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Abstract— In this paper we explore the use of block coor-
dinate descent (BCD) to optimize the centroidal momentum
dynamics for dynamically consistent multi-contact behaviors.
The centroidal dynamics have recently received a large amount
of attention in order to create physically realizable motions for
robots with hands and feet while being computationally more
tractable than full rigid body dynamics models. Our contribu-
tion lies in exploiting the structure of the dynamics in order
to simplify the original non-convex problem into two convex
subproblems. We iterate between these two subproblems for a
set number of iterations or until a consensus is reached. We
explore the properties of the proposed optimization method for
the centroidal dynamics and verify in simulation that motions
generated by our approach can be tracked by the quadruped
Solo12. In addition, we compare our method to a recently
proposed convexification using a sequence of convex relaxations
as well as a more standard interior point method used in the off-
the-shelf solver IPOPT to show that our approach finds similar,
if not better, trajectories (in terms of cost), and is more than
four times faster than both approaches. Finally, compared to
previous approaches, we note its practicality due to the convex
nature of each subproblem which allows our method to be used
with any off-the-shelf quadratic programming solver.

I. INTRODUCTION

The use of optimization to generate movements for robots
with hands and feet has been studied extensively over
the past years. The problem is inherently complex due to
the nonlinear nature of the dynamics, the non-convex cost
landscape, and the requirement that computed trajectories
must eventually be executable on real robots.

In order to generate trajectories for online control, early
research focused on planning using template models [1].
These simplified models are low-dimensional approxima-
tions that capture the nature of the dynamics and frequently
remove the nonlinearities and non-convexities which allows
fast online re-computation due to their linear nature. The
most widely studied simplified model in humanoid con-
trol has been the linear inverted pendulum and its many
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Fig. 1. Simulation of a trajectory computed using our method on complex
terrain with the quadruped Solo12.

variations [2], [3], [4], [5]. In these works, the linearity is
exploited to efficiently solve for center of mass trajectories,
footstep locations, or both, online. Although these methods
have proven to be highly effective, they do not generalize
to arbitrary terrains due to the inherent assumptions made
in their formulations and focus on legged locomotion rather
than the arbitrary multi-contact problem (e.g. using hands)
which limits their versatility. Recently, there has been an in-
creasing interest in developing full body motions for floating
base robots using the centroidal dynamics model [6]. The
centroidal dynamics are a reduced order representation of
the full dynamics of the robot that considers the momentum
wrench at the center of mass. One of the main benefits to
this approach is the ability to utilize the full potential of the
entire robot (e.g. arms and legs) to interact with arbitrary
environments while also obeying the rigid body dynamics.
So far, these methods have shown impressive results [7], [8],
[9], [10], with the latter two demonstrating capabilities on
hardware itself.

The centroidal dynamics, however, are non-convex, which
makes motion planning problems difficult to solve. The
authors of [11] use a worst-case `1 bound on the angular
momentum in order to make the problem convex. [9] used
an efficient multiple shooting approach, but to the best of
our knowledge, this implementation is closed-source due to
use of a proprietary solver, MUSCOD-II. In [8], the non-
convexity was dealt with by using a difference of quadratic
functions which was further exploited and optimized in [10].
In addition to providing the decomposition approach, [8], [7]
also proposed a method for creating full-body motions using
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an iterative approach of alternating the optimization of the
centroidal dynamics and whole-body kinematics. Although
the results from [10] were impressive, their framework
needs to solve second-order cone programs which are more
computationally demanding than solving simple quadratic
programs (QP). Specifically, they used a customized variant
of the ECOS solver [12], an interior-point solver which is
therefore difficult to warm-start for model-predictive control
applications.

In this paper, we propose a block coordinate descent
(BCD) approach to solve the centroidal dynamics trajectory
optimization problem [13]. The main idea of the approach
is to leverage the inherent structure of the problem in
order to simplify the non-convexity into two simpler, convex
subproblems. By utilizing the sparse structure of the multi-
contact locomotion problem, we show that we are able to
efficiently generate and track different types of whole-body
motions including challenging maneuvers that require tight
tracking of angular momentum.

Unlike previous methods which rely on complicated de-
composition procedures and customized solvers (both of
which are difficult to implement), our approach can instead
be easily implemented using any off-the-shelf QP solver.

The proposed method also has guaranteed convergence to
a feasible solution under the assumption that the problem
is well-posed unlike methods that rely on off-the-shelf
nonlinear solvers such as IPOPT [14]. Although the solutions
may not converge to a local minima, we are guaranteed
to converge to feasible motions at every iteration [15]. We
argue that feasibility, in terms of constraint satisfaction, is
more important than optimality, as the local minima found
by off-the-shelf solvers are often arbitrary. We show that
in practice, our algorithm converges quickly and finds high
quality trajectories that can be tracked in simulation.

Finally, we find that our method is often multiple times
faster than the state of the art. Due to the structure of our
optimal control problem as well as the convexity of each
subproblem, we are able to leverage the maturity of QP
solvers that offer features that can inherently exploit the
sparsity patterns in our problem.

II. WHOLE BODY TRAJECTORY OPTIMIZATION

The equations of motion for a floating-based rigid body
dynamics robot can be written as

M(q)q̈ + h(q, q̇) = ST τj +

nc∑
i=0

JTi λi (1)

where q = [xT qTj ]T describes the robot configuration and
comprises both the floating base position and orientation ex-
pressed with respect to a fixed inertial frame, x ∈ SE(3), and
joint positions, qj , of the robot. M(q) ∈ R(nj+6)×(nj+6)

is the mass inertia matrix, h(q, q̇) ∈ R(nj+6) contains
the Coriolis, centrifugal, gravity, and friction forces, S =
[0nj×6 Inj×nj ] is the actuator selection matrix that defines
the underactuation of the robot, τj ∈ Rnj is the vector of
joint torques, Ji are the end-effector jacobians and λi are
the forces due to external contacts acting on the robot.

For underactuated robots (i.e. robots with more degrees
of freedom than number of controllable joints), we can
decompose our dynamics into the actuated (subscript a) and
unactuated (subscript u) dynamics as follows

Ma(q)q̈ + ha(q, q̇) = τj +

nc∑
i=0

JTi,aλi (2a)

Mu(q)q̈ + hu(q, q̇) =

nc∑
i=0

JTi,uλi (2b)

Equation (2b) describes the change in momentum of the
robot given external forces, λ. As previously described in
[8], the actuated part of the dynamics provides the necessary
torques to achieve combinations of the desired accelerations,
q̈, and contact forces, λ. Under the assumption of enough
actuation torque, this allows us to ignore the actuated part of
the dynamics, and focus solely on creating motions for the
underactuated floating base using purely the external forces
and torques. The underactuated dynamics are equivalent
to the centroidal dynamics of the robot [16] and when
expressed at the robot center of mass (CoM) can be written
as

ḣ =

ṙl̇
k̇

 =

 1
m l

mg +
∑
e fi∑

e(pe +Rx,y
e,t ze − r)× fe + τe

 . (3)

Here, r is the center of mass location, l is the linear momen-
tum of the center of mass, k is the angular momentum of the
center of mass, fe are the external forces on the robot, pe are
the robot end-effector locations in the inertial frame, ze the
centers of pressure for each contact, Rx,y

e,t ∈ R3×2 are the
first two columns of the rotation matrix Re,t which rotates
maps quantities from end-effector frame to inertial frame, τe
the torques at each center of pressure (e.g. torques induced
by flat feet of a robot leg), m, is the robot mass, and g is
the gravity vector.

Using this form, [8] and [7] suggested a decomposition
to create whole-body motions. [8] proposed an alternating
method for the kinematics and dynamics of the robot by
finding dynamically feasible trajectories using the centroidal
dynamics then solving an inverse kinematics problem for
the whole body of the robot. The output of this alternating
process are whole-body motions that can then be tracked by
a controller such as in [17].

A. Trajectory Optimization of Centroidal Dynamics

In this paper, we focus on the optimization of the cen-
troidal dynamics, Eq. (3). Specifically, we are looking to find
dynamically feasible trajectories, i.e. motions that optimize
for the end-effector forces and torques subject to the non-
convex constraints of the centroidal momentum. We assume
that a contact surface is given and that the timing of each
contact is fixed. Contact sequences can be found using a
contact planner [18], [19], [20]. The optimization problem



we are trying to solve can be written as follows

min
h,pe,fe,τe,z

N∑
t=0

Ψt(h, pe, ze, fe, τe) + φt(ht − hkint )

(4a)

s.t. ht =

rtlt
kt

 =

 rt−1 + 1
m l∆t

lt−1 +mg∆t+
∑
e fe,t∆t

kt−1 +
∑
e κe,t∆t

 (4b)

κe,t = (pe,t − rt)× fe,t + γe,t (4c)
γe,t = (Rx,y

e,t ze,t)× fe,t + τe,t (4d)

pe,t ∈ U(S) (4e)

zx,ye,t ∈ [minzx,y,maxzx,y] (4f)

|fxe,t| ≤ Re,tf
z
e,t, |f

y
e,t| ≤ Re,tf

z
e,t, Re,tf

z
e,t ≥ 0 (4g)

‖ pe,t − rt ‖≤ Lmax (4h)

where constraints (4g) are the pyramidal friction cone con-
straints, (4h) is an `1-norm approximation of the kinematic
limit of the end-effectors, and (4a) minimizes a quadratic
sum of the running cost on the discretized dynamics of the
state Ψ and cost of tracking the output of the kinematic opti-
mization, φt. We note that while some centroidal optimiza-
tion approaches [10] uses second-order cones (`2-norms) for
both the kinematic limit and friction cone constraints, we
use linear approximations for both. Solving this problem
efficiently is in general hard due to the cross product in
(4c) and (4d) which introduce non-convex constraints.

III. BLOCK COORDINATE DESCENT

In this section, we give a brief overview of the block
coordinate descent method used in the subsequent sections of
the paper. We first detail the main idea and general approach,
and later discuss the convergence properties of the chosen
formulation and update methodology.

We are interested in optimization problems of the form

min
x∈X

F (x1, · · · ,xs) +
s∑
i=1

ri(xi) (5)

where the variable x is decomposed into s blocks, the set
X is closed and a block multi-convex subset of Rn. Note
that the set X may be non-convex over x = (x1, · · · ,xs).
ri are extended value functions which mean ri(xi) = ∞
if xi /∈ dom(ri) and can be used as indicator functions for
convex sets.

We call a set X block multi-convex if each block of
variables is convex, that is, for each i and fixed (s − 1)
blocks x1, · · · ,xi−1, · · · ,xs the set

Xi(x1...xi−1,xi+1, ...xs) ,

{xi ∈ Rn : (x1, ...,xi−1,xi,xi+1, ...xs) ∈ X}
(6)

is convex. We can then see, when all blocks except one are
fixed, the function, F is convex.

Block coordinate descent (BCD) of the Gauss-Seidel type
minimizes F cyclically over each of the individual blocks xi

while fixing the other blocks to their latest updated values
[13], [21].

xk+1
i = arg min

xi

fk+1
i (xk+1

i ) + ri(xi) (7)

The general block coordinate descent method for non-convex
problems, however, has no guarantees of convergence (either
to a local minimum or otherwise) and may cycle infinitely.
In order to address this, we use a proximal update when
updating and solving each block

xk+1
i = arg min

xi

fk+1
i (xk+1

i ) +
Lki
2
||xk+1

i −xki ||2 + ri(xi)

(8)
where Lki is a non-zero regularization parameter and || · || is
the `2-norm. The proximal parameter, Lki , is in practice used
to regularize the current solution to ensure we do not stray
too far from the previous solution (i.e. introduces damping)
and may change at every iterate. Using this method, we are
guaranteed to converge to a feasible solution [15].

An important note is that that this does not necessarily
mean we are guaranteed to converge to a local minimum
of the original optimization problem F . Rather, we are
only guaranteed a feasible trajectory (i.e. all constraints are
satisfied). We will see in the following subsections how an
appropriate choice of blocks and use of the proximal update
parameter allows us to converge to reasonable solutions for
the centroidal dynamics optimization.

A. Block Coordinate Descent for Centroidal Dynamics

In order to solve the centroidal optimization problem,
Eq. 4, using the block coordinate descent method we first
apply a change of variables similar to one introduced in [10].
Specifically, we apply a change of variables to the cross
products between the force, f and contact location (pe− r)
as well as the f and rotated ZMP in Eqs. (4c) and (4d) to
combine these into one variable, `:

κe,t = (pe,t − rt +Rx,y
e,t ze,t)× fe,t + τe,t

= `× fe,t + τe,t

=

 0 −`ze,t `ye,t
`ze,t 0 −`xe,t
−`ye,t `xe,t 0

fxe,tfye,t
fye,t

+ τe,t

(9)

Using this change of variables, we see that the non-
convexity is in fact biconvex. Specifically, for a fixed set
of `, the problem is convex with respect to our forces, f,
and vice-versa. This new change of variables then suggests
the use of two-block minimizations.

Our algorithm is outlined as follows: We first fix `i, and
solve for forces fi in one quadratic program which we will
call the Force-QP, ζ. We then use the forces to solve for `
in a second QP which we call the Contact-QP, ν. We iterate
on this process until a consensus is found or a maximum
number of iterations is reached after which one final Force-
QP is run to generate fully dynamically consistent profiles
(i.e. forces for the appropriate CoM, momentum, and end-
effector location profiles). Algorithm 1 provides an outline
of the block coordinate descent algorithm.



B. Force Quadratic Program

The Force-QP solves the full centroidal dynamics prob-
lem, Eq. 4, for a fixed `. During each iteration, k, we
increase the parameter Li by a factor α. Due to the use
of quadratic costs, the parameter Li in practice is used
to regularize the solution from the previous solution. The
Force-QP can be stated as follows

min
hk,fk

e ,τ
k
e ,z

k

N∑
t=0

[Ψt(h
k, zke ,f

k
e , τ

k
e ) +

φt(h
k
t − hkint ) + Lk,ζ(hk,ζt − h

k−1,ν
t )]

(10a)

s.t. hkt =

rktlkt
kkt

 =

 rkt−1 + 1
m l

k
t∆t

lkt−1 +mg∆t+
∑
e f

k
e,t∆t

kkt−1 +
∑
e κ

k
e,t∆t

 (10b)

κke,t = (`k−1,ν)× fke,t + τe,t (10c)

|fxe,t| ≤ Re,tf
z
e,t, |f

y
e,t| ≤ Re,tf

z
e,t, Re,tf

z
e,t ≥ 0 (10d)

‖ pk−1,νe,t − rk,ζt ‖≤ Lmax (10e)

We note that the optimization problem does not regularize
the momentum dynamics from the previous Force-QP but
rather from the previous Contact-QP (in the case of the
first iteration when no Contact-QP has been run, we do not
regularize the center of mass location at all).

C. Contact Quadratic Program

The Contact-QP is then used to solve for the length of the
CoM wrench, `, given the forces solved in the previous QP.
Rather than optimizing over ` directly, we need to remember
the physics of the problem we are trying to solve; specifically
that `t = pe,t−rt+Rx,y

e,t ze,t. In order to give us finer control
of individually tracking the end-effector location, pe,t, and
center of mass, rt, we separate these individually in our QP.
This gives us the following optimization problem:

min
rk,pk

e ,l
k,ze

N∑
t=0

[Ψt(r
k,pke , l

k, zk)

+Lk,ν(hk,νt − hk−1,ζt ,pk,νe − pk−1,νe )]

(11a)

s.t.
[
rkt
kkt

]
=

[
rkt−1 + 1

m l
k,ζ
t ∆t

kkt−1 +
∑
e κ

k
e,t∆t

]
(11b)

κke,t = fke,t × (rk,νt − pk,νe ) + γke,t (11c)

γke,t = −fke,t × (Rx,y
e,t z

k
e,t) (11d)

zx,ye,t ∈ [minzx,y,maxzx,y] (11e)

pνe,t ∈ U(S) (11f)

‖ pk,νe,t − r
k,ν
t ‖≤ Lmax (11g)

where we rearrange Eqs. (11c), (11d) using the cross
product identity

a× b = −b× a (12)

Once again, we use Li to regularize the solution from the
previous QP. However, because the momentum dynamics
ht appears in the Force-QP itself, we instead regularize
the trajectories with the values from the previous Force-QP
rather than the previous Contact-QP. As in the case of the

Force-QP, we increase the value of Li during each iteration.
We would also like to note the lack of state transition
constraints for the linear momentum, li. If we were to add
these constraints into our formulation, this would prevent the
center of mass from being able to alter and track the angular
momentum and would only rely on the contact location pe
and the ZMP, z. By relaxing these constraints, we instead
regularize the linear momentum from the previous Force-QP
which allows our optimization the freedom to use the center
of mass to reduce momentum. We once again note, that since
we use one final Force-QP before finishing the alternating
process, CoM trajectories that may be invalid due to the
removal of the linear momentum constraints are pushed
within the constraint set to satisfy the dynamic criteria.

D. Convergence Criteria

The convergence of the algorithm is dependent on the
weights chosen, in particular, the weighting factor, Li and
the scaling factor between iterations, α. In practice, we find
that a good stopping point is when the angular momentum
profiles from one iteration to the next fall below some
consensus threshold, εf or after K iterations. εf is defined
as follows:

εf =
||`k − `k−1||2

N
(13)

where N is the horizon of our optimal control problem.

Algorithm 1: Block Coordinate Descent for Bicon-
vex Optimization

Initialize optimization variables: f0, h0, `0
set k = 0
while k < maximum iterations do

fk+1,ζ, hk+1,ζ = QPForce(hk,ν , `k,ν )
Lk+1,ζ = αLk,ζ

`k+1,ν = QPContact(hk+1,ζ , fk+1,ζ)
Lk+1,ν = αLk,ν

if ||`k − `k−1||2/N ≤ εf then
terminate

fk+1,ζ, hk+1,ζ = QPForce(hk,ν , `k,ν )

IV. EXPERIMENTAL SETUP

A. Multi-contact control pipeline and platform

In order to verify and test the profiles generated by the
dynamics optimization, we utilize the open-source kino-
dynamic trajectory optimization package [22]. Contact se-
quences can either be computed using the MIQCQP [10]
or set manually and are then given to our block coordinate
descent framework. After our method finds a dynamically
feasible motion, these are then sent to the kinematics op-
timizer. The resulting output of the framework is a whole-
body motion which is then tracked by the whole-body con-
troller (WBC) outlined in [23]. The controller uses feedback
on the centroidal momentum combined with a desired task-
space impedance plus a joint space PD controller to solve a
QP for end-effector forces. These forces are then mapped to



actuator torques using the jacobian transpose and executed
and tracked as torque commands.

The motions were generated for a 12 degree of freedom
quadruped, Solo12, which is simulated using the PyBullet
simulation software [24]. Due to the use of a quadruped
with point contacts, we eliminate the end-effector torque
constraints from Eq. 10c as well as the ZMP constraints
in Eq. 11e and Eq. 11d when generating motions.

B. Solver details

The proposed method was implemented in Python using
the open source QP solver OSQP [25]. All experiments were
run with the solver settings shown in Table II located in the
Appendix. All computations were performed using a single
thread with an Intel Core i7-9850H CPU @ 4.6 GHz and
16 GB 2666 MHz RAM.

V. RESULTS

We tested our algorithm in several different scenarios from
flat ground motion generation to multi-contact navigation on
uneven terrain as well as more dynamic motions such as
jumping and bounding. We would like to note that most
trajectories were optimized over relatively long horizons
(around 5 s) with several contact switches. Despite this,
we were able to successfully track these open-loop using
only the WBC without re-optimization of the trajectory (i.e.
without model predictive control). This suggests that the
computed trajectories are of good quality. For each motion,
we either give a convex region for the contact optimization
or fix the contact location and only allow the center of mass
to reduce the angular momentum.

A. Generating various locomotion behaviors

We first generated and tracked motions for different types
of gaits such as walking, trotting, and bounding. For simple
motions, such as walking and trotting, the algorithm con-
verges within two iterations (i.e. after k = 2). For bounding,
which requires finer control of angular momentum, a third
iteration was required before the algorithm converged.

Bounding in particular tests our algorithm’s ability to
generate and track trajectories that incur a high amount of
angular momentum. Without explicitly re-optimizing angular
momentum via model predictive control or receding horizon
control, tracking of these types of trajectories is often
difficult. In Fig. 3b we show that despite this, we were able
to generate and track such a motion for an 8 second horizon
using only the WBC.

We further tested the ability of our algorithm to generate
arbitrary motions for navigating uneven terrain. We tested
our algorithm on multiple staircases with the height of each
staircase ranging in values from 12.5% to 35% of the center
of mass height of the robot. For navigating both up and down
stairs, our algorithm converged within two iterations which
took 0.827 s for a horizon of N = 300 which coincided with
a 3 second horizon.

We also computed motions for non-coplanar terrain such
as angled stepping stones as in Fig. 1. We noticed that as the
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Fig. 2. In the top graph, we show the normalized cost per iteration for a
variety of motions. We can see that our algorithm tends to converge after
the 3rd major iteration, although every iteration after the first is technically
feasible. On the bottom, we graph our convergence criteria εf . By the end
of the second iteration, we find that generally our momentum profiles ` find
consensus to a high enough tolerance that these motions can be tracked by
our WBC.

contact angles became more aggressive, our algorithm took
longer to converge, often requiring three major iterations (i.e.
iterations of Algorithm 1) with total solve times on average
2.398 s for N = 300, which is also due to the individual
QPs requiring more iterations to converge. Finally, we also
tested the ability of our algorithm to generate highly dynamic
motions with flight phases. We were able to generate and
track trajectories for jumping in place as well as jumping
forward and rotationally (around the z-axis). We note the
importance of regulating angular momentum in directional
jumps. In particular, although a trajectory may be feasible,
regulation of angular momentum plays a large role such that
the robot does not flip in the air. We found that even during
fairly aggressive jumps, we were able to generate motions
that generated minimal angular momentum and could thus
be successfully tracked.

Fig. 3a shows the results of a non-gaited multi-contact
motion that requires navigating uneven terrain with a jump
off the top step. Despite the multiple contact switches and
dynamic motion, our WBC was able to track such a motion
successfully. All the resulting motions simulated in pyBullet
are shown in the accompanying video.

B. Evaluation of convergence

We plot the cost per iteration for 50 motions from the
categories above (various legged gaits, uneven terrain, and
jumping) with a range of Li from [100 : 1, 000, 000] and α =
100 in Fig. 2. As we can see, both our cost and momentum
profiles tend to converge and find a lower bound after three
to four iterations.

Figure 2 also shows how our momentum consensus
parameter, εf changes per iteration. For the problems of
interest, we experimentally found that a good value for our
convergence parameter εf was 10−7. Using the above values
for Li and α, for every motion we generated, we were able
to converge within a maximum of three iterations.



−5

0

5

Lin
ea

r
M

om
en

tu
m

 (N
s)

X Y Z

0 100 200 300 400 500 600
Timestep

−0.01

0.00

0.01

0.02

0.03

An
gu

la
r

M
om

en
tu

m
 (N

s)

(a) Momentum profiles and tracking of non-gaited motion

−2

−1

0

1

2

Lin
ea

r
M

om
en

tu
m

 (N
s)

X Y Z

0 100 200 300 400 500 600 700 800
Timestep

−0.10

−0.05

0.00

0.05

0.10

0.15

An
gu

la
r

M
om

en
tu

m
 (N

s)
(b) Momentum profiles and tracking of a bounding gait

Fig. 3. In this figure we plot the resulting profiles for two different multi-contact scenarios with multiple contact switches as well simulation screenshots
showing the successful tracking of these motions. Fig. 3a shows the profiles for a motion that included navigating over uneven terrain with a jump onto
the ground which showcases the ability of our algorithm to compute trajectories with arbitrary, non-gaited contact switches together with highly dynamic
motions. Fig. 3b, shows the profiles for a bounding motion computed using our method. We set the contact locations to switch between the front and hind
legs every 0.25 s. As we can see in both scenarios, we are able to generate high enough quality motions such that despite the numerous contact switches,
we can successfully track each motion without the explicit re-optimization of the trajectories.

C. Speed and scaling

We plot the total solution time of the algorithm in Fig. 4.
The solution times plotted are the total solve times of each
QP and do not include the time to modify the appropriate
QP from their previous solutions as these are trivial. We also
do not include the initial setup time of the solver for each
problem as this can be set beforehand with the predefined,
sparse structure before running the actual optimization and,
thus, only has to be run once for each QP. In general we
found that for simple motions such as walking and trotting,
our algorithm tended to converge within 2 overall iterations
which on average took 0.7972 s for N = 300. For navigation
of non-coplanar terrain we saw that an extra iteration was
often required; we believe this was due to the the tightness of
the constraint set of our trajectories (e.g. due to the rotated
friction cones). For N = 300, navigation of non-coplanar
terrain averaged 2.647 s.

The algorithm spends the majority of the time of each
iteration on the Force-QP. For motions with a horizon of
N = 300, the algorithm spends on average 97.8 % of
the total solution time on the Force-QP and 2.2 % on the
Contact-QP despite their similar size. This is due to the fewer
number of constraints in the Contact-QP.

Finally, we explore the scalability of our method for
different lengths of time horizons N and show the result in
Fig. 4. We observed an approximately linear-time complexity
in solve time with respect to horizon length. This is due
to the banded, sparse nature of our problem which can be
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Fig. 4. The total solution time for our algorithm for a variety of 50
motions. We note a roughly linear increase in time with horizon for the
problem sizes we are interested in due to the sparsity of our problem. Our
solution time contains only the solve time of each QP and does not include
the setup time of each QP.

efficiently exploited by sparse QP solvers.

D. Comparison to other solution methods

In this section, we compare the solutions found between
our block coordinate descent method proposed above, the
soft constraint sequential convex relaxation (SCR) method
outlined in [10], and the primal-dual interior point method
used in IPOPT which is often used in locomotion research
[26], [27]. For the following comparisons, we configured



Solver Method Average Normalized Cost Solve Time (N = 300) Change In Solve Time Solver Success Rate
Block Coordinate Descent 1.00 1.77± 1.23s – 100%

Sequential Convex Relaxations 1.08 7.34± 3.34s 4.15x slower 100%
Interior Point Method (IPOPT) 1.34 8.12± 2.32s 4.59x slower 92%

TABLE I
COMPARISON OF METHODS FOR SOLVING THE CENTROIDAL DYNAMICS OPTIMIZATION PROBLEM.

IPOPT with the sparse symmetric linear solver MA57. Al-
though [10] provided multiple heuristics, we chose to use the
soft constraints as in our experience these performed better
than the trust region method. We provide this comparison as
a means to quantify the solutions found by our method to
against approaches where the solutions are associated with
guaranteed local minima and not as a means to compare the
quality of the solutions.

We first compare the final cost obtained for a variety of
different multi-contact locomotion problems including flat
ground motions, uneven terrain, and jumping motions. We
note that the final cost calculated using the block coordinate
descent method uses the original cost function, without the
proximal term. Specifically, we use the solution generated
by Algorithm 1, and then plug this back into the original
cost function, Eq. 4a, to evaluate the cost. We found that
our method generally finds lower costs than both alternative
approaches despite not converging to a local minimum.

Next, we compare the solution time of each method.
Once again, we evaluate our speed for a variety of different
motions. Our method readily outperformed both and is on
average more than four times faster than than both the
SCR method and IPOPT for trajectories with horizons of
N = 300.

The results of both comparisons can be found in Table I.
We note that the discrepancy in solve times between our
reported values and those reported in [10] are likely due
to the types of motions we generate as well as the default
tolerances and settings of the open source implementation.
We would also like to point out that for the problem sizes
we are interested in, the authors of [10] noted a roughly
linear time complexity in the problem horizon solve time
due to the sparse nature of our problem (similar to our BCD
implementation). Due to the use of a sparse solver in our
IPOPT implementation we expect to see a similar trend.

Of particular note is the ability of our solver to find
motions that require finer tracking of angular momentum
such as bounding. Unlike the SCR method, our method was
able to create trajectories for such motions that could be
tracked by our WBC reasonably well in simulation. We
plot a comparison of the results of tracking an open-loop
bounding trajectory in Fig. 5. From a numerical optimization
standpoint, we found that, compared to the SCR method,
BCD solutions were often satisfied to much higher numerical
tolerances, especially for dynamic motions such as jumping
and bounding. Finally, we note that IPOPT failed to find
solutions for 8 % of the given multi-contact motions whereas
both the BCD and SCR methods were able to find solutions
for all the given scenarios.
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Fig. 5. The tracking ability of a planned bounding gait between the SCR
method and our BCD method. In order to generate this motion, we gave
each method a reference angular momentum corresponding to a maximum
pitch of ±15°. The BCD was able to create a motion that could be tracked
by our WBC (yellow), however, the SCR method was unable to do so (blue).
Specifically, we note the large error starting at 1000ms. The RMSE (Root
Mean Square Error) of the SCR pitch tracking is 5.84 · 10−3 whereas the
RMSE for the BCD approach is 3.33 · 10−3 (43% lower). We note that
the desired angle was converted into a desired angular momentum using
the matrix logarithm.

VI. DISCUSSION AND CONCLUSION

The experiments above indicate that despite the lack of
guarantees of convergence to a critical point, our algorithm
is still able to generate high quality multi-contact profiles
that can be tracked by our robot. Although guarantees of
global convergence are nice to have, in practice, the robotics
community uses tools such as trajectory optimization as
motion generators and the cost functions used are often
arbitrary.

Due to the structured, sparse nature of our problem, we
also see a significant speedup that can be exploited by off-
the-shelf quadratic solvers. OSQP, for example, employs
factorization caching which is utilized when re-solving the
linear system of equations as well as polishing, a feature to
predict the number of active constraints. We believe that as
quadratic programming solvers continue to mature, we may
be able to further exploit these types of features to further
speed up our solve times.

We presented a novel method for solving the non-convex
centroidal dynamics optimization problem. Rather than re-
lying on off-the-shelf nonlinear solvers which have no
convergence guarantees or complicated relaxation methods,
we showed that by applying BCD and using a standard
quadratic programming solver, we are able to efficiently find
reasonable solutions for the non-convex problem. Compared
to the state of the art, we are also able to solve the problem
multiple times faster and can often generate and track
trajectories that require finer tracking of angular momentum.



We believe our algorithm is well-suited for model predic-
tive control or variable horizon control. In particular, we
can exploit our algorithm’s capability of finding feasible
trajectories at every iteration to reduce the number of cycles
required even further. We are also able to warm-start solu-
tions from previous solutions which may further decrease
our solve time. Due to the use of interior point methods,
this ability cannot be exploited by the relaxation methods
proposed in [10] as well as frameworks built upon IPOPT.
Additionally, these properties also enable us to efficiently
combine our method with pre-computed libraries or data-
driven techniques [28], [29], [30]. Finally, we believe BCD
is a versatile approach for trajectory optimization in robotics
due to its simplicity of implementation. In the future, we plan
to validate our trajectories using hardware experiments and
extend our method to real-time control.

APPENDIX

OSQP Solver Settings
Absolute Tolerance, εabs 1e− 7
Relative Tolerance, εrel 1e− 7

Primal Infeasibility Tolerance, εprim inf 1e− 6
Dual Infeasibility Tolerance, εdual inf 1e− 6

Polish True
Scaled Termination True

Adaptive Rho True
Check Termination 50

TABLE II
OSQP SOLVER SETTINGS FOR FORCE AND CONTACT QP
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M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene,
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