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Abstract— Micro Air Vehicles (MAVs) are increasingly being
used for complex or hazardous tasks in enclosed and cluttered
environments such as surveillance or search and rescue. With
this comes the necessity for sensors that can operate in poor vis-
ibility conditions to facilitate with navigation and avoidance of
objects or people. Radar sensors in particular can provide more
robust sensing of the environment when traditional sensors such
as cameras fail in the presence of dust, fog or smoke. While
extensively used in autonomous driving, miniature FMCW
radars on MAVs have been relatively unexplored. This study
aims to investigate to what extent this sensor is of use in these
environments by employing traditional signal processing such
as multi-target tracking and velocity obstacles. The viability of
the solution is evaluated with an implementation on board a
MAV by running trial tests in an indoor environment containing
obstacles and by comparison with a human pilot, demonstrating
the potential for the sensor to provide a more robust sense and
avoid function in fully autonomous MAVs.

I. INTRODUCTION

Micro Air Vehicles (MAVs) are very well suited for nav-
igation in complex environments such as indoor buildings
as a result of their lightweight, compact design and ma-
noeuvrability, making them ideal for tasks such as search
and rescue in hazardous environments and surveillance.
To ensure safe flight in such environments, the MAV is
usually required to reach a destination while also sensing
and avoiding (S&A) obstacles or people. Apart from dealing
with cluttered, GPS-denied environmental conditions, closed
tight spaces and limited visibility, MAVs are also constrained
by computational, power and weight limitations. For these
reasons, the use of cheap, lightweight, and passive vision
systems are among the most popular methods. Although
cameras are a rich source of information, they also demand
an adequate amount of computational power and sufficient
visibility conditions. In the absence of these requirements,
for example when providing aid and assistance in a smoke-
filled building, other sensors need to be considered for a
more robust solution to guarantee operation and safety.

In low-light conditions, event-based cameras, laser-based
sensors and illumination can compensate for the deficit
left by ordinary cameras. However, these systems quickly
break down in the presence of dust, fog or smoke. To
combat this, ultrasound (sonar) sensors or radar sensors
can be utilised instead. Ultrasound sensors are however
point-based and have difficulty sensing soft or curved edges
at large incidence angles [1]. Radar sensors on the other
hand have been used extensively in the last century for
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object tracking in the aerospace industry. However these
sensors have traditionally been expensive, complex, heavy
and power hungry. Only recently have all these factors
been improved upon to produce cheap, lightweight sensors
that are typically used as auxiliary sensors for applications
such as advanced driver assistance systems and ground
based applications. These new sensors come in the form
of compact millimetre-wave (MMW) frequency-modulated
continuous-wave (FMCW) radars. These radars provide the
range, bearing and radial velocity of detections [2], which
can be used for the purpose of multi-target tracking (MTT)
and ultimately avoidance. Usage of the radar sensor on small
MAVs for indoor obstacle avoidance has not properly been
established yet, and the rare existing work does not allow
for proper bench-marking.

This study will attempt to fill this gap. While physically
ideal for use on small MAVs, the major drawback lies with
the fact that the sensor is noisy, and thus requires fine-tuning
and filtering to extract meaningful data and perform S&A
functions reliably. The challenge that this paper addresses is
to implement such a filtering and tracking pipeline appropri-
ate for real-time use on a MAV. We evaluate the avoidance
capabilities in a flight arena equipped with the OptiTrack
motion tracking system, and test is on a dataset1 acquired
with ground truth positions in the same arena, containing
obstacle avoidance trials.

Section II brings into view the existing work done on
FMCW radars and integration onto Unmanned Aerial Vehi-
cles (UAVs). Section III will explain the processing pipeline
and avoidance algorithms used, followed by Section IV
giving the results and performance of the implementation.

II. RELATED WORK

The underlying technology and processing pipeline for radars
are well explored. While radar sensors are preferably not
used independently due to their lack of fidelity, a lot of
research has been done to fuse target information with vision
systems. Long et al. 2019 [3] for instance develop a system
to aid the visually impaired, which utilises a particle filter
to both fuse information and track objects using FMCW
radar, a normal camera (using a convolutional neural net) and
a stereoscopic IR camera setup, combining the advantages
of vision (object classification and identification) with the
accurate range, bearing and radial velocity measurements
provided by the FMCW radar. Kim et al. 2014 [4] and Ćesić
et al. 2016 [5] also fuse vision and FMCW radar for the

1https://github.com/tudelft/ODA_Dataset
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purpose of MTT by means of an association algorithm (joint
probabilistic data association filter - JPDAF) in combination
with a Kalman filter (KF). Both methods perform similar
functions, however a particle filter takes a fully probabilistic
Bayesian approach, while still demonstrating computational
tractability and convergence [6].

With regards to airborne applications, little has been
explored concerning close proximity obstacle avoidance,
although some studies address the use of a (often heavier
and more complex) radar as a complimentary sensor to the
Traffic Collision and Avoidance System (TCAS) and Flight
Alarm (FLARM) for integrating UAVs into the local airspace
[7]–[9]. Eric et al. 2013 [10] achieve this by only utilising a
stand-alone FMCW radar sensor using beamforming for an
increased field of view (FOV), however outdoor domain of
this application is quite different in nature from an indoor
environment. Scannapieco et al. 2015 [11] instead use a
gimbaled 94GHz FMCW radar for mapping an indoor envi-
ronment using Interferometric Synthetic Aperture Radar, and
subsequently using that for path planning, however requiring
significantly more time and processing power. Scannapieco
et al. 2015 [12] evaluate the FMCW radar sensor itself rather
than implementation for obstacle avoidance of MAVs, only
performing outdoor ground tests, and Yu et al. 2020 [13] fuse
information from a camera and FMCW radar for obstacle
avoidance, however are still very reliant on the vision system.

III. SIGNAL PROCESSING

A. Detection

Specifically, the sensor in use is a fast-chirp FMCW radar
and operates by transmitting a saw-tooth FM carrier wave
from its transmitter antenna and listening for the returns
reflected by objects in its two receiver antennas (one period is
referred to as a ’chirp’). The received signals (one per object)
are shifted to the right (a delay in time) with increasing
range, as shown in Figure 1. The transmitted and reflected
signals are then mixed to produce the intermediate frequency
(IF) signal (or beat frequency) and is passed through a low
pass filter followed by an ADC to produce the raw data of
the radar, which consists of the (I,Q) values representing
the electromagnetic wave. Fast-chirp FMCW radars feature
reduced range but better resolution compared with the tradi-
tional FMCW radars, where the chirp duration is one order
magnitude longer. Note that because of this fast-chirp nature,
the Doppler shift in frequency is negligible compared to the
shift in frequency due to range, and is not accounted for in
this step.

Following from this raw data, the IF signal is passed
through a fast-Fourier transform (FFT) (with zero padding),
which highlights the peaks representing range produced by
all objects in the FOV. Once a threshold is applied, the
detections are distinguished with their associated range using
Equation (1):

R =
cTcfb
2B

=
cfb
2S

(1)

Fig. 1. The basic principle behind FMCW radar. Top: the transmitted
(purple) and received (orange) waves of one chirp. Middle: the mixed
IF signal, showing the distinct frequencies that different objects produce.
Bottom: the first range FFT (only the magnitude shown) applied to the IF
signal, delineating the peaks.

where c is the speed of light, B is the bandwidth, fb is the
beat frequency, S is the slope of the frequency modulated
ramp and Tc is the up-chirp time. To determine the horizontal
bearing of the detections, the phases of the two antennas in
the FFT (where only magnitude is shown in Figure 1) are
compared with the use of Equation (2):

θ = arcsin

(
λ∆ωd

2πd

)
= arcsin

(
∆ωd

π

)
(2)

where d is the antenna spacing, λ is the wavelength and ∆ωd

is the phase difference between the two antennas. Note that
d = 0.5λ gives the largest FOV of ±90◦.

The radial velocity of the detected objects can also be
extracted by taking a second set of FFTs over multiple
chirps: this essentially compares the change of phase over
2 consecutive chirps, since the phase is very sensitive to
small changes in distance (essentially, a phase change is a
Doppler frequency shift). This change in phase ∆ω is given
by Equation (3), where V is the radial velocity of the target
and λ is the wavelength.

∆ω =
4πV Tc
λ

(3)

By taking a number M of IF samples instead of 2 (number
of chirps in a frame), a velocity estimate can be computed
for each individual object by taking a Doppler FFT of ∆ω
over the different chirps, creating a 2D FFT matrix shown in
Figure 2. Here objects can be resolved by both their range
and radial velocity.



Fig. 2. A 2D FFT, where the horizontal axis represents fast time (one chirp)
and the vertical axis represents slow time (one frame). After performing
FFTs on the fast time axis identifying any peaks (shaded regions), an FFT is
performed along the slow time axis to determine the phase change (Doppler
shift) of same range bin can be compared to distinguish one or multiple
peaks (objects with different velocities at same range, coloured squares).
Adapted and modified from [2].

B. Filtering

As the sensor is rather noisy, both data association and
tracking have to be employed. Data association involves
handling the detections and objects that are being tracked,
that is, first: assigning detections to existing objects and
discarding detections from clutter, second: creating new
objects when detections indicate there is a new object in the
FOV, and third: deleting objects when they leave the FOV
(when there are no new detections). These operations are
done in conjunction with the Kalman filtering (KF) process.

The first process boils down to calculating a cost ma-
trix which indicates the cost of associating a detection
to an object or clutter. For this, a simple global nearest
neighbourhood (GNN) optimisation algorithm is used [14],
which defines the cost as being proportional to the square
of the distance between the detection and prediction of
the object position (using the KF). The cost matrix also
contains the cost associated with misdetecting an object, that
is, no detections associated with the object (right side of
Equation (4) which shows the cost matrix L). Additionally,
gating is used, whereby any detections that are greater than
a threshold distance to a particular object are immediately
discarded (−`n,m = ∞). The GNN algorithm is a greedy
yet computationally efficient approach that works well for
simple scenarios. This cost matrix is then converted to an
assignment matrix by minimising the cost using an algorithm
such as the Hungarian algorithm [15].

L =

 −`
1,1 . . . −`1,m −`1,0 . . . ∞
...

. . .
...

...
. . .

...
−`n,1 . . . −`n,m ∞ . . . −`n,0

 (4)

`i,0,h = log
(
1− PD

)
(5)

`i,j,h = −1

2

(
zi − ẑi,h

)> (
Si,h

)−1 (
zj − ẑi,h

)
(6)

where n is the number of objects being tracked, m is the
number of radar detections, −`n,m represents the association
cost, and −`n,0 represents the cost of misdetecting the
object. Pd is the probability of detection, zi − ẑi,h is the
distance between the measurement and predicted location of
the object, and Si,h is the innovation covariance of the KF.
The second step is done by keeping track of all detections
within the FOV (associating them to new candidate tracks
which are also tracked with a KF). When the covariance of
the position (in the P i,h matrix of the KF) drops below a
threshold, the object is initiated (track birth) and considered
valid. Likewise, when a tracked object’s covariance rises
above another threshold (when it is misdetected multiple
times) it is removed (track death).

Once a detection has been associated with an object, the
detection is used as the measurement input (range, bearing,
radial velocity) to an ordinary KF that is run for every object
to filter out noise and estimate the tangential velocity as well,
thereby obtaining the range, bearing and their derivatives.
The KF assumes both observation noise, to account for the
sensor noise, and process noise, to account for any non-
linearities in the motion of the objects or MAV, as a constant
acceleration model is assumed.

C. Avoidance

The obstacle avoidance control method used is Velocity
Obstacles (VO), which finds the set of velocity vectors of
the MAV that will result in a collision with the object, taking
into account the radius of both the object and MAV.

The following explanation is retrieved from Fiorini et al.
1998 [16]. Consider a robot A and an obstacle B with
velocities VA and VB and radii rA and rB , as shown in
Figure 3. Mapping B onto the configuration space of A
means enlarging object B by the radius of A to form
object B̂, and reducing A to a point Â and computing
the relative velocity of robot A with respect to object B,
VA,B = VA − VB . The collision cone CCA,B can then be
formed, in which any relative velocity VA,B will result in
a collision with object B. The radar sensor will yield the
relative position and VA,B . Since the ego-velocity VA is
known, VB can also be determined.

By accounting for the velocity of robot A and its limita-
tions in maximum velocity and direction change, a desired
V̂A,B can be computed by adjusting VA,B to lie on one of
the edges of CCA,B (also taking into account any safety
margins). An absolute desired velocity of robot A, V̂A, can
then be found by addition with VB . In the case in Figure 3,
it is most beneficial to slow down and adjust the velocity
vector to the right.

D. Sensor Characteristics

The sensor used in this study is the Infineon XENSIVTM

24GHz Position2Go kit, a small 10g fast-chirp FMCW radar
that features human target detection at a range of 1-12m and
a horizontal-vertical half-power beamwidth (HPBW) FOV



Fig. 3. Robot A and moving obstacle B will collide as VA,B lies within
CCA,B , which is formed by enlarging object with the radius of robot.

of 76◦x19◦. Although this is sufficient for frontal obstacle
avoidance, objects that are moving faster than the MAV
outside the FOV still pose a collision threat, albeit less likely.
With a maximum bandwidth of 200MHz, it is able to resolve
objects 0.75m apart in range, with a range accuracy of ±
15cm and an angular accuracy of ±2◦ from 0− 20◦, and up
to ±8◦ from 20− 65◦. Strict filtering of clutter detections is
required due to the noisy nature of the sensor. Furthermore,
as the sensor only features 2 receiver antennas, and is thus
only able to detect 2 objects at a time in the same range
bin. However taking this into account in the association
algorithm, all objects in the FOV can be detected over
multiple frames (although decreasing the update frequency).

IV. PERFORMANCE EVALUATION

A. Implementation

The FMCW radar sensor was integrated and tested on a
custom made 5-inch MAV, as shown in Figure 4. Two
processing boards are integrated. The first is the Kakute
F7 flight controller running iNav 2.6.0 firmware, the second
companion computer is the Intel Up Core (1.44GHz 64bit
processor with 2GB RAM) running Ubuntu 18.04 LTS. The
latter runs the radar driver, processes the raw data, performs
the MTT and runs a custom made autopilot using ROS
(Robot Operating System) to communicate with the radar
sensor, computing the avoidance manoeuvre and relaying the
desired orientation of the MAV (pitch, roll and yaw angles)
to the flight controller (using MSP protocol), which in turn
handles the low level rate and altitude control using the
TFMini LiDAR rangefinder facing down. The radar sensor
is fixed to the front of the MAV at a slight upward tilt of
10◦ to reduce reflections from the ground.

Fig. 4. Top and front view of the MAV. Light blue indicates the FMCW
radar, yellow the Up Core companion computer, and red the flight controller
(underneath the companion computer) and the LiDAR altimeter.

Testing was done in the flying arena of the TU Delft,
equipped with the OptiTrack motion capture system for
positioning, which is relayed through UDP to the UP Core,
although concerning the avoidance algorithm, only velocity
control was implemented. Furthermore, the avoidance algo-
rithm only considers the nearest obstacle, both for simplicity
and to stimulate different avoidance scenarios. A simpler
avoidance manoeuvre was implemented whereby the MAV
simply translates approximately 1m to the side to better
approximate the flying behaviour displayed in the dataset
in which a human is flying to avoid 1 or 2 obstacles in
the flying arena. The obstacles are cardboard poles roughly
0.5m in diameter placed in the centre of the flying arena,
and avoidance was carried out from all sides and corners.

B. Results

Looking at Figure 5 and Figure 6, showing the trajectories
taken when the MAV is controlled by a human pilot versus
the on board obstacle avoidance controller using the radar, it
is evident that the FMCW radar can reliably detect obstacles
and determine when a collision is imminent, thus allowing
the MAV to safely avoid damage or injury to the MAV or
environment. On occasion the radar will struggle to track
the further obstacle due to the inherent noise of the sensor,
however when brought close enough to the obstacle the MAV
was still able to perform a successful avoidance manoeuvre.
This can best be visualised in Figure 7, which on the left
shows the ground truth trajectory and location of the MAV
and obstacles, and on the right the output of the filtering
and tracking algorithms, showing the relative paths taken
by the obstacles (Doppler information is not displayed).
First obstacle 1 comes into view (orange ground truth and
red detections), which the MAV avoids by moving to the
left (or the obstacle moving to the right relative to the



Fig. 5. Manually flown trajectories of the MAV of 78 samples from the
obstacle avoidance dataset, avoiding 2 obstacles from different angles.

MAV), followed by the second obstacle coming into view
approximately 0.7 seconds later (light blue ground truth and
dark blue detections), which the MAV avoids to the right.

As can be seen in Figure 7 on the right, the error in
tracking is most evident when the MAV changes trajectory,
which in fact represents a non-linearity in the motion of
the obstacle (or MAV) meaning it can take some steps
before the ordinary KF is able to cope with this. However
when the radar sensor would come to a complete halt, an
increase in noise around the obstacle was also observed for
approximately one second, further exacerbating the error.
This however did not impact the MAVs ability to sense and
avoid a collision. Additionally, the error in bearing and range
increases as the obstacles move towards the edge of the
HPBW FOV, which can be seen in Figure 8, showing an
approximately linear trend.

V. CONCLUSION

This work demonstrates the pertinence of using a standalone
FMCW radar sensor for the purpose of sense and avoid.
A multi-target tracking and avoidance algorithm have been
implemented on a MAV and tested on both one and two
obstacles, showing that the MAV is successfully able to avoid
them when solely relying on the radar sensor, demonstrating
that reliance on this sensor can be effective when required,
especially when other sensors fail due to the presence of fog,
smoke or flames. This will ultimately help make MAVs for
applications such as surveillance and search and rescue safer
and more reliabl

To better detect obstacles in cramped spaces, 77GHz
FMCW radars can be used, which feature improved band-
width and resolution, allowing for more accurate detection of

Fig. 6. 26 sample trajectories of the autonomously controlled MAV using
the radar sensor.

Fig. 7. Illustration of what the FMCW radar sensor detects after filtering
and tracking (right) when following the sample trajectory on the left. The
grey lines indicate the HPBW FOV of the radar (78◦) and the ground truth
position is shown in both figures (orange and light blue paths)

obstacles and perhaps classification of walls as well, however
requiring a more robust and computationally expensive data
association algorithm capable of clustering detections (e.g.
DBSCAN [17]). Other FMCW radar sensors also incorporate
more than two receiver antennas (allowing for more detec-



Fig. 8. Data from 4 trials showing the approximately linear trend of the
error in bearing and range as the object moves further from the centre of
the radar.

tions per scan) or beamforming (scanning a larger FOV).
While this study has demonstrated that sense and avoid
using a standalone radar sensor can be very useful, it is best
used when fused with other sensors when circumstances and
conditions allow (even with event-based cameras which can
operate in low-light environments, as shown by Zhang et al.
2019 [18] who fuse the sensors in an EKF to compensate
for the error bounds produced by both sensors.

SUPPLEMENTARY MATERIALS

The ROS implementation our radar-based navigation
system can be found here: https://github.com/
tudelft/radar_nav, along with supporting videos. The
Obstacle Detection and Avoidance dataset is available at:
https://github.com/tudelft/ODA_Dataset.
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