
A Simple and Efficient Multi-task Network for 3D Object Detection and
Road Understanding

Di Feng1,2, Yiyang Zhou1, Chenfeng Xu1, Masayoshi Tomizuka1, Wei Zhan1

Abstract— Detecting dynamic objects and predicting static
road information such as drivable areas and ground heights
are crucial for safe autonomous driving. Previous works stud-
ied each perception task separately, and lacked a collective
quantitative analysis. In this work, we show that it is possible
to perform all perception tasks via a simple and efficient
multi-task network. Our proposed network, LidarMTL, takes
raw LiDAR point cloud as inputs, and predicts six perception
outputs for 3D object detection and road understanding. The
network is based on an encoder-decoder architecture with
3D sparse convolution and deconvolution operations. Extensive
experiments verify the proposed method with competitive accu-
racies compared to state-of-the-art object detectors and other
task-specific networks. LidarMTL is also leveraged for online
localization. Code and pre-trained model have been made avail-
able at https://github.com/frankfengdi/LidarMTL.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer
be accessible.

I. INTRODUCTION

Reliable traffic object detection and road understanding near
the ego-vehicle are fundamental perception problems in
autonomous driving. Movable objects are often perceived
at the instance level with class labels and bounding boxes,
or at the 2D image pixel or 3D point level depending on
sensing modalities. A comprehensive road understanding
requires the perception algorithm to identify drivable areas,
lane markings, and road shapes, to name a few. Furthermore,
all these perception tasks need to run accurately and quickly
for online deployment. However, most existing methods,
especially those using deep learning approaches, focus on
improving each task separately, with task-specific network
architectures and evaluation metrics. This task-specific solu-
tion is inefficient when dealing with multiple tasks. While
high inference speed might maintain via parallel computing,
the memory footprints and computation costs scale linearly
with the number of networks, which quickly become infea-
sible with limited hardware resources.

Multi-Task Learning (MTL) provides a strategy to largely
reduce memory footprints and computation costs by perform-
ing all tasks via a unified model in one forward pass [1].
In deep learning, MTL translates to learn the shared repre-
sentation of multiple tasks typically via an encoder-decoder
network architecture. MTL was applied to 2D object detec-
tion and road understanding using RGB camera images [2]–
[4] and has been recently introduced to 3D perception using
Lidar point clouds [5]–[7].

1 Mechanical Systems Control Lab, University of California, Berkeley,
CA, 94720, USA.

2 Institute of Measurement, Control and Microtechnology, Ulm Univer-
sity, 89081, Ulm, Germany.

Correspondence: di.feng@berkeley.edu

Object detection (OD) Foreground (FG) Intra-object part 

location (IP)

Drivable area (DA) Ground (GC) Ground heights (GH)

Raw LiDAR scan

Fig. 1: The proposed multi-task network, LidarMTL, takes
raw Lidar point clouds as inputs, and performs six 3D
perception tasks in one forward pass in a frame-by-frame
manner. The tasks include object detection (OD), foreground
point classification (FG), intra-object part location regression
(IP), object-free drivable area classification (DA), ground
area classification (GC), ground height estimation (GH).

In this work, we propose a Lidar-based multi-task learning
network called LidarMTL to jointly perform six perception
tasks for 3D object detection and road understanding, as
shown by Fig. 1. Objects are detected with class labels and
3D bounding boxes (task OD). Furthermore, their associated
Lidar points are segmented as foreground (task FG), and
their relative locations to object centroids are regressed (task
IP). Road perception includes point-wise drivable area and
ground area classification (tasks DA and GC) as well as
ground height estimation (task GH).

The benefits of those perception tasks have been studied
in previous works. For example, FG and IP are leveraged
to refine bounding boxes in the second-stage of a two-
stage object detector [8], as they provide useful point-level
semantic and geometrical information of objects. GC and
GH are used to remove ground [9] or normalize the heights
of Lidar points [6], especially when the ground is not
flat. DA provides strong road priors to reduce false-positive
predictions in object detection [5] and motion forcasting [10].
Unlike previous works which explore each perception task
separately, we show that it is possible to perform all percep-
tion tasks efficiently and accurately via a unified network.
Besides, previous works such as [6], [8] focus on how to
employ one or several perception tasks as auxiliary tasks to

ar
X

iv
:2

10
3.

04
05

6v
1 

 [
cs

.C
V

] 
 6

 M
ar

 2
02

1

https://github.com/frankfengdi/LidarMTL
di.feng@berkeley.edu


support the target task, without analyzing the performance of
those auxiliary tasks. In this work, we consider each percep-
tion task of equal importance, and conduct comprehensive
experiments to analyze their performance in the single-task
and multi-task settings.

In principle, the LidarMTL network works by adding task-
specific heads to a 3D UNet architecture and training the
full network with a multi-task loss in an end-to-end manner.
UNet is a well-performed encoder-decoder network widely
applied to 2D image segmentation. Following [8], we extend
UNet to efficiently process 3D Lidar points represented
as voxels with 3D sparse convolution and deconvolution
operations. The resulting network has only 6.5M trainable
parameters and runs at an inference speed of 30FPS on
a Titan RTX GPU, which is 2× smaller and 6× faster
than performing all tasks sequentially using task-specific net-
works. Extensive experiments on the Argoverse Dataset [10]
shows that the LidarMTL network achieves competitive
accuracies compared to state-of-the-art object detectors and
other task-specific networks. The network is also employed
to substantially improve online localization.

II. RELATED WORKS

A. Lidar-based Object Detection
Lidar point cloud is usually represented by 2D projected
images [11], [12], raw Lidar point [13], [14], and voxels [15].
Compared to the other methods, voxel representation can
not only be processed efficiently using 3D sparse convolu-
tion [16], but also preserve approximately similar informa-
tion to raw point cloud with small voxel size. Therefore,
voxel-based backbone networks have been widely applied to
learn Lidar features in conjunction with 2D CNN detection
head [8], [16]–[18]. A special case is PointPillars [19], which
efficiently processes Lidar points by vertical 3D columns
called pillars. Our proposed LidarMTL network follows this
“voxel-based backbone + 2D CNN detection head” pipeline
to perform object detection.
B. Road Understanding
Understanding the 3D road information online is crucial
for safe autonomous driving, especially when HD maps are
not available. A variety of methods have been proposed
for online mapping, such as road area classification [20],
[21], lane and boundary detection [22], [23], ground plane
estimation [24], road topology recognition [25], [26], and
road scene semantic segmentation [27]–[29]. In [7], a multi-
task network is designed for multiple object-free road percep-
tion tasks, including drivable area classification, road height
estimation, and road topology classification.
C. Joint Object Detection and Road Understanding
Existing methods usually follow the hard parameter sharing
scheme [1], where networks consist of a shared encoder and
several task-specific decoders. MultiNet [2] jointly performs
object detection, street recognition, and road area classifi-
cation. It is built by a large 2D CNN encoder based on
the VGG16 or ResNet backbones, followed by task-specific
branches with several convolution layers. DLT-Net [3] fol-
lows the similar architecture for object detection, road area

classification, and lane detection. Besides, HDNet [5] and
MMF [6] propose to use drivable road maps or ground
heights as auxiliary inputs for Lidar-based object detectors,
in order to improve the detection accuracy by adding road
priors. Our proposed LidarMTL also uses the hard parameter
sharing: a detection head and a decoder with sparse decon-
volutions are added to the encoder for object detection and
point-wise predictions, respectively.

III. METHODOLOGY

A. Task Definition
The proposed Lidar-based multi-task learning network, Li-
darMTL, jointly performs six perception tasks via a sin-
gle feed-forward pass, namely, 3D object detection (OD),
foreground classification (FG), intra-object part location re-
gression (IP), drivable area classification (DA), ground area
classification (GC), and ground height regression (GH). The
method is developed based on the Argoverse dataset [10],
because to our knowledge it is the only public dataset
that provides both dynamic object labels and static map
information with ground heights and drivable areas.

More specifically for these tasks, Lidar points within the
bounding boxes of the dynamic objects are regarded as
foreground. Intra-part object locations are defined as the
positions of foreground points relative to their corresponding
object’s centroids. Driveable areas are object-free regions
which could be driven by vehicles. Ground height estimation
is performed both for ground areas and non-ground areas
(such as foreground and buildings).
B. Overview
We aim to design a simple and efficient multi-task network
for joint 3D object detection and road understanding. In
this regard, the LidarMTL is based on the voxelized Lidar
point cloud representation and the UNet backbone with 3D
sparse convolution and deconvolutions (we name the model
“UNet3D”). Fig. 2 shows the network architecture. The 3D
space is voxelized into regular voxels, with no-empty voxels
being encoded with Lidar features. The voxelized Lidar point
cloud is processed by the UNet backbone network with
the encoder-decoder architecture [30]. The encoder consists
of several 3D sparse convolutions, and downsamples the
input spatial resolution by 8 times in order to extract high-
level Lidar features. The decoder gradually upsamples the
Lidar features to the original spatial resolution via 3D sparse
deconvolutions. We choose the UNet backbone network and
voxelized Lidar representation following the idea from [8].
The network well-preserves the geometric information of
Lidar points by setting a proper voxel size, and has been
shown in [8] to achieve higher efficiency than the raw point-
based methods (such as PointRCNN [13]).

Point-wise predictions are made by adding output layers
directly on the decoder network, including tasks FG, IP, DA,
GC, and GH. To perform object detection (OD), the 3D
Lidar features from the encoder are projected onto the Bird’s
Eye View (BEV), and then processed by a detection head
with several standard 2D convolution layers for classification
score prediction and bounding box regression. Note that



Object score
3D to BEV 
projection

Object bbox.

Raw LiDAR input

BEV features

SparseConv

Stride 1

Kernel 3

SparseConv

Stride 2

Kernel 3

SparseConv

Upsampling 

Block

StandardConv

Block

Point-wise 

output layer

Pixel-wise 

output layer

16

64
Detection head

UNet3D Backbone

OD

32

64
64

32

16

16

FC

DA

GC

GH

IP

Skip connection

Fig. 2: The LidarMTL network architecture. The network jointly performs object detection (OD) and five point-wise
perception tasks, namely, foreground classficiation (FC), Intra-object part location regression (IP), drivable area classification
(DA), ground classification (GC), and ground height estimation (GH). The network is based on a UNet backbone with 3D
sparse convolution and deconvolution. A small detection head with 2D convolution is added to perform object detection on
the Lidar Bird’s Eye View (BEV).

employing 2D CNN on Lidar BEV features is a common
way to do object detection [16], [17], [19]. Besides, it is
found more effective than performing object detection from
the decoder network (cf. Sec IV-B.1).
C. Input and Output Representation
Given an Lidar scan, let y be the target output. The input
features of each voxel are encoded as the mean values of
the Lidar point positions in the Lidar coordinate system.
The perception tasks FC, DA, and GC are formulated as
the point-wise binary classification problems, with their
labels yFG,yDA,yGC = 1 indicating positive samples, and
0 negative samples. The tasks IP and GH are formulated
as the point-wise regression problems, with yIP = [x′,y′,z′]
a continuous vector indicating 3D Lidar point locations
relative to their corresponding object centroids, and yGH the
ground heights. As for OD, the label yOD consists of object
classes ycls, and bounding box regression variables ybbox,
i.e. yOD = [ycls,ybbox]. Bounding boxes are parameterized by
ybbox = [∆x,∆y,∆z,∆l,∆w,∆h,∆θ ], with ∆x,∆y,∆z being the
residual centroid 3D positions, ∆l,∆w,∆h the residual length,
width, and height, and ∆θ the residual orientation relative
to pre-defined anchors. The network makes predictions for
yFG,yDA,yGC,ycls via the softmax function, and directly
regresses the bounding box parameters. Following [8], yIP
are normalized to be within [0,1]3 and are predicted by the
softmax function as well, as this encoding strategy is found
more stable than direct regression.
D. UNet3D Backbone
As shown in Fig. 2, the encoder in the backbone pro-
cesses the voxelized Lidar point cloud by four stages of

3D sparse convolutions with increasing feature dimensions
16,32,64,64. The network downsamples the spatial resolu-
tion by 8 times through three sparse convolution layers [16]
with stride 2, each followed by two submanifold sparse
convolution layers [31] with stride 1. The decoder consists
of four upsampling blocks with decreasing feature dimen-
sions 64,32,16,16 and strides 2,2,2,1. In each block, the
features from the previous block are combined with the skip-
connected features from the encoder via concatenation, and
are further processed by a submanifold sparse convolution
layer and a sparse inverse convolution layer, in order to
upsample the spatial resolution. All convolution and de-
convolution layers in the backbone have a kernel size of
3×3×3. Finally, task-specific 1×1×1 sparse convolution
layers are added to the last upsampling block for point-wise
predictions.

E. Detection Head

The detection head projects the 3D Lidar features from
the UNet3D encoder to the Bird’s Eye View (BEV), and
processes the BEV features through three 2D convolution
blocks. The first block consists of six standard convolution
layers with feature dimension 128 and stride 1. The second
block increases feature dimension to 256. It downsamples
the spatial resolution by a convolution layer with stride 2,
stacked with five 2D convolution layers with stride 1. The last
block is an upsampling layer with dimension 256 and stride
2. All convolution layers in the detection head have a kernel
size of 3×3. The classification scores and bounding boxes
are predicted by the output layers with 1×1 convolution.

Similar to [16], the object detector regresses residual



bounding box parameters relative to the pre-defined 3D
anchors with fixed sizes, because objects from the same
category are of approximately similar sizes. For each pixel
and object category, we place two anchors with rotations of
0 and 90 degrees, with their sizes being the mean values
from all ground truths in the Argoverse dataset.

F. Joint Training

The full network is trained end-to-end via a multi-task loss
function. Denote L as a loss function. For an input data
frame, the multi-task loss function, LMTL, is formulated as a
weighted sum of the task-specific losses:

LMTL = ∑
i∈{OD,FG,IP,

DA,FC,GH}

wiLi, (1)

where wi and Li represent the task-specific loss weights and
loss functions, respectively. To learn yDA,yGC,yIP, we use
the standard cross entropy loss. As for yFG and ycls, we use
the focal loss [32] due to the large positive-negative sample
imbalance problem. Finally, yGH and ybbox are learnt by the
standard L1 loss.

A loss weights wi controls the influence of a task. It
can be pre-defined through grid search, or optimized by
task balancing approaches [1]. In this work, we employ
the uncertainty weighting strategy proposed by Kendall et
al. [33]. It uses the task-dependent uncertainty, parameterized
by the noise parameter σ , to balance the single-task losses.
Such noise parameters are jointly optimized during training,
resulting in an adaptive multi-task loss function Ladaptive

MTL
written as:

Ladaptive
MTL = ∑

i∈{OD,FG,IP,
DA,FC,GH}

1
2σ2

i
Li +

1
2

logσ
2
i . (2)

IV. EXPERIMENTAL RESULTS

The experimental results are structured as follows. In Sec. IV-
B, we evaluate the performance of each perception task
separately. We compare the proposed multi-task network
with single-task networks, and show its benefits in achieving
on-par performance with task-specific networks, but with
substantially lower memory footprints and higher inference
speed. Afterwards, we conduct ablation studies in Sec. IV-
C regarding the number of tasks and the loss weights, and
test the network’s robustness with downsampled Lidar points.
Finally, we demonstrate in Sec. IV-D that our proposed
multi-task network provides useful semantics which largely
improve online localization.

A. Experimental Setup

1) Dataset

All experiments are conducted on the Argoverse 3D Tracking
Dataset [10], which was recorded in Miami and Pittsburgh
in the USA under various weather conditions and times of
a day. The dataset provides 3D bounding boxes and tracks
annotations, with RGB images from seven cameras, Lidar
point clouds from two 32-beam Velodyne Lidar sensors, as
well as HD maps annotating drivable areas, ground heights,

ground areas and center-lines. For the object detection task,
we focus on the “VEHICLE” and “PEDESTRAIN” classes.
For the point-wise perception tasks, we prepare the ground
truth labels for each Lidar point. The data was recorded
in sequence with length varying from 15 to 30 seconds
(10 Hz). To reduce the sequential dependency between
frames, we down-sample the dataset by a factor of 5. The
resulting dataset we use contains 2609 training frames and
996 evaluation frames, with over 20K VEHICLE and 6.7K
PEDESTRIAN objects.
2) Implementation Details
All networks are trained with the same optimization settings
from scratch up to 80 epochs. The ADAM optimizer is used
with an initial learning rate of 0.01, a step decay of 0.1,
and a batch size of 4. In order to have a fair comparison
with state-of-the-art object detectors (such as PV-RCNN [17]
and PointPillars [19]), which only process Lidar point clouds
on the camera front-view, we extract Lidar point clouds
corresponding to synchronized front-view images from the
original Argoverse dataset, and train the front-view networks
for most experiments. In this regard, we use the Lidar
point cloud within the range length × width × height =
[0,70.4]m×[−40,40]m×[−1.5,4,0]m, and do discretization
at 0.1 meter voxel resolution. Besides, to employ our pro-
posed LidarMTL network in online localization, we train a
full-range network that processes Lidar point cloud within
the range [−70.4,70.4]m×[−70.4,70.4]m×[−1.5,4,0]m. All
experiments are conducted using a Titan RTX GPU. The
inference time for the front-view LidarMTL reaches 30FPS
and for the full-range LidarMTL 7.7FPS.
B. Performance Evaluation
1) Object Detection (OD)
We evaluate the object detection performance using the
standard Average Precision for 3D detection (AP3D) and on
the Bird’s Eye View (BEV) (APBEV ). They are measured
at the Intersection Over Union IOU=0.7 threshold for “VE-
HICLE” objects and IOU=0.5 for “PEDESTRAIN” objects,
respectively, as suggested by [34]. The IOU scores in object
detection are geometric overlap ratios between bounding
boxes, and indicate the localization accuracy. We report the
AP scores with respect to increasing Lidar ranges (0−30m,
30− 50m, and 50− 70m), as well as the mean AP scores,
mAP, by averaging over all distances and object classes
(similar to [35]). Besides, we report the number of trainable
parameters and the inference speed for each object detectors.
Tab. I summarizes the results.

The proposed multi-task network (LidarMTL) is com-
pared against several Lidar-based object detectors. The Li-
darBEV network follows the same detection architecture
with LidarMTL (Encoder with sparse 3D convolution +
BEV detection head with 2D convolution). It serves as the
baseline to study the object detection performance when
introducing multiple tasks. The UNet3D network directly
employs the encoder-decoder architecture from LidarMTL
to predict object classes and bounding boxes on each Lidar
point (without BEV detection head and pre-defined anchors),



Methods VEHICLE PEDESTRAIN mAPBEV (%) mAP3D(%)
Trainable Inference

APBEV @0.7(%) AP3D@0.7(%) APBEV @0.5(%) AP3D@0.5(%) param. (M) speed (FPS)
PV-RCNN [17] 77.5,62.0,21.1 63.2,38.0,3.8 51.8,26.6,4.5 45.7,22.2,3.0 56.1 43.2 13.10 14.6
PointPillars [19] 75.3,57.2,16.6 53.5,27.8,2.7 37.4,22.3,4.0 30.3,16.8,2.3 51.5 35.3 4.82 71.5
Second [16] 72.0,53.9,14.1 50.9,25.0,1.9 41.1,22.8,5.0 33.6,17.5,2.6 49.7 35.1 5.31 54.2
UNet3D 73.0,35.9,4.4 50.9,13.7,0.5 56.7,25.1,2.9 44.4,17.4,1.5 46.4 32.4 1.90 33.2
LidarBEV 71.8,56.1,14.0 50.3,23.8,1.7 42.0,22.9,4.4 36.6,16.3,2.1 49.9 34.6 5.31 59.6
LidarMTL 72.9,56.9,14.1 53.4,24.3,1.8 40.6,22.9,6.1 33.3,17.0,4.2 49.8 35.0 6.52 30.0

TABLE I: A comparison of Object Detection (OD) performance, as well as the number of trainable parameters and inference
speed. Detections are grouped into different Lidar ranges (0−30m, 30−50m, 50−70m). The AP scores are measured at
IOU=0.7 threshold for “VEHICLE” class, and IOU=0.5 for “PEDESTRAIN” class.

and is used to verify the network architecture design. Further-
more, we re-train state-of-the-art detectors, PV-RCNN [17],
PointPillars [19], and Second [16], using our experimental
setup. Note that PV-RCNN is a two-stage object detector,
whereas all other detectors are one-stage. UNet3D directly
regresses bounding box parameters, whereas the others are
based on pre-defined anchors and BEV detection heads.

As Tab. I illustrates, the proposed LidarMTL network
achieves similar detection accuracy to LidarBEV, SECOND,
and PointPillars, with comparable number of parameters
(6.52M) and reasonable inference speed (30FPS). PV-RCNN
has the highest AP scores compromised by over 2× more
parameters and computation cost compared to LidarMTL.
Though UNet3D has only 1.9M parameters, it has the
worst detection accuracy with 2− 3% smaller mAP scores
compared to LidarMTL, indicating the importance of adding
anchor priors and BEV detection heads for precise object
detection. In conclusion, the proposed LidarMTL shows
competitive detection performance to other detectors regard-
ing accuracy, model size, and inference speed.

2) Foreground (FG), Drivable Area (DA), and Ground Clas-
sification (GC)

We evaluate the foreground, drivable area, and ground classi-
fication tasks using the Average Precision (AP), Intersection
Over Union (IOU), and classification accuracy scores at 0.5
probability threshold. Those evaluation metrics measure the
classification performance at each Lidar point, and have
been used as the standard metrics for road detection [36]
or semantic segmentation [35]. Note that unlike the IOU
metric for object detection in the previous section, here an
IOU score is measured by IOU = 100 ∗ TP/(TP+FP+FN)
according to [35], with TP, FP, FN being the number of
points categorized as true positive, false positive, and false
negative samples. For each task, a task-specific UNet3D
network is trained to compare with the LidarMTL network.
Furthermore, since these point-wise perception tasks can be
regarded as semantic segmentation, we additionally train
two state-of-the-art semantic segmentation networks, namely,
RangeNet++ [27] and SqueezeSegv3 [28], to perform fore-
ground and ground classification. We do not conduct ex-
periments for drivable area classification, because it is not
mutually exclusive with other two tasks.

Experimental results are shown in Tab. II, Tab. VI, and
Tab. IV. The proposed multi-task network achieves on-par
performance with the single-task network, with less than 1%
difference in all evaluation criterion. The network also shows

competitive results with RangeNet++ and SqueezeSegv3,
verifying the effectiveness of the network architecture design.
3) Ground Height Estimation (GH)
We evaluate the ground height estimation performance using
the Root Mean Squared Errors (RMSE) and Mean Average
Errors (MAE) metrics, which are widely used in the depth
prediction task for RGB camera images [37]. Tab. III reports
the performance for all Lidar points, grouped with respect
to the Lidar ranges (0−30m, 30−50m, 50−70m). The Li-
darMTL network is compared with the task-specific UNet3D
network, as well as a simple heuristic which assumes a
ground plane given the ego-vehicle’s pose information. Note
that the ground plane assumption has been widely used to
remove ground Lidar points for object detection [24], [38].

Tab. III shows that the ground plane method results in
larger errors at longer distances, indicating that the ground
is not flat. The errors produced from the UNet3D and
LidarMTL networks are much smaller than the ground plane
method (over 40% RMSE reduction for all points), showing
the benefits of the point-wise ground height estimation. The
LidarMTL network produces slightly larger errors than the
UNet3D network (< 2cm), showing small negative transfer
phenomena often seen in multi-task learning [1].

A more interesting experiment is to evaluate the ground
height estimation for Lidar points which belong to objects.
Such information could be used to normalize objects’ heights
and has the potential to improve detection performance, as
shown in [6]. Tab. V shows that both networks predict ground
heights accurately, with RMSE errors smaller than 20cm
even at 50−70m range.
4) Intra-object part locations (IP)
Finally, we evaluate the performance for intra-object part lo-
cation predictions, with the same evaluation metrics (RMSE
and MAE) used in the previous section (Sec. IV-B.3). Both
LidarMTL and UNet3D networks perform similarly, with the
LidarMTL network producing slightly smaller errors (< 1)
at long distance (50−70m) than the UNet3D network.
5) Model Size and Inference Speed
We quantitatively show the benefits of lower memory foot-
prints and higher inference speed brought by the proposed
multi-task network, compared to the “Single-task models”,
which performs all tasks separately by a chain of task-
specific networks. In this regard, we employ the LidarBEV
network introduced in IV-B.1 for object detection, and train
UNet3D networks for other tasks. Starting from object
detection, we gradually increase the number of perception



Methods AP(%) IOU (%) Accu. (%)
RangeNet++ [27] - 82.4 -
SqueezeSegv3 [28] - 84.2 -
UNet3D 96.2 85.4 98.7
LidarMTL 97.0 85.6 98.7

TABLE II: Foreground (FG).

Methods RMSE (cm) MAE (cm)
All 0-30m 30-50m 50-70m All 0-30m 30-50m 50-70m

Plane 31.2 21.0 38.0 53.5 21.6 16.3 28.2 35.5
UNet3D 17.8 7.9 21.0 40.0 7.8 4.9 9.8 20.1
LidarMTL 18.6 8.8 22.2 40.4 8.8 5.7 11.0 21.4

TABLE III: Ground heights (GH) (all Lidar points).
Methods AP(%) IOU (%) Accu. (%)
RangeNet++ [27] - 95.2 -
SqueezeSegv3 [28] - 95.9 -
UNet3D 99.6 94.5 98.2
LidarMTL 99.6 94.0 98.0

TABLE IV: Ground areas (GC).

Methods RMSE (cm) MAE (cm)
All 0-30m 30-50m 50-70m All 0-30m 30-50m 50-70m

Plane 20.8 17.8 27.3 35.4 15.3 12.9 22.4 28.7
UNet3D 8.6 6.5 11.7 19.1 5.5 4.4 8.0 13.9
LidarMTL 9.8 8.2 12.2 19.6 6.7 5.8 8.9 14.7

TABLE V: Ground heights (GH) (only foreground points).

Methods AP(%) IOU (%) Accu. (%)
UNet3D 97.9 86.5 94.2
LidarMTL 97.4 84.5 93.4

TABLE VI: Drivable areas (DA).

Methods RMSE MAE
All 0-30m 30-50m 50-70m All 0-30m 30-50m 50-70m

UNet3D 10.0 8.1 13.5 18.8 5.6 4.6 8.0 13.8
LidarMTL 9.9 8.2 13.3 18.1 5.7 4.7 8.0 13.2

TABLE VII: Intra-object part locations (IP).

OD
OD,FG

OD,FG,IP

OD,FG,IP,DA

OD,FG,IP,DA,GC

OD,FG,IP,DA,GC,GH

100

150

M
od

el
 si

ze
 (M

B) Single-task models
LidarMTL

(a)

OD
OD,FG

OD,FG,IP

OD,FG,IP,DA

OD,FG,IP,DA,GC

OD,FG,IP,DA,GC,GH

20

40

60

In
fe

re
nc

e 
sp

ee
d 

(F
PS

)

Single-task models
LidarMTL

(b)

Fig. 3: A comparison of model size (in MegaByte) and infer-
ence speed (in FPS) required to achieve multiple perception
tasks, by employing the proposed multi-task network or the
“Single-task models” which performs all tasks separately by
a chain of task-specific networks.

tasks, and calculate the required memory footprints and
the inference speed averaged over all predictions on the
evaluation data. Fig. 3(a) and Fig. 3(b) show the model size
(in MegaByte) and the inference speed (in FPS), respectively.
The LidarMTL network outperforms the single-task models
approach, when considering more than one perception task.
While the LidarMTL network remains constant model size
and inference speed regardless of the number of tasks,
the single-task models approach requires linearly-increasing
memory and much lower inference speed. When performing
all six perception tasks, the multi-task network is more than
2× smaller and 6× faster, showing its high efficiency, which
is critical for online deployment.
C. Ablation Study
1) Number of Tasks
This section studies the performance of the single task which
we focus on (“target task”), with increasing number of
multiple tasks (“auxiliary tasks”) in the LidarMTL network.
Fig. 4(a), Fig. 4(b), and Fig. 4(c) select object detection,
foreground classification, and ground height estimation as
target task, respectively. We report the perception perfor-
mance from the multi-task network relative to the singe-
task network, with increasing number of auxiliary tasks from
left to right on the x-axis. No clear tendency is observed

OD +F
G

+I
P

+D
A

+G
C

+G
H

+G
H,
IP

+F
G,
IP
,D
A

+F
G,
IP
,G
C

+F
G,
IP
,G
C,
GH

+F
G,
IP
,D
A,
GC

+F
G,
IP
,D
A,
GH

+F
G,
IP
,D
A,
GC

,G
H

−1

0

1

m
AP

(%
)

BEV
3D

(a) OD + Multi-tasks

FG+OD

+OD
,IP,D

A

+OD
,IP,G

C

+OD
,IP,G

C,G
H

+OD
,IP,D

A,G
C

+OD
,IP,D

A,G
H

+OD
,IP,D

A,G
C,G

H
0.0

0.2

0.4

0.6

0.8

AP
(%

)

(b) FG + Multi-tasks

GH +OD
+OD,IP

+OD,FG,IP,GC

+OD,FG,IP,DA

+OD,FG,IP,DA,GC
0.0

0.5

1.0

Er
ro

r (
cm

)

RMSE (all)
RMSE (object)
MAE (all)
MAE (object)

(c) GH + Multi-tasks

Fig. 4: The performance of the target task from the multi-task
network trained with increasing number of auxiliary tasks,
relative to the single-task network.

between the object detection performance and the number
of tasks. The mAP scores fluctuate between −1.5%− 1%.
Introducing more auxiliary tasks increases AP for foreground
classification, as well as regression errors for ground height
estimation. However, the difference is small (less than 1%
AP and 1.5cm errors). In conclusion, we could achieve on-
par single-task perception performance, regardless of the
combination of multiple tasks.
2) Impact of Loss Weights
It is known that a proper selection of loss weight for each
single task is crucial for multi-task learning [1]. In this
ablation study, we train the LidarMTL network with different
combinations of loss weights, and compare their multi-task
performances. “Fixed (equal weights)” assumes that each
loss weight is equal. “Fixed (balanced)” balances the losses
to the similar scales. “Fixed (grid search)” finds a set of
loss weights by grid search on the training dataset. Note that
the loss weights from those three methods are fixed, and do
not change during training (cf. Eq. 1). Instead, “Adaptive”
employs the uncertainty weighting strategy shown by Eq. 2
to balance single-task losses adaptively. “Adaptive + grid
search” first puts a set of pre-defined loss weights from the
grid search, and then balances the learning with uncertainty
weighting.

We report the perception performance for each single task
as well as the averaged network’s ranking in Tab. VIII.
Surprisingly, “Fixed (balanced)” shows inferior performance
even slightly worse than “Fixed (equal weights) on the



Loss weights OD FG DA GC GH IP Avg.
mAPBEV (%) mAP3D(%) AP(%) AP(%) AP(%) RMSE (cm) MAE (cm) RMSE MAE Rank

Fixed (equal weights) 49.6 34.5 96.7 97.7 99.6 20.5 10.7 10.7 6.4 2.7
Fixed (balanced) 48.4 32.9 97.0 97.8 99.6 19.2 9.2 12.7 8.1 3.0
Fixed (grid search) 49.2 34.7 97.2 97.5 99.6 18.6 8.7 10.0 5.7 1.8
Adaptive [33] 49.2 34.7 97.0 97.2 99.6 24.0 14.1 10.8 6.5 3.3
Adaptive [33] + grid search 49.8 35.0 97.0 97.4 99.6 18.6 8.8 9.9 5.6 1.5

TABLE VIII: A comparison among the LidarMTL networks trained with different loss weights.

12 4 8 16 32
Lidar downsample factor

0

50

100

AP
 (%

)

FG
DA
GC

12 4 8 16 32
Lidar downsample factor

10

20

30

RM
SE

IP
GH

Fig. 5: The performance of point-wise predictions (tasks FG,
IP, DA, GC, GH) with increasingly sparse Lidar points.

averaged ranking, indicating that simply balancing losses
might not be the optimal choice in multi-task learning, as
different single tasks may have different learning paces.
“Adaptive” ranks last, with 4− 6cm larger ground height
errors compared to the best results, showing the challenge
to learn a proper set of loss weights from scratch. The
networks trained with loss weights from grid search depict
visible improvements (e.g. comparing “Fixed (grid search)”
with “Fixed (equal weights)”. When combining uncertainty
weighting and grid search, the network slightly outperforms
the “Fixed (grid search)” strategy, and achieves the best
multi-task performance. We conclude the necessity of using
loss weights with grid search.
3) Robustness Testing
Finally, we study the robustness of point-wise prediction
tasks with increasingly sparse Lidar points. Evaluating this
robustness is crucial for autonomous driving, because the
sparsity of point cloud varies significantly among Lidar
sensors and vehicle setup, and largely affects the perception
performance [39]. In this regard, we use the LidarMTL
network trained with full Lidar points (8000 voxels) to
make inferences on the evaluation data with downsampled
Lidar points by factors 2,4,8,16,32. Results are shown in
Fig. 5. The performance of DA, GC and IP drops slightly
at downsample factors smaller than 8. FG remains high AP
scores above 90% even at 32 downsample factor (i.e. 250
non-empty voxels). The performance of GH drops quickly
at downsample factor 4. The experiment shows that different
tasks have different robustness against Lidar point cloud
sparsity.
D. Application to Online Localization
Localization in urban environments requires point cloud
maps and point registration algorithms. However, Lidar-
based localization typically suffered from dynamic objects
and undulating road surfaces [40]. By semantically segment-
ing the scene, LidarMTL provides an ideal pre-processing for
such localization modules. To study LidarMTL’s impact on
localization, we used the outputs from DA and FG to help
localizing the vehicle. As a comparison, we have 4 types of

Point Cloud Translation RMSE (m) Rotation RMSE (◦) Success
Type X Y Z Yaw Rate (%)
Raw 1.80 1.27 1.13 1.16 83.3

no DA 1.13 0.67 0.34 1.00 95.8
GT no FG 1.46 0.56 0.46 0.71 95.8

no DA, FG 1.51 0.87 0.34 1.25 95.8
no DA 1.83 0.59 0.21 0.84 95.8

LidarMTL no FG 1.62 0.58 0.43 0.82 95.8
no DA, FG 1.73 0.65 0.06 1.13 100

TABLE IX: Online localization results.

inputs for the localization algorithm: the raw scan, the point
cloud without DA, the point cloud without FG, and the point
cloud without both DA and FG.

We perform localization experiments on 24 trajectories
spanning 2.69KM, and the vanilla NDT registration algo-
rithm in Autoware [41] was chosen as the real-time localiza-
tion module. In our experiment, the NDT voxel resolution
is 1 meter. The map is created with the ground-truth scan
without DA and FG downsampled to 0.2 meters.

Tab. IX shows the performance of the localization algo-
rithm with various point cloud input. We also included the
result from ground-truth DA and FG tasks for a comparison.
The performance is evaluated with Root Mean Squared Error
along three axis and the yaw angle. Furthermore, we listed
the success rate for these tests: one is considered as a failure
if the translation RMSE is larger than 3m or if the rotation
RMSE is larger than 4◦. Compared with the raw input, the
LidarMTL-processed inputs yield more accurate localization.
Furthermore, since dynamic objects are removed from the
scan, the algorithm performed robustly in complicated en-
vironments. As compared with the ground truth point cloud
inputs, the LidarMTL pre-processing reaches similar level of
localization accuracy and success rate. Given the stochastic
nature of the NDT algorithm, the LidarMTL even out-
performed ground truth segmentation in certain evaluation
matrices.

V. DISCUSSION AND CONCLUSION

We have presented the multi-task network to jointly per-
forms six perception tasks for 3D object detection and road
understanding, which were only studied separately in pre-
vious works and lack quantitative analysis. Comprehensive
experiments verified the network’s design and the multi-
task performance. The proposed multi-task network is small,
fast, accurate, and useful for localization, making it highly
desirable for online deployment in autonomous cars. In the
future, we plan to extend the network to process multiple
frames for motion estimation.

REFERENCES

[1] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans,
D. Dai, and L. Van Gool, “Multi-task learning for dense prediction
tasks: A survey,” arXiv preprint arXiv:2004.13379, 2020.



[2] M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun,
“Multinet: Real-time joint semantic reasoning for autonomous driv-
ing,” in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp.
1013–1020.

[3] Y. Qian, J. M. Dolan, and M. Yang, “Dlt-net: Joint detection of drivable
areas, lane lines, and traffic objects,” IEEE Transactions on Intelligent
Transportation Systems (T-ITS), vol. 21, no. 11, pp. 4670–4679, 2019.

[4] L. Chen, Z. Yang, J. Ma, and Z. Luo, “Driving scene perception
network: Real-time joint detection, depth estimation and semantic seg-
mentation,” in IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, 2018, pp. 1283–1291.

[5] B. Yang, M. Liang, and R. Urtasun, “HDNET: Exploiting HD maps
for 3D object detection,” in Annual Conference on Robot Learning
(CoRL), 2018, pp. 146–155.

[6] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task
multi-sensor fusion for 3D object detection,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7345–
7353.

[7] F. Yan, K. Wang, B. Zou, L. Tang, W. Li, and C. Lv, “Lidar-based
multi-task road perception network for autonomous vehicles,” IEEE
Access, vol. 8, pp. 86 753–86 764, 2020.

[8] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to
parts: 3d object detection from point cloud with part-aware and part-
aggregation network,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 2020.

[9] X. Li, S. Du, G. Li, and H. Li, “Integrate point-cloud segmentation
with 3d lidar scan-matching for mobile robot localization and map-
ping,” Sensors, vol. 20, no. 1, p. 237, 2020.

[10] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan et al., “Argoverse: 3d tracking
and forecasting with rich maps,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 8748–8757.

[11] B. Yang, W. Luo, and R. Urtasun, “PIXOR: Real-time 3d object
detection from point clouds,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 7652–7660.

[12] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object
detection network for autonomous driving,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6526–
6534.

[13] S. Shi, X. Wang, and H. Li, “Point-RCNN: 3d object proposal
generation and detection from point cloud,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 770–779.

[14] D. Xu, D. Anguelov, and A. Jain, “PointFusion: Deep sensor fusion
for 3D bounding box estimation,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[15] Y. Zhou and O. Tuzel, “VoxelNet: End-to-end learning for point cloud
based 3d object detection,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[16] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[17] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “PV-
RCNN: Point-voxel feature set abstraction for 3d object detection,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 10 529–10 538.

[18] C. He, H. Zeng, J. Huang, X.-S. Hua, and L. Zhang, “Structure
aware single-stage 3d object detection from point cloud,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 11 873–11 882.

[19] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“PointPillars: Fast encoders for object detection from point clouds,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[20] L. Caltagirone, S. Scheidegger, L. Svensson, and M. Wahde, “Fast
lidar-based road detection using fully convolutional neural networks,”
in IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 1019–
1024.

[21] R. Fan, H. Wang, P. Cai, and M. Liu, “Sne-roadseg: Incorporating
surface normal information into semantic segmentation for accurate
freespace detection,” in European Conference on Computer Vision
(ECCV). Springer, 2020, pp. 340–356.

[22] M. Bai, G. Mattyus, N. Homayounfar, S. Wang, S. K. Lakshmikanth,
and R. Urtasun, “Deep multi-sensor lane detection,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 3102–3109.

[23] J. Liang, N. Homayounfar, W.-C. Ma, S. Wang, and R. Urtasun, “Con-
volutional recurrent network for road boundary extraction,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 9512–9521.

[24] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and
R. Urtasun, “3d object proposals for accurate object class detection,”
in Advances in Neural Information Processing Systems. Citeseer,
2015, pp. 424–432.

[25] U. Baumann, Y.-Y. Huang, C. Gläser, M. Herman, H. Banzhaf, and
J. M. Zöllner, “Classifying road intersections using transfer-learning on
a deep neural network,” in IEEE International Conference Intelligent
Transportation System (ITSC). IEEE, 2018, pp. 683–690.

[26] M. Oeljeklaus, F. Hoffmann, and T. Bertram, “A combined recogni-
tion and segmentation model for urban traffic scene understanding,”
in IEEE International Conference Intelligent Transportation System
(ITSC). IEEE, 2017, pp. 1–6.

[27] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet++: Fast
and accurate lidar semantic segmentation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 4213–4220.

[28] C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer, and
M. Tomizuka, “Squeezesegv3: Spatially-adaptive convolution for effi-
cient point-cloud segmentation,” in European Conference on Computer
Vision (ECCV). Springer, 2020, pp. 1–19.

[29] T. Roddick and R. Cipolla, “Predicting semantic map representations
from images using pyramid occupancy networks,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp.
11 138–11 147.

[30] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[31] B. Graham and L. van der Maaten, “Submanifold sparse convolutional
networks,” arXiv preprint arXiv:1706.01307, 2017.

[32] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in IEEE International Conference on
Computer Vision (ICCV), 2017, pp. 2980–2988.

[33] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 7482–7491.

[34] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3354–
3361.

[35] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman, “The PASCAL visual object classes (VOC) challenge,” In-
ternational Journal of Computer Vision, vol. 88, no. 2, pp. 303–338,
2010.

[36] J. Fritsch, T. Kuehnl, and A. Geiger, “A new performance measure
and evaluation benchmark for road detection algorithms,” in IEEE
International Conference Intelligent Transportation System (ITSC),
2013.

[37] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and
A. Geiger, “Sparsity invariant cnns,” in International Conference on
3D Vision (3DV), 2017.

[38] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander, “Joint 3d
proposal generation and object detection from view aggregation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 1–8.

[39] D. Feng, Z. Wang, Y. Zhou, L. Rosenbaum, F. Timm, K. Dietmayer,
M. Tomizuka, and W. Zhan, “Labels are not perfect: Inferring spatial
uncertainty in object detection,” arXiv preprint arXiv:2012.12195,
2020.

[40] W. Wen∗, Y. Zhou∗, G. Zhang, S. Fahandezh-Saadi, X. Bai, W. Zhan,
M. Tomizuka, and L.-T. Hsu, “Urbanloco: A full sensor suite dataset
for mapping and localization in urban scenes,” in IEEE International
Conference on Robotics and Automation (ICRA), 2020, ∗Equal con-
tribution.

[41] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,” in
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems, ser. ICCPS ’18. IEEE Press, 2018, p. 287–296.
[Online]. Available: https://doi.org/10.1109/ICCPS.2018.00035

https://doi.org/10.1109/ICCPS.2018.00035

	I Introduction
	II Related Works
	II-A Lidar-based Object Detection
	II-B Road Understanding
	II-C Joint Object Detection and Road Understanding

	III Methodology
	III-A Task Definition
	III-B Overview
	III-C Input and Output Representation
	III-D UNet3D Backbone
	III-E Detection Head
	III-F Joint Training

	IV Experimental Results
	IV-A Experimental Setup
	IV-A.1 Dataset
	IV-A.2 Implementation Details

	IV-B Performance Evaluation
	IV-B.1 Object Detection (OD)
	IV-B.2 Foreground (FG), Drivable Area (DA), and Ground Classification (GC)
	IV-B.3 Ground Height Estimation (GH)
	IV-B.4 Intra-object part locations (IP)
	IV-B.5 Model Size and Inference Speed

	IV-C Ablation Study
	IV-C.1 Number of Tasks
	IV-C.2 Impact of Loss Weights
	IV-C.3 Robustness Testing

	IV-D Application to Online Localization

	V Discussion and Conclusion
	References

