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Abstract— Automation of excavation tasks requires real-time
trajectory planning satisfying various constraints. To guar-
antee both constraint feasibility and real-time trajectory re-
plannability, we present an integrated framework for real-
time optimization-based trajectory planning of a hydraulic
excavator. The proposed framework is composed of two main
modules: a global planner and a real-time local planner. The
global planner computes the entire global trajectory considering
excavation volume and energy minimization while the local
counterpart tracks the global trajectory in a receding horizon
manner, satisfying dynamic feasibility, physical constraints,
and disturbance-awareness. We validate the proposed planning
algorithm in a simulation environment where two types of op-
erations are conducted in the presence of emulated disturbance
from hydraulic friction and soil-bucket interaction: shallow
and deep excavation. The optimized global trajectories are
obtained in an order of a second, which is tracked by the local
planner at faster than 30 Hz. To the best of our knowledge, this
work presents the first real-time motion planning framework
that satisfies constraints of a hydraulic excavator, such as
force/torque, power, cylinder displacement, and flow rate limits.

I. INTRODUCTION

Automation of heavy machinery, especially hydraulic ex-
cavators for its versatility, has been a steady research topic
over a few decades. Various types of tasks, for example,
soil digging [1, 2], rock moving [3, 4], and truck loading
[5], are studied for excavator automation. To perform one
of the most fundamental operation among such tasks, soil
excavation, trajectory planning complying to operational
constraints (e.g. swept volume constraint during digging
or bucket tip pose constraint during grading) and physical
constraints (e.g. actuator force/torque limit, pump flow rate
limit, or power limit) is essential. To achieve such objective
of planning a constrained reference trajectory, trajectory
optimization has been widely applied [6–9]. However, since
most existing works via trajectory optimization optimize
the entire trajectory at once offline, they are vulnerable
to instantaneous disturbance during operation. Furthermore,
external disturbances to hydraulic excavators such as soil-
bucket interaction and hydraulic friction are usually in-
tractable and unignorable; accordingly, such unmodelable
dynamics could result in sub-optimality and even constraint
violation. Therefore, a new trajectory planning approach to
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Fig. 1: Excavator configuration of Hyundai HX300L. An excavator
not in drive consists of four rotating rigid bodies: 1© Cabin, 2©
Boom, 3© Arm, and 4© Bucket. The configuration can be defined
either with four joint angles qθ = [ψU θB θA θK ]> or with
one joint angle and three hydraulic cylinder displacements qL =
[ψU LB LA LK ]>.

consider constraints and compensate real-time disturbance is
required.

A. Related work

We classify studies on excavator trajectory planning into
three classes: 1) trajectory-optimization-based approach, 2)
receding horizon optimization-based approach, and 3) non-
optimization-based approach.

Given a specified cost function, constraints, and system
dynamics, trajectory optimization generates an optimized
trajectory in the defined state and input space which sat-
isfies a set of constraints and system dynamics. Thanks to
this property of explicit satisfaction of constraints, [6, 7, 9]
successfully reflect the system dynamics with force/torque
input, operational constraints, and physical constraints while
minimizing overall effort or operation time. However, con-
sidering that optimization over the entire trajectory entails
burdensome computation in general, the trajectories are usu-
ally parameterized using relatively simple kernel functions
[7, 8]. Additionally, although soil model is employed to
consider soil-bucket interaction forces [7, 9], the actual soil-
bucket interaction may not be suitably addressed. There
also exist studies regarding trajectory optimization of a new
platform, e.g. a walking excavator [10, 11]. Nevertheless,
unlike other studies for conventional hydraulic excavator,
they focus on planning and control of locomotion using
newly added degrees of freedom (DoF) which is out of our
scope.

As a variation of trajectory optimization, receding horizon
trajectory optimization or model predictive control (MPC),
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Fig. 2: Flow chart for algorithm overview. Feedback signals are
drawn with dashed lines.

which optimizes trajectory in a receding horizon manner, is
introduced [12, 13]. [12] applies offset-free MPC to track the
reference trajectory even in the presence of soil interaction
disturbance while satisfying input box constraints. However,
only decoupled dynamics, each with single input and no
state constraints, are considered in MPC. In [13], MPC is
implemented for trajectory planning of an excavator, but
system dynamics is modeled only with a double integrator,
and the computation time seems to be insufficient for real-
time application (≈ 3.3 Hz).

Different from trajectory optimization, [14] computes a
kinematically feasible reachability map of the bucket pose
and linear movements offline. In [1], the authors apply
dynamic motion primitives (DMP) to plan a trajectory which
emulates experts’ operation while being robust to various soil
conditions. However, since these approaches cannot explic-
itly consider constraints, violation of constraints, especially
physical constraints, can occur. To handle such physical
constraints, studies with a walking excavator [15, 16] present
a hierarchical optimization-based controller. Nevertheless,
feasibility cannot be always guaranteed due to the imposed
hierarchy among constraints, and nonlinear constraints such
as power constraint may not be directly considered in the
optimization. In [15], additional force controller tracking a
force reference instead of a position reference is implemented
in simulation to adjust to unknown soil conditions.

B. Algorithm overview

To address both operational constraints and physical
constraints in the presence of external disturbance during
excavation, we present an integrated planner consisting of
an online global planner and a real-time local planner as in
Fig. 2. Considering that the global planning does not require
any measurement feedback, the integrated planner can be
executed in real-time if the global planner is computed within
the trajectory run time.

In the global planning phase, a small-sized nonlinear
optimization problem with a reduced number of constraints
is solved. The obtained global trajectory is tracked by the
model-predictive-control-based local planner, which plans
high-fidelity local trajectories. The local planner runs along-
side with a disturbance estimator, and takes the estimation
results into consideration. To the best of our knowledge,
this work is the first real-time trajectory planning frame-
work for autonomous excavation with guarantee of dynamic
feasibility, physical constraint satisfaction, and disturbance-
awareness. We summarize our main contributions as follows:
• Integration of global planner and local planner for

considering both operational and physical constraints.

• Formulation of the global trajectory optimization prob-
lem of the reduced dimension, which permits computa-
tion time shorter than a few seconds.

• Real-time constrained trajectory generation considering
external disturbance.

II. EQUATIONS OF MOTION

A. Kinematics

Let FB and FC be the base frame and cabin frame
where the base frame’s relative orientation is defined by the
ground slope, and the orientation of FC differs from that
of FB by the amount of swing rotation. The origin and
x, z-axis of FC are illustrated in Fig. 3. The configuration
of the mechanical system of a hydraulic excavator can be
either defined with qθ = [ψU θB θA θK ]> ∈ R4 or
qL = [ψU LB LA LK ]> ∈ R4 where ψU , θB , θA, θK are
swing angle, rotation angles of boom, arm, and bucket, and
LB , LA, LK are cylinder displacements of boom, arm, and
bucket as shown in Fig. 1. The nonlinear, bijective1 mapping
between qθ and qL can be derived by solving closed-chain
kinematics, denoted by

qθ = gL(qL), qL = gθ(qθ),

q̇θ = JL(qL)q̇L, q̇L = Jθ(qθ)q̇θ,
(1)

where JL, Jθ are corresponding Jacobian matrices.
In some parts of this paper, the qL-configuration with fixed

ψU is used. For the sake of notational simplicity, we denote
this subconfiguration by L = [LB LA LK ]> ∈ R3. We also
denote the pose of the bucket tip with respect to the FC

frame by E = [Ex Ez θ]
> ∈ R3 where Ex, Ez are the bucket

tip’s x, z-directional positions, and θ is its orientation, i.e.,
θ = θB + θA + θK . The components of E can be computed
from L using the forward kinematics. We write them as E =
[Ex(L) Ez(L) θ(L)]>.

B. Dynamics

By defining the system state xθ = [q>θ q̇>θ ]> ∈ R8

and control input u = [TU FB FA FK ]> ∈ R4 where
TU , FB , FA, FK are swing torque, hydraulic forces of
boom, arm, and bucket cylinder, the system dynamics can
be derived with the Euler-Lagrange equation:

ẋθ =

[
q̇θ
q̈θ

]
=

[
q̇θ

M−1θ (−hθ + J>θ u + ∆)

]
=: fθ(xθ,u,∆)

(2)
where Mθ(qθ) ∈ R4×4, hθ(qθ, q̇θ) ∈ R4 are the mass
matrix and combined term for the Coriolis-centrifugal and
gravitational effects. ∆ ∈ R4 is a lumped disturbance
describing unmodeled dynamics, e.g. friction in hydraulic
cylinders, soil-bucket interaction, and model uncertainties.

As explained in section III and IV, since several state
constraints considered in global and local planning can be
expressed as linear constraints with respect to the hydraulic
cylinder’s motion, we further modify the system dynamics
(2) with the newly defined system state xL = [q>L q̇>L ]>.

1This is true within a physically feasible region, and the region is
considered in the local planning as a cylinder displacement constraint.



Fig. 3: Illustration of the trace of the bucket tip during each phase
of a single digging task. The origin of the base frame FC , which
is used for the phase 2 global planning, is also depicted.

The equations of motion (2) can be rewritten with respect to
xL and u as follows:

ẋL =

[
q̇L
q̈L

]
=

[
q̇L

M−1L (−hL + u + ∆L)

]
=: fL(xL,u,∆L)

(3)
where hL(qL, q̇L) = J>L (M̃LJ̇Lq̇L + h̃L), ∆L = J>L ∆,
and ML(qL) = J>L M̃LJL. Here, by inserting the results of
kinematics (1) into the Mθ(qθ) and hθ(qθ, q̇θ), M̃L and h̃L
are defined as M̃L(qL) := Mθ(gL(qL)) and h̃L(qL, q̇L) :=
hθ(gL(qL), JL(qL)q̇L).

III. GLOBAL PLANNING

A single excavation task of an excavator consists of three
phases as follows:
• Phase 1: The excavator tip moves from its initial

position to the point where it enters the earth surface.
• Phase 2: The bucket tip cuts through the soil.
• Phase 3: The bucket conveys removed soil to the goal

position, e.g., right above the dump box of a truck,
without spilling the soil.

Details regarding each phase are described in Fig. 3. Between
consecutive phases, to guarantee continuity of control, con-
figuration and its derivative must be matched.

A. Global planning for phase 2

In this subsection, we set up the trajectory optimization
problem for phase 2. For phase 2, we constrain the cabin part
of the excavator from moving, in order to prevent the side
plates of the bucket from pushing against the soil. The goal
of phase 2 global planning is to minimize the length travelled
by the hydraulic cylinders during the excavation task. Unlike
phases 1 and 3, the excavator faces large and unpredictable
external disturbance which originates from the direct contact
between the earth and the bucket. Traditional torque- or
force-minimizing strategies are therefore not suitable, since
their optimality would be degraded due to external forces.
The travelled distance of the hydraulic cylinders should
preferably serve as a cost measure, as the earth shall always
resist the bucket’s motion while in phase 2. At the same
time, we should prefer large excavation volume, because
digging more volume will naturally reduce the number of
repetitive excavation tasks needed to complete a mission. To
take the aforementioned considerations into account, we first

Fig. 4: The capacity of the bucket Vcap with respect to its rotation
angle θ. If θ ≥ π, the bucket might spill its contents in the wrist
direction, which is forbidden. The bucket is emptied when θ is
smaller than a threshold determined by the bucket’s geometry.

discretize the phase 2 trajectory using n2 +1 waypoints, L0,
L1, · · · , Ln2 and propose the following cost function:

JPhase2 = wd

n2∑
k=1

‖Lk − Lk−1‖2W − wvV, (4)

where V is the volume of the removed soil, wd > 0 and
wv > 0 are weights associated with the distance travelled
by the cylinder and V , respectively. W is a positive-definite
weight matrix, where ‖x‖Y (Y > 0) denotes a weighted
2-norm of a vector x with a matrix Y .

In phase 2, earth surface zsurf and target shape ztarget are
described using polynomials over x, where x and z are given
with respect to the frame FC (Fig. 3):

zsurf = asurf0 + asurf1 x+ · · ·+ asurfnsurf
xnsurf

ztarget = atarget0 + atarget1 x+ · · ·+ atargetntarget
xntarget .

(5)

Within the region of interest x ∈ [xmin, xmax], the earth
surface should be above the target, i.e., ztarget(x) ≤ zsurf(x).
Now, we consider the following constraints for the bucket tip.

1) The bucket tip should always be located within the
region of interest, above the target surface and below
the earth. At initial and final conditions, it must be
located on the earth surface.

2) The rotation angle θ of the bucket tip must be mono-
tonically increasing; otherwise, the bucket plate pushes
the dirt out of the bucket, which is energy-inefficient.

3) The bucket must maintain positive clearance angle
(α > 0) while digging. This ensures that the bucket
parts other than the tip do not push against the ground.

4) In the similar sense, the whole bucket body must move
above the tip path.

5) The bucket rotation θ must be smaller than π: other-
wise, the excavator will spill the dirt onto its wrist,
which will escalate the risk of equipment malfunction-
ing. (Fig. 4)

The mentioned constraints are explained in Fig. 5.
Basically, the volume of the removed dirt is geometrically

determined using the swept volume between the earth surface
and the bucket tip trajectory. However, if the swept volume is
greater than the bucket capacity, the excavator shall spill the
excess dirt, thus V = min

{
Vswept, Vcap(θ(Ln2

))
}

, where

Vswept =

∫ x0

xn2

zsurf(x) dx

−z0 + 2z1 + · · ·+ 2zn2−1 + zn2

2n2
· (x0 − xn2)

(6)



Fig. 5: (left) A bucket trajectory that satisfies the constraints in
phase 2. The current ground measurement and the target ground
shape are denoted using solid and dashed black lines, respectively.
(right) The bucket shape should not penetrate through the bucket
tip trajectory. We use a triangular collision box to check this. The
bucket rotation angle θ and the clearance angle α are denoted.
α is mearsured with respect to the bucket tip velocity direction,
vE = (Ėx, Ėz), which is denoted by a red arrow.

is the (approximate) swept volume calculated using the
trapezoidal integration rule, xi = Ex(Li), zi = Ez(Li), and
θi = θ(Li). The maximum capacity of the bucket, which is
a function of θn2 , is modeled as described in Fig. 4.

B. Global planning for phases 1 and 3

Unlike phase 2, in phases 1 and 3, the bucket travels a long
distance while influenced by fewer constraints. Therefore, in
order to reduce the computation burden, we parameterize
the trajectory using a pre-selected set of bases. In this
paper, Bernstein polynomials are used to parameterize the
qL trajectory. Bernstein polynomial is written as

p(s) =

n∑
k=0

βk ·
(
n

k

)
sk(1− s)n−k, (7)

where s ∈ [0, 1]. Bernstein bases are used because the
convex hull property of the bases allows to incorporate the
box constraint for qL and linear inequality constraints for
q̇L easily. Furthermore, their time-derivatives can be easily
calculated, so faster computation speed can be achieved. For
phases 1 and 3, we minimize the force cost during travel.

min.
βk, T

∫ T

0

1

2
u>Wuu dt

s.t. qL(t) =

n∑
k=0

βk

(
n

k

)(
t

T

)k (
1− t

T

)n−k
qlL ≤ βk ≤ quL ∀0 ≤ k ≤ n

q̇lL ≤
n · (βk+1 − βk)

T
≤ q̇uL ∀0 ≤ k ≤ n− 1

qL(0) = qL·0, q̇L(0) = q̇L·0

qL(T ) = qL·T , q̇L(T ) = q̇L·T ,

(8)

where βk is the k-th control point for the Bernstein poly-
nomial representation of qL, and T is the time cost for
complete traversal. Superscripts (·)l and (·)u denote lower
and upper bounds for the state variables, respectively. The
boundary values qL·0, qL·T , q̇L·0, q̇L·T are chosen such that
the transition between any two consecutive phases is smooth.
Wu is a positive-definite weighting matrix. The middle term
in the third constraint is the control points for q̇L and was

derived from the properties of Bernstein bases. For phase 3,
to keep the excavator from spilling the dirt, we introduce one
additional constraint:

θ0 ≤ θ(βk) ≤ π, (9)

where θ0 is the bucket rotation angle at which phase 2 ended.

IV. LOCAL PLANNING

This section describes how local reference trajectory is
computed using MPC, which has been widely adopted in
robotics as a real-time planner [17–19] thanks to its op-
timality and constraint-satisfying nature. The objective of
this local receding-horizon planning is the following three:
1) physical constraint satisfaction, 2) disturbance-awareness,
and 3) real-time computation. In addition to state constraints,
actuation-related constraints are explicitly considered in the
MPC problem formulation. Furthermore, to handle uncer-
tainties in the dynamical model (3), disturbance estimation
is appended to the local planning for disturbance-awareness.
Lastly, to guarantee real-time applicability of the proposed
local planning, we re-formulate the MPC problem using
feedback linearization as in [20].

A. Constraints

Similar to other existing researches for trajectory optimiza-
tion of a hydraulic excavator [6, 7], we consider four types
of physical constraints in the local planning: 1) actuation
(force/torque) limit, 2) power limit, 3) cylinder displacement
limit, and 4) pump flow rate limit. They are modeled as

ul ≤ u ≤ uu (10a)

p = u>q̇L ≤ pu (10b)

Ll ≤ L ≤ Lu (10c)

fi = Ai(sgn(q̇L))>q̇abs
L ≤ fui , i = 1, 2 (10d)

where ul,uu ∈ R4 in (10a) are the lower and upper bounds
of the control input u, and pu ∈ R in (10b) is the upper
bound of the overall power generated by the hydraulic pump.
It is required to impose this overall power limit because of
the actuation mechanism of the hydraulic excavator where
all four control inputs are powered by the same actuation
source. Ll,Lu ∈ R3 in (10c) are the lower and upper
bounds of the hydraulic cylinder displacement L. Lastly,
fui ∈ R and Ai = [AU,i AB,i AA,i AK,i]

> ∈ R4 in
(10d) are the upper bound of the pump flow rate and cross-
section areas corresponding to swing motion, boom, arm,
and bucket cylinder displacement, respectively. Because the
cross-section area differs depending on the motion of a
hydraulic cylinder, either contraction or expansion, Ai is
defined to include such effect and modeled as a function
of sign of q̇L [6]. (·)abs is used to denote an element-wise
absolute-valued vector mapped from a vector (·). To consider
the flow rates of two hydraulic pumps, the subscript i is used.



B. Disturbance estimation

As mentioned in [21, 22], if disturbance is not properly
considered in the system dynamics of MPC, constraints,
especially state constraints, can be violated even if they were
satisfied in the predicted trajectory computed with nomi-
nal dynamics. To alleviate such feasibility issue, inspired
by successful demonstrations of integration between model
predictive control and disturbance estimation in robotics
[23, 24], we combined disturbance estimation and model
predictive control for disturbance-awareness of the computed
local reference trajectory.

We design a real-time disturbance estimation algorithm
based on momentum-based disturbance estimation [1, 25].
Considering the system dynamics based on the joint angles
of the excavator (2), the momentum-based disturbance esti-
mation algorithm is formulated as follows:

∆̂ = KE

(
p− p(0)−

∫ t

0

(
J>θ u + C>θ q̇θ −Gθ + ∆̂

)
dτ

)
p = Mθq̇θ

(11)
where Cθ ∈ R4×4, Gθ ∈ R4 are Coriolis matrix and gravity
vector computed from the Euler-Lagrange equation. Utilizing
the fact that Ṁθ = Cθ + C>θ , the estimation algorithm can
be analyzed to operate as a low pass filter of the actual
disturbance ∆ as ˙̂

∆ = KE(∆−∆̂). The disturbance estimate
of the cylinder displacement-based dynamics (3) then can be
computed as ∆̂L = J>L ∆̂ =: [∆̂U ∆̂B ∆̂A ∆̂K ]>.

C. Model predictive control

Based on the system dynamics (3) and constraints (10),
the MPC problem is formulated as follows:

min.
uk

‖xN − xr,N‖2P +

N−1∑
k=0

‖xk − xr,k‖2Q + ‖uk‖2R,

s.t. xk+1 = fd(xk,uk, ∆̂k)

ck,i(xk,uk) ≥ 0 ∀0 ≤ i ≤ mk − 1

cN,i(xk) ≥ 0 ∀0 ≤ i ≤ mN − 1

(12)

where N is the number of the prediction horizon, fd is
the discretized dynamics of (3), ck,i, cN,i are the inequality
constraints (10), and mk,mN are the number of inequality
constraints. P , Q, R are positive-definite weighting matrices.
Here, the subscript L is omitted in the state x, dynamics
fd, and disturbance estimate ∆̂ for brevity. A quadratic
objective function is designed to allow the excavator to
track the global reference trajectory xr while minimizing the
overall effort

∑
‖u‖R. Lastly, similar to the widely adopted

assumptions in papers on disturbance-aware model predictive
control [22–24], we assume that the disturbance does not
vary significantly over a short time horizon, i.e. ∆̂k+1 = ∆̂k.

To solve the formulated MPC problem (12), most optimal
control solvers require partial derivatives, either numerical
or analytic, of the dynamics (3) and constraints (10) with
respect to the state x and the input u. However, due to
the high nonlinearity of the system dynamics (3), especially

the matrix inverse of the mass matrix ML which inheres
in the closed-chain kinematics, it is difficult to obtain an
optimized solution in real-time. Therefore, we simplify the
MPC problem by introducing a virtual input v ∈ R4 and a
feedback-linearization-based control law u = FL(x,v) :=
hL + MLv − ∆̂L through which the original nonlinear
dynamics (3) is transformed into a linear dynamics as

ẋ = Acx +Bcv

Ac =

[
04×4 I4
04×4 04×4

]
, Bc =

[
04×4
I4

]
(13)

where 04×4, I4 ∈ R4×4 are zero and identity matrices. The
feedback-linearization-based MPC problem is then formu-
lated as follows:

min.
vk

‖xN − xr,N‖2P̃ +

N−1∑
k=0

‖xk − xr,k‖2Q̃ + ‖vk‖2R̃,

s.t. xk+1 = Adxk +Bdvk

ck,i(xk,FL(xk,vk)) ≥ 0 ∀0 ≤ i ≤ mk − 1

cN,i(xk) ≥ 0 ∀0 ≤ i ≤ mN − 1

(14)

where P̃ , Q̃, R̃ are positive-definite weight matrices, and
Ad, Bd are constant matrices in the discretized dynamics,
corresponding to Ac and Bc in the continuous counterpart
(13).

V. SIMULATION

A. Setup

We validate the proposed planning algorithms in simula-
tion. The overall flow chart during simulation is illustrated in
Fig. 2. All modules in Fig. 2 are individually implemented
in Robot Operating System (ROS) using C++. Excavator dy-
namics simulator (PLANT in Fig. 2) is based on the derived
system dynamics (2) where the external disturbance ∆ is
modeled with a steady-state modified LuGre friction model
[26] for cylinder friction and modified Fundamental Earth-
moving Equation (FEE) [7, 27] for soil-bucket interaction.
Note that friction and soil-bucket interaction models are in-
troduced only to construct a realistic simulation environment
and are unknown to the planning algorithms. Parameters in
the system dynamics and physical constraints are from the
Hyundai HX300L model in Fig. 1.

As a motion controller, which computes the control input
u based on the reference trajectory xd generated from the
local planning module, we adopt a feedback linearization-
based PID controller: u = J−>θ (hθ−∆̂+MθuPID). Applying
the control input u to the system equation (2), input-output
stability of the closed-loop system can be derived [28, Ch.
5] where the input is the estimation error of the external
disturbance ∆̃ = ∆ − ∆̂ multiplied by the inverse of the
mass matrix Mθ, and the output is the state x.

The global planner is implemented using ALGLIB [29],
an open-source nonlinear optimization solver. We use 9
Bernstein control points for phases 1 and 3, respectively, and
20 via points for phase 2. Next, to solve the formulated model
predictive control problem (14), we implement differential



dynamic programming (DDP) with augmented Lagrangian
method [30], which is an algorithm widely exploited in var-
ious robotic application for real-time trajectory optimization
[17–19]. It transforms the original constrained MPC problem
into an unconstrained problem using the Lagrangian and
quadratic penalty function, which is then solved with the
conventional DDP algorithm. For MPC implementation, we
employ the time horizon of 1000 ms, control discretization
and integration rate of 20 ms. Except for the results of cylin-
der displacements L, which are normalized with constant
bias and constant normalization factors, the other results
related to physical limits of Hyundai HX300L displayed in
Fig. 7 and Fig. 8 are normalized with constant normalization
factors, denoted with (̄·). Each element of control inputs
and the corresponding channel of disturbance estimates are
normalized with the same factor for comparison.

To validate the proposed framework, we conducted two
simulation scenarios on a desktop computer equipped with
an Intel Core i7-9750 CPU at 2.6 GHz, by varying the target
excavation depth: 1) shallow excavation and 2) deep excava-
tion. As depicted in Fig. 2, we assume prior knowledge of the
environment, i.e. the ground shape, which can be obtained
either from onboard sensors like lidars and cameras, or from
external sensors like total station in real experiment.

B. Results

1) Scenario 1 - shallow excavation: Fig. 6a and Fig. 7
describe the simulation result for shallow excavation. In
the first scenario, not to penetrate through the target shape,
the global planner plans a trajectory that stretches out in a
relatively large region in phase 2. The bucket tip well tracks
the target shape, and tip-grading-like motion is generated.
The global trajectory was generated in 2.1 seconds. As
in Fig. 7a and Fig. 7c, even if the global trajectory is
intentionally generated to exceed the physical limit of some
variables that are not considered in the global planning,
physical constraints are still satisfied during local planning
phase. The control input trajectory computed from the local
planning is displayed in Fig. 7b where all the input limits
are satisfied. In Fig. 7d, the hydraulic cylinder friction model
can be clearly found at the bucket cylinder (bottom-left
subfigure), whereas the effect by the friction model is found
to be smaller at the boom cylinder (top-right subfigure) and
the arm cylinder (bottom-left) due to larger disturbance from
the soil-bucket interaction. Still, the disturbance estimate
(black line) follows the modeled disturbance (red line) in
all directions. The average computation time of the local
planning is 21.7 ms (≈ 46 Hz) which we believe is sufficient
for real-time application.

2) Scenario 2 - deep excavation: Simulation results of
the second scenario can be found in Fig. 8 and Fig. 6b.
In contrast to the first scenario, if the target ground is
located deep below the earth surface, the excavator tip does
not aim to reach the target shape in phase 2. Instead, it
maximizes the excavation volume by generating a triangle-
shaped phase 2 trajectory. Since the phase 2 trajectory is
constrained not to exceed the target shape, such deep target

shape can be finally reached by repeating this target-shape-
aware excavation-volume-maximizing strategy. The global
trajectory was generated in 1.6 seconds. As in the subfigure
Fig. 8d, larger disturbance than that in the first scenario was
applied due to deeper penetration of the bucket into the soil.
Even in the presence of such larger disturbance, similar to
the results of the first scenario, the global reference is well
tracked by the local planning as can be found in the subfigure
Fig. 8a. While tracking the global reference, the computed
local trajectory is shown to satisfy all the physical constraints
as in the subfigures Fig. 8a, Fig. 8b, and Fig. 8c. It took 30.2
ms (≈ 33 Hz) for local planning computation on average.

VI. CONCLUSION

In this paper, we presented a real-time planning algo-
rithm for a single digging task of a hydraulic excavator.
The algorithm consists of a global and a local planner. In
the global planning phase, the trajectory that maximizes
excavation volume and minimizes energy cost under the
operational constraints is generated online using Bernstein
parameterization. The high-fidelity local planner tracks the
generated global trajectory while satisfying the physical con-
straints in real-time. The proposed algorithm was validated
through a realistic simulation environment with two different
operation objectives: deep and shallow soil excavation. The
simulation results showed that the proposed online global
planner generates an optimized bucket tip trajectory in a
few seconds, and the local planner plans disturbance-aware,
physically feasible receding horizon trajectories in real-
time. Future work may include validation of the proposed
algorithm in actual excavators.
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