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Abstract—General purpose simulators provide cheap training
data to learn complex robotic skills. However, the transition
from simulation to reality is often very challenging for the
agent. One major issue is the delay on the physical robot
that may deteriorate the performance of the deployed agent.
Furthermore, once a successfully trained learning-based control
policy is available, re-purposing the knowledge acquired by the
agent to enable a structurally distinct agent to perform the same
task is hazardous if done naively. In this work, we address the
above issues with a single method, the DA-UNN (Delay Aware
Universal Notice Network), which decomposes the knowledge
into robot-specific and task-specific modules for fast transfer.
Our framework deals with delays immanent to physical systems
in order to improve sim2real transfer. We evaluate the efficiency
of our approach using simulated and actual robots on a dynamic
manipulation task where delay management is crucial.

Index Terms—Transfer learning, Sim2real, Reinforcement
learning, Robotic task, delay

I. INTRODUCTION

The Reinforcement Learning (RL) field has been success-
fully applied to a wide range of problems in the past years,
demonstrating both its versatility and efficiency. From reach-
ing human-level control on Atari games [1] to beating world
class champions at complex games [2], [3], the RL field is
full of promises. The robotic domain also benefited from the
tremendous progresses made in RL as shown in recent work
for quadruped robots [4] even succeeding in very intricate
manipulation tasks such as solving a rubik’s cube with a
shadow hand [5]. However, despite great achievements, RL
suffers from very low sample efficiency, which means that a
large amount of interactions with the environment is needed
to obtain a high-performance policy. One way to mitigate this
issue is through the use of transfer learning which alleviates
the burden of training models from scratch by re-purposing
knowledge acquired on another domain.

Nevertheless, in the context of RL, the neural network ar-
chitectures are too shallow and do not encourage knowledge
segmentation as it is often the case in large Computer Vision
models [6]. As a consequence, if no particular precaution
is taken, the unconstrained backpropagation procedure may
result in an entangled knowledge representation. In this
setting, it is difficult to determine which part of the network
is relative to the task or the robot, making a partial or total

transfer of the policy network hazardous if done naively and
with very low chances of success.

Fig. 1: Transfers considered. UNN module is trained with
the BAM robot and then transferred to all robots. Vanilla
agents are trained directly on the simulated robots and then
transferred on the corresponding physical robots.

The UNN (Universal Notice Network) framework intro-
duced in [7] tackles this issue by implementing the idea
of knowledge segmentation between the agent and the task.
More precisely, the purpose of the UNN framework is to
enable multi-task and multi-robot transfer by creating a
reusable and robot-agnostic module of skills. Previous work
[7] already demonstrated the efficiency of UNN transfer in
simulation on a wide variety of tasks and robots morphology,
exhibiting zero-shot performance in some cases. By applying
the same transfer method on real world robots, we wish to
find out if results obtained in simulation generalize well to
the real world.

However, simulation to real world transfer (also called
sim2real in the literature) is still an open problem. In general,
simulations are imperfect and difficult to calibrate. The
resulting modeling discrepancies cause a reality gap, which
makes the transfer of RL policies from simulation to the
real-world non-trivial. Sim2real is especially appealing as it



offers an efficient alternative to expansive real world data
collections for learning complex robotic skills by training
in a general-purpose simulator. However, most of the time,
methods focus solely on domain adaptation between the
real world and the simulation [8], [9]. They tend to ignore
troublesome hardware specific issues such as control latency
induced by medium of data transmission, computation delay,
sensor sampling rates (etc.) unmodeled in the simulator.
Consequently, the policy obtained by training in simulation
could be drastically disturbed once transferred in the real
world if the task requires short reaction time.

In this paper, we consider the time delay associated with
the physical system as another model’s input by including
it in the observed state. At training time, we randomize
the value of the delay and show that the agent is able to
adapt to multiple delays on a dynamic and delay-sensitive
manipulation task. Our contributions are as follows:

1) We present and evaluate a delay-aware method to
deal with the immanent delay on real hardware, thus
furthering the adaptation capabilities of the UNN.

2) We evaluate the benefits of the UNN multi-robot trans-
fer method over a vanilla transfer on real world robots.
A pool containing four differently shaped real and
virtual robots will solve a dynamic manipulation task
they have not been trained on, by using the knowledge
created by another agent as depicted in Figure 1.

II. RELATED WORK

Transfer learning in RL has been recognized as an impor-
tant direction towards building more sophisticated agents. For
instance, multi-task learning aims at improving robots versa-
tility via methods such as meta-learning [10], [11]. Another
interesting approach is to hierarchically decompose complex
problems into tractable, simpler and reusable modules of
skills through the use of concept networks [12].

Transfer between morphologically distinct robots on the
other hand, is currently less studied in the scientific literature.
A method proposed in [13] encapsulates and leverages skills
learned by a task expert by using GAN’s discriminators as
support for the knowledge transfer. Work by Gupta and Devin
[14] presents a method to learn an invariant feature space for
transferring skills between different robots. Other work by
the same authors [15] uses a modular approach by training
policy modules that are decomposed over robots and tasks.
By doing so, they address both multi-robot and multi-task
transfer by re-combining these modules to form a policy,
with minimal additional re-training. Multiples combinations
of robot-task pairs are trained together to create a latent space
common to all modules. The UNN method used in this work,
while very similar, differs from the prior method by explicitly
defining the state shared between the task-specific and robot-
specific modules. This choice suppresses the need of relying
on a shared latent space between robot and task which may be
prone to over-fitting if the number of available modules is too
low. Furthermore, in the UNN framework, the task module
can be trained separately and only once, thus creating a truly

robot-agnostic module while saving the time and trouble of
having to train multiple possible pairs of the training set.

Several methods has been proposed to deal with delays
in robotic. In [16], the authors proposed a neural network
based method to address the control delay issue. A predictor,
approximated by a neural network, must infer the current
state of a fast moving robot by observing a vector of stacked
outdated states. To account for the imperfect actuators of
the real hardware, authors of [5] introduced action delays
with a probability of 0.5 at the beginning of every simulation
training episode of a neural network with a LSTM layer. By
doing so, they force the memory enhanced neural network
to adapt to action delays. A cornerstone paper in RL with
delay [17] learns a model of the undelayed Markov Decision
Process (MDP) to simulate the most likely state in which
the agent currently is, given the last observed (delayed)
state and the k last actions taken since, k being the delay
in timestep. This allows the agent to take decisions based
on the expected current state rather than an outdated state,
effectively undoing the harmful effect of delays. They also
introduced the concept of Constant Delayed MDP used in
section IV-A. Ramstedt and Pal [18] studied real-time RL by
taking into account the computation time needed to select an
action (supposed inferior to one time step). Their proposed
algorithm, Real-Time Actor-Critic, additionally takes as input
the action from the previous step in order to compensate the
one-step action delay. However, previous methods are not
suited for transfer between system with different delays. The
agent must learn again from scratch whenever the system
delay changes contrarily to our proposed method.

III. UNIVERSAL NOTICE NETWORK

Fig. 2: Schematic representation of the UNN [7]
.

A. The UNN pipeline

Instead of learning a single policy that will have to handle
both robot control and task resolution, the UNN method [7]
relies on an explicit decomposition between task-specific and
robot-specific knowledge as depicted in Figure 2. In this
modular approach, a model of the task, the UNN (Figure 2)
is created in such a way that any robot, regardless of
its morphology, number of articulations or actuators can



efficiently benefit from it. This is similar to creating a notice
containing a set of high level instructions, that any kind of
robot could follow to solve a given task. It is primary to
ensure that the robot has the mobility and capacities required
to comply with the UNN instructions and accomplish the
task. Defining R the set of feasible actions the robot can
produce and U the set of actions required by the UNN to
perform a task, we assume in this paper that the robot can
perform the required actions, as sum up in:

U ⊆ R (1)

Once this assumption is verified, two conditions are essential:
• First, the UNN module must be robot-agnostic to enable

multi-robot transfer. This implies that robot-specific
observations have to be translated into a feature space
shared by the considered robots before being fed to the
UNN module.

• Secondly, it is necessary to design a controller that will
map the UNN commands from the shared feature space
into low-level, robot-specific actions that the robot can
execute.

These two requirements are handled by two additional mod-
ules inherent to the robot morphology called the bases. They
are paired with the UNN and serve as an interface between
the robot and the task module. More formally, the three
modules form a pipeline composed of the input base mr

i

and the output base mr
o, specific to the robot, which handle

respectively the first and the second conditions, and the UNN
mT

u robot-agnostic and specific to the task only. In this
setting, the state vector that is provided by the environment at
each timestep can be split into two parts sr, sT , respectively
holding data intrinsic to the considered robot and task-related
information, independent from the agent. The input base mr

i

receives sr to compute:

sU = mr
i (s

r) (2)

which can be considered as robot-agnostic. The input base
mr

i is thus responsible for mapping the robot space to the
shared feature space where the UNN operates. The next
processing stage is the UNN module (i.e. the task module),
conditioned by the task related observation sT and the
processed agent representation vector sU . It then computes:

oout = mT
u (s

T , sU ) (3)

where oout is the command vector in the shared feature space.
Finally, oout is then re-mapped to the robot space by the
output base with the following transformation:

ar = mr
o(o

out, sr) (4)

which yields ar the effective action taken by the robot. In
other words, the UNN module focuses solely on solving the
task at hand, ignoring low level considerations such as the
robot’s DoF and shape, handled by the bases. This approach
makes it possible to create a reusable module of skills that
can be transferred to structurally different robots as long as
their bases are available. It is then possible to build a library

of UNN modules and robot’s modules, draw any subset of
interest from it and combine a UNN/Bases pair into a novel
fully functional policy.

B. Modules training

In practice, each of the three sub-modules mr
i ,m

T
u ,m

r
o

can be either learned or obtained via analytical methods.

1) Bases modules: In the case where bases are obtained
using neural networks, they can be trained on a suitable
primitive task to acquire basic motor skills. Another
alternative is to collect a dataset of trajectories of the
robot and fit a regression model with supervised learning
techniques. A last alternative, used in this work, consists to
use analytical models for the robots bases.

2) UNN module: The UNN module (or task module) can
be trained with or without the bases modules. In the first
case, the UNN is coupled with a robot and its associated
bases. The UNN interacts with the environment through the
bases and its error on the task is back propagated through
the network. In this case, we affect only the UNN module
weights. However, the UNN module may then take advantage
of the robot hardware structure to achieve the task (for
instance, blocking an object between two articulations). As a
consequence, the UNN may favor certain body configurations
which may be detrimental for transfer. This issue is solved by
using the Base Abstracted Modeling (BAM) method [19]. It
assimilates the robot to its effector by setting mr

i and mr
o to

identity mappings, thus making no assumption on the robot’s
constitution and preventing any bias related to the bases. This
is equivalent to considering a purely virtual and free-flying
robot. Using BAM enables faster convergence of the policy
and a more defined knowledge segmentation, which in turns
improves UNN transfer.

IV. DELAY AWARE UNIVERSAL NOTICE NETWORK

A. Constant Delayed Markov Decision Process

The standard UNN proved its efficiency and versatility
on a broad panel of tasks in simulation. However, these
results were obtained with perfect robots (e.g no offset and no
delay) acting in a standard Markov Decision Process (MDP).
Traditionally it is assumed in RL that at every timestep,
the environment pauses while the agent receives the current
observation, in order to derive an action that will be executed
without delay. Of course, things do not behave this way in
the real world. All agent observations and actions are delayed
by an amount depending on the hardware used for the task.
Therefore, an agent trained in simulation without exposition
to delays will perform worse or even fail in the real world if
no precaution is taken.

This brings up the need to adopt a different decision
process modeling to solve tasks in the presence of delay. As
we consider the delay to be constant, we found the Constant
Delay MDP formulation introduced in [17] to be well suited.
A CDMDP defines the delay d as the number of timesteps
between an agent occupying a state and receiving its feedback



from the environment, where d ∈ R+. The delay is assumed
to be part of the environment. A known result in CDMPD is
that observation delay and action delay are equivalent from
the agent’s point of view [20]. Hence, we treated the total
delay as being entirely caused by observation delay (see
Figure 3).

Fig. 3: Schematic representation of the delay aware UNN.
Observations are queued into a pile of length d and each
timestep, the observation at the top is fed to the agent (first
in, first out).

B. Delay Aware UNN

A CDMDP can be transformed into a regular MDP by
enlarging the state space with a history of the d last actions
taken since the last observation. This transformation allows
theoretically to derive an optimal policy for the CDMDP
considered [21]. However, this approach does not allow direct
transfer between systems with different delays as the input
dimension depends on d. In this work we address the delay
issue by augmenting the state space of the UNN module
with the estimated delay of the system and by training the
agent on a corresponding delayed environment as depicted in
Figure 3. A key feature of the UNN is its ability to adapt to
any robot regardless of its morphology. To keep this idea of
“universality”, the delay was randomized during training to
ensure that the UNN can adapt to a wide range of delay. By
giving it access to the immanent delay, we enable the UNN to
act accordingly and to develop predictive capabilities. Thus,
we add d to the task specific observations.

During training, the delay is sampled regularly from a dis-
crete uniform distribution as U(dmin, dmax) where dmin and
dmax are respectively the minimum and the maximum delay
considered for the environments. Since there is no assumption
about the systems, we assumed a uniform distribution of the
delay. But any knowledge could be used to deduce a better
delay distribution. When deployed, the identified delay of the
system is fed to the UNN, so it can act accordingly. While
our approach can only yield sub-optimal CDMDP policies
due to the incomplete state space considered, we believe that
it represents an interesting trade-off between optimality and
flexibility. This very simple method can improve drastically
the performance of an agent on a delayed MDP as presented
in section VI, given that the delay has been accurately

determined and is suited for transfer on systems with different
delays.

V. EXPERIMENTAL SETUP

A. System Architecture and Robots

In this section, we briefly present the different robots
adopted throughout these experiments. We tested our method
on both physical and simulated robots to demonstrate its
efficiency and versatility. The physical robots used were a
serial arm braccio robot with 5 DoF and a 4 DoF serial arm
(see Figure 4b). These DIY robots are cheap and usually hard
to work with, given their low reliability. Still, we manage to
use them efficiently in our experiments. We also considered
their simulated counterparts (see Figure 4a).

To sum things up, 5 different kinds of robots were used:

• BAM: the virtual BAM robot with the identity bases.
• Robot 1: the virtual braccio robot.
• Robot 2: the virtual 4 DoF robot.
• Robot 3: the physical braccio robot.
• Robot 4: the physical 4 DoF robot.

Significant offset was present in the robots joints, making
each movement inaccurate. In this regard, the offsets first
needed to be identified, in order to use analytical models
efficiently on both physical robots.

(a) Robot 1 (left) and 2 (right). (b) Robot 3 (left) and 4 (right)

Fig. 4: Robots considered for the experiments

A fixed webcam was used to obtain the required pose
estimations with OpenCV. The control frequency was 10 Hz,
which means the agent was observing the environment state
and acting every 0.1 second. The nominal delay was in
average 300 ms on the physical systems. We identified the
delay by measuring the time between a command send to the
robot and the observation by the agent that the robot moved.

On the simulation side, agent’s training was performed
in simulation using the Unity physic simulator with the
ML-agent package introduced in [22], a set of convenient
tools for RL with a complete and reliable implementation
of several RL algorithms. The PPO algorithm [23] was
used to create the neural network policies, as it provides a
monotonous performance improvement while being perfectly
adapted to continuous action spaces. On-policy algorithm are
also known to deal better with delays. We trained four kinds
of agents:



• Delay Aware UNN Agent: The BAM virtual robot
is trained in simulation with exposition to randomized
delays to create the UNN.

• Delay Aware Vanilla Agent: The agent is trained from
scratch directly on the simulated robot, with exposition
to randomized delays.

• Finally, we also considered their delay unaware coun-
terparts, trained without exposition to delays, in order to
display the benefits of our delay management approach.

These agents will be used for the transfers detailed in section
VI-B (see Figure 1).

B. Task description

We display our method benefits on a 2D manipulation task
(planar task), where a robot needs to keep a ball at a desired
position on a gutter. In this regard, only 3DoF were required
for the physical robots (base rotation and wrist roll unused).
To further increase the gap between both robots, the Robot 4
was used as a 2 DoF robot (wrist pitch unused). The gutter
is fixed at one end and held at the other end by the robot’s
effector which therefore decides of its orientation and, as a
consequence, of the position of the ball (see Figure 5). This
task can be formalized with the following MDP:

State: st ∈ R4+1: the ball position and velocity on the
gutter, the effector height, the desired ball position and the
system delay d for the delay aware agents.

Action: at ∈ Rn is the target joints position (n being
the number of considered joints). However, the vanilla agent
was not making any progress with a full access to the action
space. Indeed, to balance the ball on the gutter, it is first
needed to hold it properly. These desired body configurations
are just a fraction of the full state space and it is very unlikely
to discover them without any prior knowledge of the task. To
ease the vanilla agent learning process, its action space was
constrained to output joints offsets values w.r.t a reference
joints position which maintained the gutter in an equilibrium
position.

Reward:

rt =

{
r − β|θe| if ddes,b < δ
−αddes,b − β|θe| else (5)

where r is a small positive reward, δ is the positive reward
area and ddes,b is the distance between the ball and the de-
sired ball position. |θe| is the angle between the effector pose
and the vertical plane, α and β a weighting constant. This
penalty ensures that the effector is in the right orientation to
hold the gutter properly for the vanilla agent. The effector
orientation constraint for the UNN is handled by the output
base, which means that β is set to zero when training the
UNN.

C. Delay Aware UNN creation

Creating the UNN module means training an agent to
balance the gutter and keep the ball at the desired position.
As the BAM method showed better transfer results [19], we
decided to use it to create the UNN module. In this setting
the robot is assimilated to its effector and the UNN output

Fig. 5: Physical experiments setup. Left robot will perform
the task, while the right robot is used only to hold one end
of the gutter.

oout ∈ R is a single value indicating at what height below
or above the horizontal reference position of the gutter the
effector should be. To take actions, the agent observes sT ,
specific task information, as well as the effector height given
by mr

i (s
r). For this task, we chose the intermediate state

su and oout shared between the UNN module and the bases
to be the effector position. The UNN module was receiving
an extra input d ∼ U(0.1, 1) representing the current delay
of the system during training. A delay range between 0
and 1 is recommended as it corresponds to a normalized
input. In our case, it also corresponds to our actual delay in
second, with 0.1s being the smallest delay possible for our
control frequency. The delay was created on the simulator by
stacking the observations in a FIFO buffer, before feeding
them to the UNN module.

VI. RESULTS

In this section, we present our results both on training and
transferring on the chosen manipulation task. In particular,
we compare the UNN agents with the vanilla agents with
and without delay awareness. For further experiments, delay
was added artificially to the real system with the same FIFO
method seen in section V-C. All the hyper-parameters used
during training are available in appendix A. A description of
the robot morphology is presented in B. Code can be found
at github.com/sabeaussan/DelayAwareUNN. Videos showing
our results are available here.

A. Training

During the training, the desired ball position and system
delay (for delay aware agents) were regularly changed to im-
prove the adaptive capabilities and re-usability of the UNN.
More precisely, a new delay d was sampled from U(0.1, 1)
every 15 episodes. The desired ball position given to the
model, varying between 20% and 80% of the gutter length,
was also sampled from a uniform distribution U(0.2, 0.8)
every 1000 training steps. Both the BAM agents and the
Vanilla agents were trained for 4 millions steps. Figure 6
shows the cumulative reward obtained per episode. Only
the term ddes,b (distance between the ball and the desired
position) common to both reward functions was considered
for the comparison, as it reflects the agent overall progression

https://drive.google.com/drive/folders/1ajKr8BuYMU8IPPkdsm8T5Wrao6eiy6bJ?usp=sharing


on the task. As shown in Figure 6, the BAM agents in both
settings converge slightly faster than their vanilla counter-
parts. The BAM agents focus solely on the task, leaving robot
specific considerations to their bases. This decomposition of
the learning problem similar to hierarchical RL eases the
learning process. It is also worth noting that introducing
varying delay during training reduces the convergence speed,
as the task becomes more challenging. However, in the
UNN framework, this training overhead is outweighed by
the increased reusability of the UNN module.

Fig. 6: Training curves. All the agents were trained for
400000 steps.

B. Transfer

There is two kinds of transfer to consider: simulation to
real robot transfer and robot to robot transfer. The UNN
framework mitigates the sim2real transfer problem by con-
sidering the real robot and the simulated one as two different
robots, each one with its own bases, thus partially addressing
the sim2real transfer as a robot to robot transfer. In this
section we evaluate two methods of transfer

• UNN transfer: Once trained to convergence with the
BAM robot, the UNN module is transferred to each
robot of the set.

• Vanilla transfer: The vanilla agents trained on the
simulated robot are directly transferred to their physical
counterpart. This will serve as a baseline to study the
UNN benefits for sim2real transfer.

The performance metric used was the integral of the absolute
value of the error between the ball position and the desired
ball position over time: ∫

t

ddes,b dt (6)

Where ddes,b is the distance between the ball and the
desired ball position. This metric has the advantage of taking
into account both settling time and the steady state error
(the closer to 0, the better). For a fair comparison, each
experiment has been conducted with the same settings (same
initial ball position and desired ball position). Performances

displayed in Tables I and II were averaged over 50 episodes.

Robots/Delays 0.3 0.5 0.7
BAM 3.12 / 15.57 3.94 / 22.57 4.91 / 25.28
UNN Robot 1 3.26 / 11.84 3.96 / 20.12 4.98 / 23.48
UNN Robot 2 3.43 / 12.21 4.19 / 18.47 5.10 / 21.19

TABLE I: Sim2sim transfer. Performances obtained for the
UNN transfer on the simulated robots. Results are displayed
with delay aware method on the left / delay unaware method
on the right.

1) Influence of delay: In this part, we evaluate the first
contribution of this work: our delay management method,
on both simulated and physical robots. Three delays were
considered for the experiments: 300 ms (corresponding to
the delay on the physical system), 500 ms and 700 ms. Fig-
ure 7 shows ball trajectories for the three delays considered,
obtained by the UNN agents on robot 1 (virtual braccio
robot) and 3 (physical braccio robot). On the simulation
side, we added an optimal trajectory obtained with the delay
unaware UNN agent acting on an undelayed environments
to serve as a reference (see Figure 7a). The same agent was
then exposed to the delays considered to study how quick
performance deteriorates for unaware agents as the delay
increases. As shown, agents not exposed to delays during
training completely failed and systematically overshot when
trying to get the ball at the required position in delayed
environment. Figure 7b emphasizes the inability of the delay
unaware agents to cope with the physical system immanent
delay (300 ms) as the ball starts oscillating. Moreover, as the
delay increases, the delay unaware agents tend to become
unstable. As for delay aware agents, in the simulation, they
still manage to follow closely the optimal trajectory.

Table I shows the performances obtained in sim2sim
transfer with the UNN agents on both delay aware and
unaware settings. It is shown that delay aware agents perform
from 3.5 to 5.72 times better than their unaware counterparts.
It is also clear from looking at Figure 7b and Table II, which
shows the average performance after sim2real transfer, that
dealing with delay in simulation greatly improves the results
of the UNN agents once deployed on the physical robots.
Vanilla agents also benefited from this delay management
method, as shown in Table IIb, demonstrating the versatility
of the proposed method.

2) sim2sim transfer: In this paragraph, we discuss the
results obtained when transferring the delay aware UNN
module from the BAM robot to robots 1 and 2 in simulation.
We also compare the performance obtained against delay
aware vanilla agents which learned the task from scratch on
robots 1 and 2. As shown in Tables I and IIb, UNN-based
approachs slightly outperform the policy of the vanilla
agents for the robots and delays considered. We want to
emphasize that the UNN module has been trained only once
and on only one robot, the BAM robot, but still performs
better than the vanilla agents specifically trained on robots 1



(a) UNN Robot 1 (b) UNN Robot 3

Fig. 7: Ball trajectory with 0.3, 0.8 and 0.5 as desired ball position.

Robots/Delays 0.3 0.5 0.7
BAM 3.12 / 15.57 3.94 / 22.57 4.91 / 25.28
UNN Robot 3 4.78 / 9.88 5.05 / 22.32 8.02 / 24.43
UNN Robot 4 5.86 / 15.72 7.45 / 22.42 8.76 / 24.41

(a) UNN transfer: BAM → robot 3 and BAM → robot 4

Robots/Delays 0.3 0.5 0.7
Vanilla Robot 1 3.32 / 17.33 4.22 / 26.17 5.56 / 31.48
Vanilla Robot 3 5.43 / 19.65 5.97 / 28.22 9.33 / 33.43
Vanilla Robot 2 3.78 / 18.63 4.81 / 26.45 6.16 / 32.48
Vanilla Robot 4 7.58 / 21.13 9.55 / 27.05 10.62 / 33.82

(b) Vanilla transfer: robot 1 → robot 3 and robot 2 → robot 4

TABLE II: Sim2real transfer. Performances obtained for the
vanilla transfer and the UNN transfer on the physical robots.
Results are displayed as delay aware method on the left /
delay unaware method on the right.

and 2. These results demonstrate the appealing re-usability
and effectiveness of the UNN module. In some cases, the
delay aware UNN agents achieve zero-shot performances
(e.g robot 1 on delay 0.5). In the worst case, the transfer
efficiency is 90.9% (3.12/3.43), 100% being the performance
obtained by the UNN module on the BAM robot. In average,
the transfer efficiency is 97.7 % for robot 1 and 93.7% on
robot 2. Ideally, the UNN module paired with any of the
robots would yield similar performance as with the BAM
robot if equation (1) was respected. However, in some cases
the body configurations required to comply with the UNN
commands are not precisely achievable by the robot. For
instance, the desired effector position need some of the
joints to rotate beyond their limits. This also explain why the
UNN transfer is less efficient on the 2 DoF robot, as it is less
expressive and has a harder time following UNN commands.

3) sim2real transfer: In this paragraph, we study the UNN
methodology as a sim2real transfer tool. More specifically,
we compare the performance obtained after transfer on the
physical robots for Vanilla agents and UNN agents. In this
case, both the UNN module obtained on the BAM robot and

the vanilla agents obtained on the simulated robots, were
transferred to the physical robots. As shown in Figure 7,
the UNN agent on robot 3 still manages to put the ball
at the desired positions without too much overshooting.
Table II shows the results obtained. As usual, the agents
trained in simulation and transferred to the real world show
lower performance than their virtual counterparts due to the
reality gap. However, they still manage to obtain decent
performances. One notable result is that the delay unaware
agents transferred to the physical robot obtain very poor per-
formance unlike their delay-aware counterpart. Once again,
UNN based agents outperform vanilla agents. Moreover, the
UNN based transfer reaches up to 78% (100% corresponds
to the BAM performance) in the best case, while the vanilla
transfer reaches 70.6% (100% corresponds to the vanilla
agent on robot 1). In average, the UNN sim2real transfer
efficiency is 68% on robot 3 and 54% on robot 4, against
63% on robot 3 and 52.7% for robot 4 for the vanilla
sim2real transfer. As mentioned earlier, this slight sim2real
improvement can be attributed to the robot-agnostic nature
of the UNN module. Indeed, even if the vanilla agents were
trained in simulation with a virtual copy, it remains an
inaccurate model of the physical robot. The UNN on the
other hand ignores those discrepancies by considering the
physical robot and the virtual one as two different robots,
each with their own bases.

C. Discussion and perspectives
From the previous results, it appears clearly that the

delay management method used considerably improves the
performances when working with delayed environment, as
its often the case on the real world. Moreover, the UNN
approach not only achieves very efficient transfer between
robots in simulation, but slightly improves sim2real transfer
over vanilla transfer. However, the zero-shot sim2real transfer
efficiency is nowhere near what was obtained for the sim2sim
transfers but further training could be done on the physical
robots to achieve better performance. As aforementionned,
the UNN mitigates the sim2real transfer by considering the
physical system as just another robot that can be interfaced



with the UNN module. Nevertheless, the UNN module which
was trained in simulation can still overfit on its environment.
As a result, the instructions given can be unsuitable if it is
placed in a new domain with a slightly different state dis-
tribution, e.g the real world. Fortunately, the UNN approach
can be combined with state-of-the art sim2real methods such
as automatic domain randomization [5] to improve sim2real
transfer.

VII. CONCLUSION

In this work, we studied the benefits of the UNN transfer
for a sim2real application. More specifically, we addressed
the delay management problem that occurs when working
with a physical system by making the UNN “aware” of the
latency of the system it is working with. By doing so, we
extended the versatility of the UNN method and the range of
compatible systems. We demonstrated this method efficiency
by solving a dynamic manipulation task where delay manage-
ment is paramount and showed that transfer across systems
with heterogeneous delays and structurally distinct robots is
possible. However, the UNN approach only is not sufficient
for efficient sim2real transfer, but could be enhanced with
other sim2real methods. This work empirically demonstrated
the feasibility of our approach on a low dimensional task.
Future work will investigate the efficiency of our delay-
management method on a higher dimensional task.
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APPENDIX

A. Neural network parameters

The neural networks used for the UNN module were
feedforward networks with 2 hidden layers of 128 units each.
The activation function used was the Swish function [24].
For the PPO algorithm, the discount factor γ is 0.99, the
clipping hyperparameter ε is 0.2, the learning rate was 3.10−4

with a linear decay. The batch size was 1024, the buffer size
was 12000 and the number of epoch was 5. The Generalized
Advantage Estimation [25] method was used to compute the
advantage function with λ = 0.95. For the reward function,
r = 0.3, α = 0.4 and β = 0.03

B. Robots morphology

The robots’s servomotors were MG995. See below for
robots link lengths :

Fig. 8: Robots links lengths.
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