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Abstract— Stereo reconstruction models trained on small
images do not generalize well to high-resolution data. Training
a model on high-resolution image size faces difficulties of data
availability and is often infeasible due to limited computing
resources. In this work, we present the Occlusion-aware Re-
current binocular Stereo matching (ORStereo), which deals
with these issues by only training on available low disparity
range stereo images. ORStereo generalizes to unseen high-
resolution images with large disparity ranges by formulating
the task as residual updates and refinements of an initial
prediction. ORStereo is trained on images with disparity ranges
limited to 256 pixels, yet it can operate 4K-resolution input
with over 1000 disparities using limited GPU memory. We
test the model’s capability on both synthetic and real-world
high-resolution images. Experimental results demonstrate that
ORStereo achieves comparable performance on 4K-resolution
images compared to state-of-the-art methods trained on large
disparity ranges. Compared to other methods that are only
trained on low-resolution images, our method is 70% more
accurate on 4K-resolution images.

I. INTRODUCTION

High-resolution and accurate reconstruction of 3D scenes
is critical in many applications. For example, LiDAR scan-
ners with a ∼5mm accuracy are typically used to build
models for civil engineering analysis. However, this level of
accuracy is often not sufficient for detailed inspections and
scanners are too expensive and heavy to be carried or flown
by drones. Stereo cameras, on the other hand, are compact,
and potentially high-resolution source of 3D maps if the
data can be effectively processed. Most of the recent high-
performance stereo matching models are learning-based,
however, a small number of them are focusing on high-
resolution images.

Recent high-resolution oriented models need dedicated
training data to learn the ability to operate large disparity
ranges or resort to a combination of models. Yang et al.[1]
developed a deep-learning model (HSM) that can handle
a disparity range of 768 pixels. They collected a high-
resolution (2056×2464) dataset to help the training. HSM
has impressive performance on the Middlebury dataset [2]
which has a relatively larger image size than other public
benchmarks. For higher resolution such as 4K, Hu et al.[3]
combined the SGBM [4] method with a deep-learning model
to deal with the high-resolution input.

Data availability and limited computing resources are the
main issues for training a high-resolution model. Typical
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binocular stereo datasets have an image size of fewer than
2 million pixels (e.g. Scene Flow [5] 540× 960 or a recent
one [6] with 1762×800) and a limited disparity range (e.g.
∼200 pixels). They are far from what we face when using
real-world high-resolution images, e.g. 4K-resolution with a
disparity range of over 1000 pixels. The next challenge is
computing resources. Most deep-learning models consume
considerable amounts of GPU memory during training on a
small-sized image, e.g. the AANet [7] needs 2GB per sample
with a crop size of 288× 756 and a disparity range of 192
pixels. However, a higher resolution such as 4K resolution
may require a crop width of over 2000 pixels to effectively
cover a disparity range of 1000 pixels. It is hard to train
a model with high-resolution data directly on typical GPUs
since the memory consumption scales approximately in cubic
with image dimension and disparity range.

To this end, we choose to not rely on any high-resolution
data. Our goal is trying to answer this question: how can a
model that is trained on low-resolution data be general-
ized to high-resolution images? Our philosophy is learning
how to incrementally refine the disparity instead of predicting
it directly. Disparity refinement is less dependent on the size
of the input data. Also, it may be possible to trade time with
accuracy by performing the refinement on a smaller scale but
multiple times. We propose to handle high-resolution data
in a two-phase fashion. The first phase results in an initial
down-sampled disparity map. In the second phase, the same
model recurrently refines the full-resolution disparity in a
patch-wise manner.

While patch-wise processing is widely used for tasks
such as object detection, applying a similar strategy for
stereo matching faces two issues. First, the small portion of
occluded area gets enlarged in some patches, where occluded
regions cover most of those patches. These occlusion regions
do not have match in stereo images and disturb the refining
process. ORStereo explicitly detects occlusions and stabilizes
the recurrent updates. Second, the disparity range in the patch
is still as large as it is in the original image, which is on
one hand, out of the training distribution, and exceeded the
patch size on the other. We find that by utilizing proper
normalization techniques, a model can learn the ability to
generalize to unseen disparity ranges.

Our model is trained on publicly available datasets with
small image sizes. For high-resolution evaluations, we col-
lected a set of 4K-resolution stereo images from both photo-
realistic simulations and real-world cameras. The main con-
tributions are summarized as follows.

• We propose a two-phase strategy for high-resolution
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Fig. 1. ORStereo: Occlusion-aware Recurrent binocular Stereo matching. The whole model is trained with low-resolution data. During high-resolution
testing, ORStereo in used in two phases. The down-sampled disparity and occlusion are estimated in the first phase. These predictions are up-sampled and
patch-wise refined in the second phase.

stereo matching using regional disparity refinements.
• We design a novel structure to recurrently update the

disparity and occlusion predictions. The occlusions are
explicitly predicted to guide the updates.

• We develop a new local refinement module equipped
with special normalization operations.

• We collect a set of 4K-resolution stereo images for
evaluation. This dataset is publicly available from the
project web page1.

II. RELATED WORK

Stereo matching is a widely studied topic and there are
many works both from geometry-based [8] and learning-
based research [9], [10], [11]. Many 3D perception tasks
have a similar nature with binocular stereo reconstruction,
such as multi-view stereo, monocular depth estimation, and
optical flow. We find many valuable inspirations and insights
from all those tasks.

Residual prediction and recurrence As stated previously,
ORStereo learns to refine the disparity in a patch multiple
times to obtain better accuracy. This process is similar to the
residual prediction and recurrence. Many existing works train
models to predict residuals to refine an initial prediction [12],
[13], [14], [15], [16]. However, these models update an
initial prediction by a fixed number of steps or dimension
scales. In contrast, we introduce disparity improvements with
variable steps in a recurrent way. Most of the recurrent
models for 3D perception are designed for dealing with
sequential data, e.g. multi-view stereo models[17], [18]. As
for binocular stereo, Jie et al.[19] utilized a recurrent neural
network (RNN) to keep track of the consistency between
the left and right predictions. Recently, RAFT applies an
RNN to update optical flow prediction in a way similar to
an optimizer, thus the update converges as it proceeds [20].
Inspired by RAFT, we design a model to recurrently update
the disparity prediction without deterioration. To handle the

1https://theairlab.org/orstereo

occlusion issue in a small patch from a large image, our
model recurrently handles the occlusion.

Occlusion prediction Properly handling occlusion is im-
portant for unsupervised learning models, e.g.[21], [22]. For
supervised models, Ilg et al.[23] demonstrated that a CNN
(convolutional neural network) can jointly estimate disparity
and occlusion. We train ORStereo in a supervised manner.
To deal with large occluded areas in small patches, we chose
to explicitly identify occlusions and let the model exploit this
information. A recent work [24] shares a similar idea where
occlusions are used to filter the extracted features before
constructing the cost volume.

III. METHOD

The ORStereo is trained on low-resolution images and
tested on 4K images (Fig. 1). It consists of 5 components
(Fig. 2): a multi-level feature extractor (FE), a base disparity
estimator (BDE), a base occlusion mask estimator (BME), a
recurrent residual updater (RRU), and a normalized local re-
finement component (NLR). When training on small images
(Fig. 1 Training, Fig. 2), BDE and BME learn to predict an
initial disparity image and an occlusion mask, which are feed
into the RRU as initial values. The RRU works in a recurrent
fashion gradually promotes prediction accuracy. At last, the
NLR further refines the RRU’s prediction and outputs the
final results. When testing on 4K image, we use the learned
model in a two-phase manner. In the first phase, our model
estimates down-sampled disparity and occlusion mask. Then
in the second phase (Fig. 1 Testing), the RRU and NLR
are reused to refine the enlarged patches in the original
resolution. The key features of ORStereo is that the RRU
and NLR are designed to be generalizable to large disparity
ranges. As a result, in testing time, when the 4K images with
a large disparity range are presented, the RRU and NLR will
be able to improve the estimation accuracy even the disparity
range is not seen in the training time.

A. Initial disparity and occlusion estimations
We place two dedicated components, namely the base

disparity estimator (BDE) and the base occlusion mask



Fig. 2. Structure of ORStereo. We are using the same structure in both the first and second phases. F: feature tensor. D: disparity tensor. O: occlusion
mask. Ctx: context information. H: hidden state for the recurrent update. Superscripts: L (left), R (right), and W (warped). Subscripts: the level numbers.
BDE: base disparity estimator. BME: base occlusion mask estimator. RRU: recurrent residual updater. NLR: normalized local refinement.

estimator (BME), to calculate initial values for the RRU.
The left and right images are first passed through a five-
level feature extractor, which has a simplified ResNet [25]
structure. The extracted features are denoted as F in Fig. 2.
The BDE and BME take the F4 (Level 4) features at 1/16
of the input size. The BDE is implemented based on the
3D cost volume technique similar to [1]. The BME predicts
a initial occlusion mask for the RRU. It is designed as a
encoder-decoder structure with skip connections. As shown
in Fig. 2, let Di be the disparity tensor at Level i, we warp
FR

4 by D4 to get FW
4 . By comparing the feature pattern

between FL
4 and FW

4 , the BME predicts the initial occlusion
mask Oinit. In testing time, BDE and BME is only used in
the first phase. In the second-phase, the initial values for the
RRU come from the results of the first phase.

Fig. 3. The RRU pre-processing and iteration. Initial state (from top to
bottom): the hidden state H, context Ctx, multi-level features FL and
FR, disparity D1, and occlusion O1. O1 is obtained by resizing the O.
Blue dashed box: pre-processing in the first phase. Star: zero disparity. Red
dashed box: evaluation of the disparity and occlusion losses. The RRU
recurrently updates H, D1, and O1. The iteration stops when a fixed n is
reached or a convergence criterion triggers.

B. Recurrent residual updater

To make the RRU work across two phases, we let the
RRU do a pre-process on the disparity and always begin
from zero disparity. Also, the RRU needs to properly handle
occlusions to stabilize the iteration. Note that the RRU takes
all the feature levels (FL and FR) and updates disparity and
occlusion at Level 1 (D1 and O1) with 1/2 image width.

Initial state with zero disparity. The RRU uses multiple
input types to start the iteration in both phases, as shown in
Fig. 3. In the training time, ORStereo only goes through
the first phase. In the second phase as shown in Fig. 1,
the full-resolution right image gets warped before going into

ORStereo. Ideally, the warped image should roughly be the
same compared with the left image in non-occluded regions.
Then patches from the left and the warped images should
now correspond to disparity values close to zero at non-
occluded pixels. Considering this phenomenon, we add a
pre-processing in the first phase to warp FR and assign an
all-zero D1 to the RRU (Fig. 3). The RRU always has a zero
D1 in the second phase.

The recurrent iterations. We design the RRU by aug-
menting a GRU (gated recurrent unit) similar to [20]. The
detailed model structure is illustrated in Fig. 4. The super-
script (i) denotes the iteration step. For the ith iteration,
the RRU computes R

(i)
O and R

(i)
D as the residuals for

occlusion O
(i)
1 and disparity D

(i)
1 based on the GRU’s hidden

variable H(i). Similar to the [20], we keep a context feature,
Ctx, as a constant reference to the initial state. The key
differences from [20] are that ORStereo recurrently exploits
the occlusion information to stabilize the recurrent iteration.

Since the RRU works in a recurrent way, during an
evaluation after training, we can apply it like an optimizer by
keeping it updating until a pre-defined criterion is satisfied.
Here, unsupervised loss functions for similar perception tasks
are reasonable criterion candidates. Later in the experiment
section, we tested the SSIM[27], which is widely accepted as
a robust similarity measure for unsupervised methods. The
RRU can keep updating a patch until the SSIM value between
the original and warped images goes down. However, we
found that the SSIM is not reliable and the RRU simply
performs better with fixed and longer iterations.

Residual update of occlusions. Iterations become un-
stable in occluded regions where little information is use-
ful for stereo matching. To improve robustness, the RRU
explicitly handle the occlusion by the occlusion-augmented
H(i)(shown in Fig. 4). O

(i)
1 is represented as a 2-channel

tensor in ORStereo and supervised by cross-entropy loss,
which does not require a value-bounded O

(i)
1 . However,

this unbounded value cause problems for long recurrent
updates. Fig. 4 shows that O(i−1)

1 first passes through a soft-
max operator. This ensures an intermediate value-bounded
representation, S(i)

O , and keeps the gradients of the loss value
w.r.t O(i)

1 from diminishing. Similar reasoning also explains



Fig. 4. The structure of the RRU. Residual update for D1 is element wise addition, (2). Residual update for O1 is defined in (1). The multi-level
cross-correlation is implemented by referencing [26].

the purpose of the Sigmoid operator, which bounds the value
of R

(i)
O . Here, R(i)

O is a single-channel tensor. O(i−1)
1 gets

updated by (1).

V
(
O

(i)
1 , j

)
= V

(
O

(i−1)
1 , j

)
− (−1)jR(i)

O (1)

where function V (·, j) takes out the channel at index j from
a tensor and j ∈ {0, 1}. Equation (1) also makes the iteration
more stable. Equation (2) gives the disparity update.

D
(i)
1 = D

(i−1)
1 +R

(i)
D (2)

C. Normalized local refinement

Following the RRU, the normalized local refinement mod-
ule (NLR) adds a final update to the disparity D0, as shown
in Fig. 5. The NLR is designed to smooth the object interior
and sharpen boundaries by exploiting local consistency be-
tween the disparity and the input image. The NLR extracts
its own features from the left image and works directly at
the image resolution.

Fig. 5. The normalized local refinement module (NLR). Refer to (3) to
(4) for definitions of some symbols.

The NLR also works in both phases. In the second phase
the NLR faces a major challenge as disparity values go
beyond the training range. The way the NLR handles this
challenge is always working under a normalized disparity
range. In Fig. 5, the up-sampled disparity, D0, is normal-
ized as D0 by function P . Then module G processes the
feature FRe and D0 to produce residual RD. Then a de-
normalization function Q re-scales RD to RD. The final
disparity D is then obtained in the same way of (2). Module
G has an encoder-decoder structure. P and Q are defined
from (3) to (4).

P (D0) = (D0 −m)/(s+ ε) = D0 (3)

Q
(
RD

)
= (s+ ε)RD = RD (4)

where scalar m = mean(D0) and s = std(D0) are the mean
and standard deviation of D0. P normalizes the disparity,
and Q de-normalizes the residual value. Here, W serves as
a local weight which encourages large residuals near local
discontinuities. ε is a constant hyperparameter. P and Q
enable the NLR to generalize to large disparity ranges in
the second phase by making the NLR work in a normalized
disparity range.

D. Training losses

We adopt a supervised scheme for all the outputs. The
total training loss is defined as (5).

ltotal = λD4 SL
(
D4,D

t
4

)
+ λOCE

(
O,Ot

)
+ λD1

n∑
i=1

(γD)n−i+1SL
(
D

(i)
1 ,Dt

1

)
+ λO1

n∑
i=1

(γO)n−i+1CE
(
O

(i)
1 ,Ot

1

)
+ λDSL

(
D,Dt

)
(5)

where SL and CE are the smooth L1 and cross-entropy loss
functions. n is the iteration number and from λD4 to λD are
the constant weights for different loss values (see Table II).

E. Working in the second phase

We make patches out of four objects for the second phase:
the left image, the warped right image, the disparity, and the
occlusion mask, all in the full-resolution. Our experiments
show that keeping small overlaps among patches achieves
better results since accuracy may drop near the patch borders.
In the overlap region, the disparity and occlusion predictions
are averaged across patches.

IV. EXPERIMENTS

A. Datasets and details of training

Our target is 4K-resolution stereo reconstruction with
over 1000 pixels of disparity. ORStereo allows us to train
with only small-sized images and a typical disparity range
around 200 pixels. We utilize several public datasets for the



TABLE I
EPE METRICS OF ORSTEREO COMPARED WITH THE SOTA MODELS ON THE SCENE FLOW DATASET.

MCUA[28] Bi3D[29] GwcNet[30] FADNet[31] GA-Net[32] WaveletStereo[33] DeepPruner[34] SSPCV-Net[35] AANet[7] ORStereo (ours)
0.56∗ 0.73 0.77N 0.83 0.84 0.84 0.86 0.87 0.87∗ 0.74

ORStereo only goes through the first phase for this low-resolution test. ∗ Best values from individual works. N Finalpass. ORStereo is trained and tested on the cleanpass subset
of the Scene Flow dataset. Some samples are removed as suggested by the Scene Flow dataset.

training, i.e., the Middlebury dataset at 1/4 resolution [2],
the Scene Flow [5] dataset (∼35k stereo pairs), and the
TartanAir [36] datasets (∼18k pairs sampled). The Scene
Flow and TartanAir datasets do not provide true occlusion
labels. We generate them by comparing the left and right
true disparities. We will not use the KITTI dataset despite
its popularity because it is hard to generate reliable dense
occlusion labels from sparse true disparities.

Currently, no public stereo benchmark provides 4K-
resolution data. So we collect a set of synthetic 4K-resolution
photo-realistic stereo images with ground truth disparity.
These images are captured by AirSim [37] in the Unreal
Engine. We prepare 100 pairs of stereo images from 7
simulated environments. Some cases may have a disparity
range of over 1200 pixels. The evaluation cases in Fig. 7
and 8 are from this dataset. Additional samples are shown
in 6. The dataset is only used for evaluation and all images
and ground truth disparities are available at the project page.

Fig. 6. Sample images from the 100 pairs of 4K-resolution stereo images.
6 of 7 environments are shown: a) restaurant, b) factory district, c) under
ground work zone, d) city ruins, e) ancient buildings, f) train station.

Training only happens in the first phase of ORStereo. We
use a disparity range of 256 pixels and randomly crop the
images to 448 × 512 pixels. We set the iteration number to
4 for training the RRU. Similar works such as [20], [38]
also use fixed number of iterations during training. Other
model constants are listed in Table II, where the loss weight
constants are chosen to balance the values from different loss
components. We train ORStereo with 4 NVIDIA V100 GPUs
with a mini-batch of 24 for all experiments. Other training
settings varying among different experiments will be shown
separately.

TABLE II
THE MODEL CONSTANTS OF ORSTEREO.

ε λD4 λO λD1 λO1 λD γD γO

1e-6 32 2 2 1 2 0.8 0.8

The values from λD4 to λD are selected to make the loss components have
similar quantities in the end of a training.

B. Evaluation the first phase on small images

To evaluate the first phase of ORStereo on small-sized
images, we train ORStereo on the Scene Flow dataset only
and then compare it with the state-of-the-art (SotA) models.
We limit the metric computation under 192 pixels, matching
the SotA models. Table I lists the results on the testing
set of the Scene Flow dataset measured in the average
EPE (end point error) metric. ORStereo achieves comparable
performance with the SotA models.

C. Evaluation on high-resolution images

For better performance and generalization ability across
image sizes and disparity ranges, the Middlebury (at 1/4
resolution) and TartanAir datasets are added to the training.
We further augment the data with random color, random flip,
and random scale similar to [1]. After training, we apply
a 512×512 patch size with an overlap of 32 pixels in the
second phase. In Sec. IV-D, after comparing the performance
with various iteration numbers, we make the RRU iterate for
10 steps in both the phases for the subsequent evaluations.

Although the training data have small size, we expect
ORStereo to learn the ability to refine a patch of disparity at
a higher resolution. We first show results on the Middlebury
dataset [2] with full resolution. This dataset is still considered
as hard for models trained on low-resolution data. We choose
three recent models (with available pre-trained weights)
that are trained with low-resolution data and have openly
evaluated their performance on the Middlebury dataset. Addi-
tionally, we include the HSM model[1], which can cover 768
pixels of disparity after training on high-resolution images.
The quantitative results are listed in Table III. Trained on
smaller image size, we observed that ORStereo delivers
accuracy close to the SotA [1] trained on high-resolution
images. Later, when the resolution goes up to 4K, ORStereo
can still maintain its performance.

TABLE III
COMPARISON ON THE MIDDLEBURY EVALUATION DATASET

Model
& scale

AANet
[7] 1/2

DeepPruner
[34] 1/4

SGBMP
[3] full

ORStereo
(ours) full

HSMN

[1] full
EPE 6.37 4.80 7.58 3.23 2.07

NThis model is trained on high-resolution data. ORStereo achieves near
SotA performance without training on high-resolution data. Non-occluded
EPE is reported. All EPE values are associated with specific image scales.
All values are from the evaluation set and published on the website of
Middlebury dataset under the ”test dense avgerr nonocc” category.

Some of the models in Table III are unable to operate
4K-resolution images with a limited memory budget or their
effective disparity ranges are not enough, we down-sample
the input until a model can handle it. Then the results are re-
scaled to the original resolution before evaluation. Besides



Fig. 7. Results on our 4K synthetic stereo images. The color map is the same as Fig. 8. Columns 3-7 are the disparity estimation of each model. Table IV
shows the quantitative statistics over all the 100 evaluation samples. Seeing thin structures is one of the motivation for high-resolution stereo reconstruction.
Our model exploits and reconstructs fine-grain details as shown in the zoom-in figures.

the EPE metric. Evaluation is done with all the collected
samples. Fig. 8 shows a sample output from ORStereo. In
this figure, we can first compare the disparity predictions
from the two phases. The EPE of the first phase is 4.10 pixels
(Fig. 8 c, up-sampled back to 4K-resolution). ORStereo im-
proves this value to 2.09 pixels after the second phase (Fig. 8
f). As shown in Table IV, although ORStereo is trained
on small image size, its EPE is even lower than HSM on
these 4K images with a smaller memory consumption. Fig. 7
further provides us with a qualitative comparison. ORStereo
has the potential to fully utilize the fine-grained details in
high-resolution images and reconstructs thin structures that
are better captured by high-resolution images. ORStereo
achieves this at a cost of execution time because it needs
to refine multiple patches and the RRU iterates several steps
for each patch. On average, ORStereo spends about 15s for
a single 4K-resolution image.

Fig. 8. A 4K sample and ORStereo results. a) 4K Left image. b, c) disparity
and error of the first phase. d) ground truth disparity with occlusion. e,
f) disparity and error of the second phase. g) true occlusion mask. h, i)
occlusion prediction of the first and second phases. c) and f) are masked by
the true occlusion from g). The EPE values are 4.10 in c) and 2.09 in f),
meaning that the disparity map gets improved in the second phase.

D. Ablation studies

For a better understanding on how various factors affect
the performance of ORStereo, we additionally train two
models: one that has no explicit occlusion treatments (with
all the occlusion update shown in Fig. 4 removed), and

TABLE IV
COMPARISON ON THE SYNTHETIC 4K DATASET.

Model Scale Range EPE Mem (MB)
AANet[7] 1/8 192 9.96 8366
DeepPruner[34] 1/8 192 8.31 4196
SGBMP∗[3] 1 256 4.21 3386
ORStereo (ours) 1 256 2.37 2059
HSMN[1] 1/2 768 2.41 3405

ORStereo shows the best results among the models trained on small
images. There are 100 pairs of stereo images. Scale: the down-sample scale
against the original image width. Range: the trained disparity range. EPE:
non-occluded EPE. Mem: peak GPU memory (first/subsequent). ∗SGBMP
combines a learning-based and a non-learning-based model, only GPU
memory consumption is reported. NThis model is trained on high-resolution
data.

another one with less training data (remove all samples from
TartanAir). Furthermore, we test various iteration numbers
and disable the RRU or NLR. All the above model variants
are evaluated on the same 100 pairs of 4K stereo images
used in Table IV. The results are shown in Table V. We
first observe that simply making the RRU iterate longer than
the training setting (4 steps) improves the overall accuracy.
Thus the RRU learns to work like an optimizer, which
gradually improve an initial prediction. However, this does
not hold with extensively long iterations, e.g. model F20. The
FS model shows that monitoring the RRU by the SSIM is
not reliable. This may be due to the fact that SSIM fails
to distinguish stereo matching in texture-less and repeated
texture regions. The model variants (V1-V4) regarding to less
training data and incomplete model structures all experience
a performance drop, meaning that ORStereo does benefit
from its special design. Notably, the V1 model that is trained
with less amount of data than the SotA methods in Table IV
still achieves the best EPE among the models trained on
low-resolution data.

TABLE V
PERFORMANCE COMPARISON BASED ON VARIOUS FACTORS.

Model F4 F10 F15 F20 FS V1 V2 V3 V4

All data X X X X X - X X X
Occlusion X X X X X X - X X
RRU Iter. 4 10 15 20 SSIM 10 10 - 10

NLR X X X X X X X X -
EPE 2.43 2.37 2.45 2.56 2.55 3.34 2.70 11.46 3.34

F4-F10: Full model with various RRU iteration numbers. F4 is the training setting.
F10 is the model used in Table III and IV. FS utilzes the SSIM to monitor RRU
iterations. V1-V4: model variants. V1 is trained without the TartanAir dataset, making
the training set have less samples than the other SotA models shown in Table IV.



Fig. 9. The two phases of ORStereo. The color maps are the same as Fig. 8. Input: 4K-resolution. Row A: the first phase. 3 patches (512×512, P1-P3)
are cropped out for illustrating the second phase (Row B-D). Row B (P1): moderate disparity change and occlusion. Row C (P2): short disparity range,
limited occlusion. Row D (P3): large disparity jump, severe occlusion. Column 2, 3, 9, 10 are disparities. Column 4-8 show the first 5 updates made by
the RRU. The RRU quickly converges in the non-occluded regions after several iterations and oscillates in the occluded areas. The NLR (Column 10)
smooths and sharpens D0 (Column 9) in both phases. The results also indicate that the NLR can handle unseen disparities beyond the training range.

E. The characteristics of the two-phase procedure

The RRU and NLR are the core components for ORStereo
to work across phases. To illustrate the characteristics of
the RRU and NLR, in Fig. 9, we show their behaviors in
a complete first phase and 3 patches from the second phase.
Fig. 9 shows that the RRU delivers stable and convergent
updates in the non-occluded areas especially Row D in
the figure. In occluded regions, there is hardly any useful
information for stereo matching. However, inside a severely
occluded patch, ORStereo can use the detected occlusion to
guide the residual update, stabilizing the updates in the non-
occluded regions.

F. Evaluation on real-world 4K stereo images

Evaluation on real-world high-resolution data is necessary
because ORStereo is trained with only synthetic images. We
set up a customized stereo camera with two 4K cameras
and a LiDAR and capture images around various objects.
To evaluate the stereo reconstruction results, we generate
dense point clouds as ground truth using a LiDAR-enhanced
SfM [39] method. Using point clouds allows us to measure
the metric error of the reconstructed model. For each scene,
all disparity maps from different viewpoints are converted
to point clouds and are registered with the ground truth
by the ICP method with an initial pose guess from the
SfM results. Both the ground truth and stereo reconstructed
point clouds are down-sampled for efficiency. The results are
shown in Fig. 10 and Table VI with three different scenes.
We use the mean point-to-plane distance (rmse) of all the
overlapping points between stereo point clouds and ground
truth to measure the precision. A point is considered to
have a valid overlap if it falls within 0.1m from any ground
truth point. Additionally, we use the number of overlapping

points num as a metric to measure the valid overlapped
area. Both HSM[1] and ORStereo achieve similar millimeter-
level precision. Notably, ORStereo obtains higher num than
HSM, which means our model reconstructs more valid areas.
ORStereo is trained on small-sized synthetic data and utilizes
fewer computation resources but still obtains competitive
reconstruction results on real-world 4K stereo images.

Fig. 10. Reconstruction results aligned with ground truth. Overlapping
points are colorized by the point-to-plane distance to the ground truth by
blue-green-yellow-red in an increasing manner. a)-c): points from ORStereo.
d)-f): the top row with the ground truth.

TABLE VI
STEREO RECONSTRUCTION RESULTS ON REAL-WORLD 4K IMAGES.

Scene T-specimen Pillar Bridge
Frames 25 29 32
Metrics rmse num rmse num rmse num
HSM[1] 6.56 1.30 3.94 2.43 5.82 3.50

ORStereo 6.74 1.37 3.69 2.48 5.33 3.62

Frames: the total number of stereo pairs. rmse: point-to-plane
distance in millimeters. num: valid overlapping points, unit 105.
rmse and num are averaged across all the frames of individual
cases. Evaluations are conducted by down-sampling the point
clouds by a grid size of 5mm.



V. CONCLUSIONS

We present ORStereo, a model that is trained only on
small-sized images but can operate high-resolution stereo
images at inference time with limited GPU memory. In
testing time, ORStereo refines an initial prediction in a patch-
wise manner at full resolution. By jointly predicting the
disparity and occlusion, the recurrent residual updater (RRU)
can steadily update a disparity patch with severe occlusions.
With a special normalization and de-normalization sequence,
the normalized local refinement module (NLR) can gener-
alize to unseen large disparity ranges. Our experiments on
synthetic and real-world 4K-resolution images validate the
effectiveness of ORStereo in both low- and high-resolution
stereo reconstruction. ORStereo achieves state-of-the-art per-
formance without any high-resolution training data.
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