicle. High speed 
and visually critical scenario demand for higher detection 
frequency while at low speeds and situations with low 
emphasis on surroundings can use a low detection frequency 
for a subsystem. The energy consumption of the 𝑖௧௛ 
subsystem per second is given by (7), where 𝐹௜  is the 
frequency of detection. The energy increases linearly with 
detection frequency, and it is proportional to computational 
resources being used by the corresponding system. 

 𝐸௜ ൌ 𝑓௘ሺ𝐶௜ ,𝐹௜ሻ ൌ 𝑒଴ ൅ 𝑒ଵ ൈ 𝐶௜ ൈ 𝐹௜ (7) 

D. Context-driven Priority Assignment 

The priority of each subsystem is determined by the 
context of the situation the vehicle is facing. The subsystem 
that is the most critical from the situational perspective gets 
the highest priority. This priority is given as weightages 𝑊௜. 
The weightage given for each system depends on the activity 
of interest related to each subsystem. The weightage is 
limited to a minimum value 𝛼௠௜௡ so that each subsystem gets 
minimum importance even when there is no benefit in overall 
performance. This is an important consideration for safety. 
The weightage then calculated considering the importance 
factor of the 𝑖௧௛ system is given by (8). 

 𝑊௜ ൌ
𝛼௜

∑ 𝛼௝௡
௝ୀଵ

 (8) 

The frequency of detection is determined based on the 
context of the situation as well as the speed of the vehicle 
given by (9). 𝛼௜ is the importance factor determined from the 
situation, 𝑣 is the speed of the vehicle and 𝜈௙೘ೌೣ is the speed 

of the vehicle above which maximum detection frequency is 
required. 𝐹௠௔௫  is the maximum detection frequency of a 
subsystem, and 𝐹௠௜௡ is the minimum detection frequency of 
a subsystem. The detection frequency is high when the 
vehicle speed is high and also when the importance factor of 
the system is high.  

 
𝐹௜ ൌ 𝑓௙ሺ𝛼௜ , 𝑣ሻ ൌ ሺ𝐹௠௔௫ െ 𝐹௠௜௡ሻ ൈ

𝛼௜ െ 𝛼௠௜௡
1 െ 𝛼௠௜௡

ൈ
𝜈

𝜈௙೘ೌೣ

൅ 𝐹௠௜௡ 
(9) 

E. Adaptive Optimization for Computational Resource 
Allocation 

 The flow of adaptive resource optimization can be 
represented by the process given below. The perception 
system obtains surrounding data and analyzes each 
subsystem for its importance. A priority index is then 
assigned to each subsystem. Final system weightage is 
determined by comparing the relative importance and 
minimum importance factors of all systems. Depending on 
the criticality of situation, maximum resources to be 
distributed, 𝐶௠௔௫ , is determined. It changes based on the 
demand of the situation. For a demanding situation, more 
resources can be used while for a situation where the need for 
computational power is low, the total resources can be limited 
to a lower value. The importance factor 𝛼 of each system can 
be used to determine the nature of the situation. The resources 
available for distribution are given in (10). 

 𝐶௠௔௫ ൌ 𝐶଴ ൅ 𝐶ଵ ∗෍𝛼௜
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The resource distribution is calculated based on a cost 
function that consists of all the three performance metrics, i.e. 
time, precision, and energy consumption along with the 
priority index that is calculated as explained earlier. The 
priority index calculated is used with the precision metric of 
each subsystem as it reflects the relative emphasis of each 
subsystem. The cost function is developed to minimize time 
as well as energy consumption and maximize the precision of 
the vehicle. The cost function is given as (11). 
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where, a, b and c are the weightages that signify the relative 
importance of cumulative time, system precision, and energy 
consumption, respectively.  
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The minimization is constrained by the total resources 
distributed, minimum resources per system, weightages of 
performance parameters, and operational safety factor 
𝑆𝐹஼஼ோ஺ as given in (12). 

The resource distribution algorithm works as given in 
Algorithm 1. The vehicle receives information about 
surrounding traffic objects and other vehicles from sensors. 
Based on this information and vehicle speed, the importance 
factors 𝛼௜  are calculated for each side. Then the weightage 
factors 𝑤௜  are calculated from 𝛼௜ . The detection frequency 
for each sensor is determined based on importance and speed 
of vehicle. Then maximum resources available for allocation 
are determined. Camera resolution and neural network size 
are determined based on their importance factor and 
weightage. The objective function is then optimized for the 
best system performance. Resource allocation is obtained as 
an optimization variable. 

III. RESULTS AND ANALYSIS 

A. Simulation Setup 

For the simulation purpose, a system with 4 camera 
sensors is in use. Each camera system provides visual input 
to the perception system and consumes some of the 
computational resources available. Fig. 2 shows an example 
of a traffic scenario that the vehicle might be facing. Such a 
scenario includes traffic objects such as vehicles, pedestrians, 
or bicyclists in the area surrounding the vehicle. The vehicle 
receives visual data from onboard camera systems and gets 
information about its surroundings.  

1) System Models 
The calculation time of subsystems varies from 10 to 50 

milliseconds. Constants used for the time model, precision 
model, and energy model are listed in Table 1.  

The weightages used for time, precision, and energy 
consumption in optimization function in (11) are listed in 
Table 2 along with the weightages used for the time penalty, 
precision penalty, and frequency penalty respectively for 
safety metric calculation.  

2) Context-driven Priority Assignment 
The priority assignment for 4 camera system is done 

depending on the traffic situation and vehicle behavior. The 
importance factors 𝛼௜ vary from 0 to 1, with 0 signifying no 
traffic or important activity for that subsystem, and 1 
signifying the most critical activity. The importance factors 
of all subsystems change as a function of the distance of 
activity of interest from the vehicle. All the importance 
factors are calculated based on distances given in Fig. 3. If 
the vehicle is taking a turn on either side, the corresponding 
subsystem is given an importance factor of 1 regardless of its 
distance from the vehicle in the left or right lane.  

The scenarios used to measure the performance of dynamic 
resource distribution consist of the distance of the front 
vehicle, the distance of vehicles in the left and right lane, and 

Algorithm 1: Adaptive Optimization 
Let Vrev be the Vehicle direction Boolean (1 for reverse, 0 for forward) 
Let 𝑣 be the speed of the vehicle 
Let Dl be the distance of the vehicle on the left side. 
Let Dr be the distance of the vehicle on the right side. 
Let Df be the distance of the vehicle ahead. 
Let N be the number of subsystems for resource distribution 
if Vrev then 

set front importance factor, 𝛼௙ = 0,  
set rear importance factor, 𝛼௕ = 1,  

else  
set front importance factor, 𝛼௙ = 1 
set rear importance factor, 𝛼௕ = 0 

end 
calculate  left importance factor from Dl, 𝛼௟=fimp(Dl) 
calculate right importance factor from Dr, 𝛼௥=fimp(Dr) 
for i → 1 to N 

set minimum importance factor 𝛼௠௜௡, 𝛼௜=max(𝛼௜ , 𝛼௠௜௡) 
end 
calculate maximum resources, Cmax = fmax recources(∑𝛼௜  ,Cmin) 
for i → 1 to N 

calculate weightages wi,  = 𝛼௜/∑𝛼௜    
calculate detection frequency Fi, = fdetection frequency(𝛼௜, 𝑣) 
calculate camera resolution Ri, = Fcamera resolution(𝛼௜, Rmin) 
calculate the size of the neural network, Si = Fneural network size(wi, Smin) 

end  
minimize objective function, Ci=minimize { J(Ci, Si, Ri, Fi) } 
return Optimum computational resource allocation (Ci)  

 
Fig. 2. Traffic scenario example 

TABLE 1 
SIMULATION CONSTANTS 

Constant Value 

Time model 
𝑡଴ሺsሻ  0.005 

𝑡ଵሺs/MPሻ  0.002 

Precision model 
𝑝଴ 0.005 

𝑝ଵሺ1/𝑀𝑃ሻ  0.3618 

Energy model 
𝑒଴ 0.005 

𝑒ଵሺ𝑠ሻ 0.049 
Minimum detection frequency 𝐹௠௜௡ሺ𝐻𝑧ሻ 5 
Maximum detection frequency 𝐹௠௔௫ሺ𝐻𝑧ሻ 20 

Maximum detection frequency speed 𝜈௙೘ೌೣ
ሺmphሻ  40 

Minimum image resolution 𝑅௠௔௫ሺ𝑀𝑃ሻ 5 
Maximum image resolution 𝑅௠௜௡ሺ𝑀𝑃ሻ 3 

Size of neural network 
𝑆௠௜௡ 0.15 
𝑆௠௔௫ 1 

Maximum resource calculation 
𝐶଴ 0 
𝐶ଵ 0.3226 

Minimum resource 𝐶௠௜௡ 0.1 
   MP = Megapixels. 

TABLE 2 
WEIGHTAGES FOR SIMULATION 

Weightages Value 
Time weightage a 0.5 

Precision weightage b 0.25 
Energy weightage c 0.25 

Time penalty weightage 𝑊௣ 0.4 
Precision penalty weightage 𝑊௧ 0.4 
Frequency penalty weightage 𝑊௙ 0.2 



the speed of the vehicle. If the vehicle is turning or going in 
reverse, it is also considered in the scenario. The 14 scenarios 
given in Table 3 represent a 5-minute journey of a passenger 
vehicle.  

3) Operational Safety Metric 
The total resources used by the dynamic resource 

allocation change with the scenario. Therefore, it is needed to 
maintain operational safety that ensures no subsystem falls 
short of resources when the situation is demanding. A safety 
metric is used to compare the safety of the system in all cases. 
For the safety calculation, a penalty-based approach is used. 
When there is a need for a higher emphasis on a particular 
system out of the 4 systems, a penalty is given for that 
subsystem if its operational metrics are not high enough. This 
normalized penalty is a combined measure of precision, 

calculational time, and the detection frequency. The weighted 
sum of these metrics gives rise to the penalty of that 
subsystem. The penalty of the 𝑖௧௛  system is given by (13). 
𝑊௣, 𝑊௧, and 𝑊௙ are the weightages given for precision, time, 
and frequency penalties. 𝐹௜ௗ௘௔௟  is the ideal detection 
frequency calculated from (9). 

 
𝛽௜ ൌ ሺ1 െ 𝑃௜ሻ ൈ𝑊௣ ൅ ሺ𝑡௜ െ 0.01ሻ ൈ 𝑇௡ ൈ𝑊௧

൅
𝐹௜ௗ௘௔௟ െ 𝐹௜
𝐹௜ௗ௘௔௟ െ 𝐹௠௜௡

ൈ𝑊௙ 
(13) 

The total penalty is calculated by adding penalties of all 
the subsystems with the weightages given by (8). The initial 
normalized safety is taken as 1 and the total penalty is 
subtracted to get safety measures of the system. The total 
safety metric must always be more than or equal to safety 
metrics calculated for constant computational resource 
allocation (CCRA) for any given situation. The final safety 
for the overall system is calculated as given in  (14). 

 𝑆𝐹 ൌ 1 െ෍𝛽௜ ൈ𝑊௜

ସ
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B. Results and Analysis 

The optimal resource distribution is calculated for the 12 
scenarios given in Table 3. The optimization problem is 
solved using the Nelder-Mead simplex algorithm [18]. The 
performance of the system is evaluated by metrics of 
maximum detection time, cumulative precision of the system, 
and energy consumption per second. The safety metric is also 
compared for its corresponding value with the conventional 
resource allocation system (CCRA). All the performance 
metrics are evaluated in terms of normalized values. 

The performance of the system with adaptive resource 
allocation is given in Table 4. To compare the performance 
of the proposed adaptive computational resource allocation 
(ACRA) system with CCRA, the performance of a constant 
resource allocation system should be evaluated in terms of 
the same performance metrics. It is considered that the 
resources for a conventional system are distributed equally 
amongst all subsystems and do not depend on the scenario. 
The size of the neural network will be equally distributed for 
each subsystem. The image resolution and the detection 
frequency used by such a system is always the maximum. 
Regardless of the scenario, the system performance with 
CCRA remains constant since there is no change in 
parameters such as resource allocation, image resolution, or 
detection frequency. The performance of the system with 
CCRA is given in the bottom row in Table 4. 

The resource distribution with ACRA varies 
significantly. As the scenario becomes demanding, such as 
for the case of scenario 2, the total resources available for 
distribution are high. For a scenario with a lower demanding 
situation such as scenario 12, the maximum resources 
available for distribution are significantly lower. The rear 
visual system gets considerable resources only when the 
vehicle is moving in reverse as in scenarios 1 or 14. Thus the 
resources available for other systems are higher. When the 

 
Fig. 3.  Contextual importance factors for all subsystems 

TABLE 3 
DRIVING SCENARIOS 

Scenario 
No. 

Speed  
(mph) 

Direction of 
motion 

Location of activity 
of interest 

Distance  
(m) 

1 5 
Reverse and left 

turn 
Left lane 5 

Right lane 10 

2 10 Straight 
Front 10 

Left lane 10 
Right lane 10 

3 10 Right turn Front 50 
4 35 Left lane change Front 10 
5 45 Straight Front 32 

6 9 Straight 
Front 11 

Left lane 20 
Right lane 20 

7 36 Straight 
Front 10 

Left lane 5 
8 45 Right lane change Left lane 20 
9 61 Left lane change Left lane 5 

10 65 Straight 
Front 30 

Left lane 42 
11 50 Right lane change Front 38 
12 45 Straight None - 
13 10 Right turn None - 

14 7 
Reverse and right 

turn 
Right lane 7 



same case is compared with CCRA, the reverse visual system 
has access to equal amount of resources. As a result, the 
resources are not optimally utilized. The ACRA method is 
better in allocating resources where the potential utilization 
is better. 

The total resources available for ACRA change 
depending on the context of situation and complexity. For 
critical situations, higher resources are available. For 
relatively non-demanding situations, the total resources 
available for distribution are lower. Thus, system 
performance is maintained by utilizing resources only when 
they are necessary. With CCRA, the resources are always 
used completely. Thus, underutilization of resources takes 
place when there is no need for all the resources to be 
allocated. 

The detection time of each subsystem depends on the 
computational resources allocated, size of neural network, 
and camera resolution. As the resources allocated to the 
system with lower importance are low, the detection time for 
these systems is high. For systems with higher contextual 
priority, the detection time is slightly higher than that with 
CCRA as a result of lower resources and image resolution. 
However, this difference is since the conventional system 
always runs with all available resources. In Fig. 4, the total 
time of detection for all subsystems combined is given. The 
total time for the ACRA method is higher than that for the 
CCRA method. However, this is not always favorable since, 
for lower demanding situations, the detection time 
requirement is not critical. In such a situation, the 
performance of subsystems that are relevant to the situational 
context plays a role in total system performance.  

In table 4, the precision for ACRA system is higher than 
CCRA for most of the scenarios. For a system that is 
important for the given situation, the precision obtained is 
always higher than the respective precision with CCRA 
method. Take the example of scenario 8. Here, the vehicle 
makes a right lane change. It is thus important to improve the 
precision of the right camera system. The results ACRA 

method gives higher precision for this system as compared to 
the CCRA method. For conventional system, the precision is 
low as a result of relatively low resources. It can be observed 
that the precision for subsystems that are not relevant from a 
contextual point have lower precision as they do not 
contribute significantly to the total performance of the 
system. 

The detection frequency for CCRA is always at the 
highest while the detection frequency for the ACRA method 
changes as the scenario around the vehicle changes. For 
scenarios 9 and 10, the vehicle is traveling at high speed. The 
detection frequency of subsystems that are critical for a given 
scenario is maintained at high values. The subsystems that do 
not play a significant role in the situation operate at lower 
detection frequency. Thus, higher detection frequency is used 
only when the situation is demanding and/or at high vehicle 
speeds. The computational load on the visual system is thus 
reduced and unnecessary usage of computational resources is 
avoided. Lower detection frequency also improves energy 
usage with the ACRA system. 

Energy consumed by all the subsystems depends on the 
frequency of detection and the resources allocated to each 

 
Fig. 4. Comparison of performance metrics 

TABLE 4 
PERFORMANCE METRICS OF ACRA AND CCRA METHODS  

Scenario 
No. 

Resources allocated 
(normalized) Total 

time 
(s) 

Max 
time 
(s) 

Precision 
(normalized) 

Detection frequency 
(Hz) Total energy 

per second 
(normalized) 

Safety 
metric 

(normalizedC1 
(front) 

C2 
(left) 

C3 
(right) 

C4 
(rear) 

Total 
P1 

(front) 
P2 

(left) 
P3 

(right) 
P4 

(rear) 
total 

F1 
(front) 

F2 
(left) 

F3 
(right) 

F4 
(rear) 

1 0.29 0.24 0.24 0.24 1 0.064 0.019 0.17 0.59 0.59 0.59 1.93 5 6.88 6.88 6.88 0.33 0.82 
2 0.18 0.18 0.18 0.45 1 0.075 0.023 0.59 0.59 0.59 0.17 1.93 8.75 8.75 8.75 5 0.37 0.81 
3 0.14 0.13 0.19 0.13 0.59 0.078 0.033 0.39 0.17 1 0.17 1.72 7.19 5 8.75 5 0.21 0.89 
4 0.12 0.12 0.24 0.24 0.71 0.106 0.044 0.83 0.83 0.17 0.17 1.99 18.13 18.13 5 5 0.34 0.9 
5 0.11 0.09 0.09 0.09 0.37 0.095 0.049 0.84 0.17 0.17 0.17 1.35 17.4 5 5 5 0.17 0.91 
6 0.2 0.18 0.18 0.33 0.89 0.068 0.023 0.66 0.46 0.46 0.17 1.74 8.38 7.73 7.73 5 0.32 0.79 
7 0.24 0.11 0.11 0.24 0.71 0.107 0.045 0.17 0.83 0.83 0.17 1.99 5 18.5 18.5 5 0.35 0.9 
8 0.22 0.1 0.11 0.22 0.66 0.106 0.048 0.17 0.65 0.88 0.17 1.87 5 17.62 20 5 0.33 0.88 
9 0.1 0.11 0.1 0.1 0.42 0.096 0.055 0.17 1 0.17 0.17 1.5 5 20 5 5 0.2 0.93 
10 0.11 0.1 0.18 0.18 0.58 0.096 0.043 0.78 0.52 0.17 0.17 1.64 17.92 15.24 5 5 0.28 0.86 
11 0.1 0.21 0.11 0.21 0.64 0.103 0.049 0.56 0.17 0.92 0.17 1.81 16.25 5 20 5 0.32 0.88 
12 0.03 0.03 0.03 0.03 0.13 0.206 0.052 0.28 0.28 0.28 0.28 1.11 5 5 5 5 0.05 0.93 
13 0.09 0.09 0.16 0.09 0.42 0.086 0.039 0.17 0.17 1 0.17 1.5 5 5 8.75 5 0.15 0.94 
14 0.15 0.15 0.21 0.21 0.71 0.076 0.027 0.17 0.17 0.83 0.83 1.99 5 5 7.63 7.63 0.25 0.91 

CCRA 0.25 0.25 0.25 0.25 1 0.06 0.015 0.457 0.457 0.457 0.457 1.829 20 20 20 20 1 0.778 



system along with total resources available. In Fig. 4 it can 
be seen that the energy consumed by the adaptive resource 
allocation system is always lower than the energy consumed 
by vehicle with CCRA. This is because, with the 
conventional system, all the subsystems operate at the 
maximum possible frequency of detection, and all the 
available computational resources are always consumed.  

The safety metric with ACRA is always higher than that 
for CCRA. This is very important from an operational point 
of view. The safety of the vehicle is improved with higher 
performance in other aspects. The safety of the vehicle 
depends on the performance metrics of the subsystems that 
are critical for a given context. With ACRA, the performance 
of such subsystems is always better. Thus, the safety metric 
is always higher. The safety with the conventional system is 
restricted by the equal allocation of resources. The 
subsystems that are critical for a given situation receive equal 
resources as other systems and thus get restricted in 
performance. 

IV. CONCLUSIONS 

The proposed method for the distribution of on-board 
computational resources provides superior performance as 
compared to the conventional method. The total resources 
available for distribution change as per scenario and optimize 
the system performance. A subsystem that is critical for a 
given scenario receives higher resources and thus gives better 
performance. The ACRA method allocates resources where 
their utilization gives optimal system performance and lower 
energy consumption. The precision for the proposed 
approach varies depending on the complexity of the scenario. 
It results in a tradeoff between overall precision for lower 
energy consumption when compared with conventional 
methods of resource allocation. The dynamic detection 
frequency results in lower computational load and energy 
consumption for non-demanding situations. With ACRA, 
vehicle performance improves for critical situations, and the 
safety metric is always maintained higher than conventional 
methods of resource allocation. The ACRA method can 
optimize the resource allocation of autonomous vehicles with 
improved performance, safety, and energy consumption.  
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