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Abstract— The correct characterization of uncertainty when
predicting human motion is equally important as the accuracy
of this prediction. We present a new method to correctly predict
the uncertainty associated with the predicted distribution of
future trajectories. Our approach, CovariaceNet, is based on a
Conditional Generative Model with Gaussian latent variables
in order to predict the parameters of a bi-variate Gaussian
distribution. The combination of CovarianceNet with a motion
prediction model results in a hybrid approach that outputs a
uni-modal distribution. We will show how some state of the
art methods in motion prediction become overconfident when
predicting uncertainty, according to our proposed metric and
validated in the ETH data-set [1]. CovarianceNet correctly
predicts uncertainty, which makes our method suitable for
applications that use predicted distributions, e.g., planning or
decision making.

I. INTRODUCTION

Human Motion Prediction, during the last years, has
received the attention of the research community from differ-
ent fields: intelligent vehicles, pattern recognition, graphics,
robotics, etc. The motivation to understand and predict
human motion is immense and it has a deep impact in
related topics, such as, decision making, path planning,
autonomous navigation, surveillance, tracking, scene under-
standing, anomaly detection, etc.

The problem of forecasting where pedestrians will be in
the near future is, however, ill-posed by nature: human beings
tend to be unpredictable on their decisions and motion is
neither exempt of it. These random nature in motion brings
an open challenge to prediction algorithms, where algorithms
are desired to be accurate and correctly grasp the uncertainty
associated with their predictions.

To this end, multiple benchmarks have been created and
released [1]–[3], providing common grounds to test and
evaluate. Most modern motion prediction algorithms focus
on accurate prediction of agent position errors on these
benchmarks. Nonetheless, the precision due to this inherent
uncertainty is equally important, and this paper is an effort
to research on this direction. Prediction algorithms should
address this issue as well: it provides a high degree of
interpretability by estimating the associated uncertainty and
it might be of some use for consequent algorithms making
use of prediction information, e.g., planning. For example,
Fig. 1 shows two predictions, of similar predicted error, but
different uncertainty estimation.
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Fig. 1: Comparison of two predicted trajectories in the ETH
dataset [1]. CovarianceNet in cyan stars, blue and green
ellipses, - mean, 1 sigma, 3 sigma, respectively. Trajectron++
[4] in yellow stars, yellow and red ellipses, red ellipses -
mean, 1 sigma, 3 sigma, respectively. The environment is
challenging, since there is a pedestrian in the way.

In this paper, we focus on predicting uncertainty and hu-
man motion prediction. We propose a hybrid approach shown
on Fig. 2, consisting of deep model for Goals Prediction
and model-based trajectory prediction, complemented by a
modern neural-net approach to predict motion as a uni-
modal Gaussian distribution. Several works provide a multi-
modal distribution for motion prediction such as [4], achiev-
ing excellent results in benchmarks. However, combining
a mixture distribution into robot planning approaches (for
instance) requires careful considerations. Sampling based
techniques require extra attention when considering multi-
modality since low-probability prediction outcomes might
result in dangerous outcomes, when evaluated under a risk
perspective [5].

The contributions of this work are:

• A Conditional Generative Model to correctly predict
covariances;

• Hybrid approach combining a model-based motion pre-
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diction from the Social Force Model(SFM) [6] and our
implementation of a learning-based Goal Prediction;

• Metric to measure the correctness of the uncertainty
prediction by counting and averaging the number of
times that the prediction lies in the iso-contours of a
bi-variate Gaussian.

Fig. 2: Our Hybrid approach for Human Motion Prediction
and Uncertainty Estimation. We combine customized deep
goal prediction model [7] with SFM [6], for mean pedestrian
pose prediction and Covariance Net uses Conditional Varia-
tional Autoencoder [8] deep generative model for uncertainty
prediction.

II. RELATED WORK

Motion prediction has been studied by the robotics com-
munity mainly motivated by its direct relation to robot
navigation in social environments, embedded at its deepest
core. Examples of robot navigation include Human-aware
approaches [9], [10], considering prediction into planning
[11]–[14] or the effect of planning to prediction [15]–[17].

Other fields have studied human motion prediction, where
multiple previous works study the problem of how to forecast
pedestrian trajectories and predict their future behaviors.
Broadly, human motion prediction can be divided in two
classes: model-based that creates an empirical model of these
transition functions such as the SFM [6] and its variants
[18], [19] or models proposed from the graphics community
[20], [21]. And Learning-based approaches [4], [7], [22]–[25]
that are becoming the dominant paradigm in human motion
prediction, as well as in other topics due to its unrivaled
results. Both of these approaches have the same input and
output data and predict the next state of the pedestrians in
dt time.

Helbing and Molnár [6] have proposed a model based
approach for modelling pedestrians’ behaviour. Authors have
shown that pedestrian motion can be described as a sum of
social forces that depend on agents destination point, other
pedestrians, static object (borders of buildings, walls, streets,
obstacles).

Alahi et al. [22] propose a learning-based method with
social pooling, where the Long Short-term Memory(LSTM)
[26] states of neighboring agents were pooled based on their
locations in a 2-D grid to form social tensor.

Messaoud et al. [23] apply a multihead attention mecha-
nism to the social tensor to directly relate distant vehicles
and extract a context representation.

Recently, generative approaches have emerged as state-
of-the-art trajectory forecasting methods due to recent ad-
vancements in deep generative models. They have caused a
shift from focusing on predicting the single best trajectory
to producing a distribution of potential future trajectories.
Most works in this category use a deep recurrent backbone
architecture with a latent variable model, such as a Condi-
tional Variational Autoencoder (CVAE) [8] or a Generative
Adversarial Network (GAN) [27].

Trajectron++ [4], [28] - a multi-agent behavior prediction
model that accounts for the dynamics of the agents, produces
predictions possibly conditioned on potential future robot
trajectories which can effectively use heterogeneous data
about the surrounding environment.

Jein et al. [29] proposes a discrete residual flow to recur-
sively updates the predicted distribution over a pedestrian’s
future position in the form of occupancy maps.

Mahgalam et al. [30] propose to address human trajectory
prediction by modeling intermediate stochastic goals propos-
ing a socially compliant, endpoint conditioned variational
auto-encoder with a novel self-attention based social pooling
layer.

In our previous work [31], we propose a new method
for motion prediction - HSFM-ΣNN that combines two
different approaches: a feed-forward network whose layers
are model-based transition functions using the Headed Social
Force Model(HSFM) and a Neural Network for covariance
prediction. CovarianceNet is the next step in this work, where
we have improved the approach substantially.

Gal et al., [32] proposed a simple yet effective method for
probabilistic interpretation of dropout which allows to obtain
model uncertainty out of existing deep learning models.

Guo et al. [33] introduced a temperature scaling, con-
fidence calibration method, that can effectively correct the
miscalibration in modern deep neural networks.

III. METHOD

A. Problem formulation

The position of a generic agent i at time t is represented
by xti = (xi, yi)t, where (xi, yi)t are the coordinates of
agents in the global reference system at the instant of time
t. The agent’s trajectory is defined as X1:T

i = {x1
i , ...,x

T
i }

from timestamp 1 to T . We aim to generate plausible trajec-
tory distributions for a time-varying number of interacting
agents. Every trajectory is split into observed and future:
given certain number Tobs of observed positions, we seek a
distribution over all agents’ future states for the next Tpred
time steps which is denoted as p(XTobs+1:Tpred

i |X1:Tobs
i ).

Our approach is visualized in Fig. 2. The first block is the
model-based SFM [6], a method for motion prediction the
mean positions of the agents’ future states.

sfmTobs+1:Tpred

1:N = SFM(X1:Tobs

1:N , X̂T
goal1:N ) (1)

At a higher level the SFM needs to infer future possible
destinations of pedestrians [34]. In particular, we have cus-
tomized the learning-based approach by [7] and goals are



Fig. 3: CovarianceNET architecture. CovarianceNET is a part of our proposed hybrid approach for Human Motion Prediction
and Uncertainty Estimation. The input consists of the spatial coordinates over the past Tobs seconds of all agents in the
scene. We use LSTM-based encoder for the agents’ history. Neighbours’ impact on the predicted motion is encoded by
adding an attention module. We use the CVAE latent variable framework for diverse but realistic uncertainty prediction [8].

predicted as:

X̂T
goal1:N = φ(X1:Tobs

1:N ), (2)

where φ - deep multihead-attention based model that trained
to predict the position of pedestrian at timestamp Tpred,
X1:Tobs

1:N - the trajectory (scene history) which contains the
states of all N agents at timestamp t, Xt

1:N = {Xt
1, .., X

t
N},

Pgoal1:N - the position of the pedestrian at timestamp Tpred,
sfmtn - predicted position of n agent at timestamp t. Here we
emphasize that in this work our main goal is to show correct
covariance prediction, thus we are not showing implementa-
tion details of Goal Prediction model and SFM.

The CovarianceNet network is one of the sub-blocks of
our approach, depicted in Fig. 2 and it is shown in detail
in Fig. 3. CovarianceNet is designed to complement the
predictions by the SFM with accurate x, y variances and
its correlation coefficient, such that the bi-variate Gaussian
constructed from the mean and covariance matrix accurately
assesses the potential trajectory distribution of pedestrians,
and statistically ensure the properties of a bi-variate Gaussian
distribution.

B. Agent encoder

For each pedestrian in the scene, the current position and
all observed previous positions are known. In our work
(see Fig. 3), we are using the Agent encoder to encode
information about agent position and the Neighbours encoder
for encoding information about the influence of the agent
and all his neighbors to each other. Knowing the history
of the agent’s movement, one can calculate velocities and
accelerations as a additional source of data.

The observed trajectory of each agent X1:Tobs

1:N is encoded

using an LSTM encoder

httraji = LSTM(X1:Tobs

1:N , ht−1
traji

,Wtenc
) (3)

Here, httraji is the hidden state vector of the ith agent at
time t. All LSTM encoders share the same weights Wtenc

.
Additionally, we use velocities and accelerations encoded

in the same fashion as in (3) and sum them into a single
encoded vector:

htacci = LSTM(
∂

∂t
X1:Tobs

1:N , ht−1
ivel

,Wvenc
) (4)

htveli = LSTM(
∂2

∂t2
X1:Tobs

1:N , ht−1
ivel

, ht−1
iacc

,Waenc) (5)

Ethisti = httraji + htveli + htacci ; (6)

where htitraj
- encoded trajectory, htivel

- encoded velocities,
htiacc

- encoded accelerations and Ethist - full encoded agent’s
history.

During the training phase, as it is shown in Fig.3, to
produce a latent distribution additionally leveraged future
trajectory encoding Etfuti for time indexes Tobs + 1...Tpred,
in the same manner as in Eq.(3).

C. Neighbours encoding

To model neighboring agents’ influence on the modeled
agent, all agents’ neighbours in the scene are processed with
the additive attention module [35] and are encoded by the
LSTM cell to produce a single neighboring agents’ influence
vector Etneighi

.

Cti = Attention(X1:Tobs

neighi
, X1:Tobs

i ) (7)

Etneighi
= LSTM(Cti , E

t−1
neighi

,Wneigh) (8)

Etscenei = Etneighi
+ Ethisti (9)



where Cti - context vectors, Etneighi
- encoded neighbours

influence on the modeled agent, Etscenei is a full encoded
scene history.

D. Conditional Variational Autoencoder

The network backbone of our approach (Fig. 3) is realized
as a version of the Conditional Variational Autoencoder [8]
(CVAE).

The CVAE architecture can be divided in two parts: the
prior and the posterior networks. Both prior and poste-
rior distributions are assumed to be Normal distributions.
The parameters of the prior are computed by the prior
network which only takes the encoded history as input.
The posterior parameters are determined from both the
encoded history and the target trajectory. The prior distribu-
tion is a Normal distribution, denoted as pφi

(z|X1:Tobs
i ) =

N (µpriori(x), σ2
priori

(x)).

pφi
(z|X1:Tobs

i ) = N (µpriori , σ
2
priori) (10)

µpriori = MLP(Escenei) (11)

σpriori = MLP(Escenei) (12)

During training, the latent variable z will be sampled
from the posterior distribution. Specifically, it takes both the
encoded past and the encoded future trajectories information
Xi passed through an MLP to obtain a latent mean µlatent
and a latent sigma σlatent to output a latent distribution
qφi(z|X

Tobs+1:Tpred

i , X1:Tobs
i ).

qφi
(z|XTobs+1:Tpred

i , X1:Tobs
i ) = N (µlatenti , σ

2
latenti) (13)

µlatenti = MLP(Escenei , Efuti) (14)

σlatenti = MLP(Escenei , Efuti) (15)

In our work, we use two fully connected layers with
dropout and sigmoid activation function between them as
base multi layer perceptron (MLP).

E. Decoder

The decoder models the probability of a target trajectory
XTobs+1..Tpred given the latent variable z sampled from the
latent distribution, encoded node history Etscenei and SFM
trajectory predictions sfmti.

We make an assumption that the target distribution
p(xt|X1:Tobs) is a bi-variate Gaussian:

pi(x
t
i|X

1:Tobs
i ) = N(µti,Σ

t
i) (16)

µti =

[
µtxi

µtyi

]
; Σti =

[
σt

2

xi
ρσtxi

σtyi
ρσtxi

σtyi σt
2

yi

]
. (17)

For each timestamp of prediction, we use encoded infor-
mation about current agent state, passed through the MLP
as an input to the GRU layer with Escene as the initial state
of the GRU cell, witch recurrently outputs the new hidden
states for each agent.

htgrui
= GRU([sfmt−1

i , z], ht−1
grui

) (18)

GRU hidden states are then used to predict the parameters
of a bi-variate Gaussian distribution N (µ, σ, ρ) standard
deviations σ and correlation coefficient ρ, while the mean
values µ are taken from the SFM prediction µi = sfmti.

ρti = MLP(htgrui
) (19)

σti = MLP(htgrui
) (20)

The entire model is trained by maximising the sequential
evidence lower-bound (ELBO):

Lnll(W ) = −
N∑
i=1

Tpred∑
t=Tobs+1

log(pti(x
t
i|µti, σti , ρti)) (21)

Lnkl =

N∑
i=1

Dkl(qφi(z|X
Tobs+1:Tpred

i , X1:Tobs
i )||N(0, 1)) (22)

Loss = αLnnll(W ) + Lnkl (23)

It is important to mention that in our case, when we
utilize Goal Predictor and SFM [6] as model for mean poses
prediction we do not optimize µti parameter from (21).

IV. EVALUATION

In our work, we use the combination of goal predictor
and SFM [6] modules as a base predictor for mean future
poses of agents and combine it with the CovarianceNet in
order to predict accurate uncertainties. We compare results
of our method with other three popular approaches for eval-
uating uncertainty on publicly-available ETH [1] pedestrian
dataset. It consists of real world human trajectories with rich
multi-human interaction scenarios. This dataset is a standard
benchmark in the field as it contain challenging behaviors
such as couples walking together, groups crossing each other,
and groups forming and dispersing. Leave-one-out strategy
was used for evaluation, where the model is trained on four
datasets and evaluated on the held-out fifth. An observation
length of 8 timesteps (3.2s) and a prediction horizon of 12
timesteps (4.8s) is used for evaluation. In this section we will
compare results of our method with the following methods:

A. Evaluated Methods

1) Covariance Forward-Propagation (FP): In our work
we have used SFM for prediction forces acting on all agents
in scene and Human locomotion model which integrates
predicted forces to the state variables of a pedestrians 2D
poses at timestamp t+ 1, in the following generalized way:

xt+1 = T (xt) (24)

The transition function T () defined by the SFM (24) is
a non-linear differentiable function (by construction). The
simplest method for covariance estimation is using the first-
order Taylor expansion:

xt+1 = T (µt) +Gt(xt − µt) (25)



Fig. 4: Evaluation of PPEI. Left: results for 1σ. Right: results for 3σ.

where µt is the current state estimate and Gt is the Jacobian
matrix ∂T/∂x evaluated at µt. From here, we apply Co-
variance Propagation of a Gaussian random variable (xt ∼
N (µt,Σt)) over a linear function:

xt+1 ∼ N
(
T (µt), Gt · Σt ·G>t

)
(26)

2) Social-LSTM [22]: One of the most influential works
in direction of Human Motion Distribution Prediction based
on Neural Networks, where each agent is modeled with an
LSTM and nearby agents’ hidden states are pooled at each
timestep using a proposed social pooling operation.

3) Trajectron++ [4]: One of the latest works in this
direction is named Trajectron++ [4] has four configurations
of predictions, of which we used Most Likely, which gives
the best results of ADE and FDE. Trajectron++ calculates the
result of predictions as a Gaussian Mixture Model (GMM)
witch contains 25 Gaussian distributions.

B. Motion Prediction Evaluation

We use Euclidean distance errors, Average Displacement
Error (ADE) and Final Displacement Error (FDE) to evaluate
the accuracy of then mentioned approaches in a motion
prediction task. Metrics are formulated as:

ADEt =

∑N
j=1 ||xtj − µtj ||2

N
(27)

FDE =

∑N
j=1 ||x

Tpred

j − µTpred

j ||2
N

(28)

where N - number of processed pedestrians, xtj - ground truth
position of jth pedestrian at timestamp t, Tpred - prediction
horizon, µ - predicted mean position.

The results in Table I shows that modern deep approaches
are superior to model-based approaches in terms of ADE
and FDE. The Trajectron’s++ [4] approach takes into consid-
eration a multimodal distribution, which results in the best
Euclidean errors. Still, the contributions of this paper are
on the covariance prediction, and combination of SFM and
Goal Predictor could be substituted by any modern prediction
method.

C. Covariance Estimation Evaluations

We propose to evaluate the accuracy of the covariance
prediction methods by the following metric, the Part of
Prediction Errors Inside:

PPEIα = E{1(||x− µ||Σ < α)}, α = {1, 3}. (29)

where 1() is the indicator function and we simply average
the number of times that our prediction lies inside the 1σ
and 3σ ellipsoids from the ground truth position by using
the Mahalanobis distance.

Fig. 5: Mahalanobis error (in red) distances and ADE(in
blue) for our proposed method. Mahalanobis solid line is
median values, and colored intervals are .25 and .75 per-
centiles.

Figure 4 shows the PPEI1 and PPEI3 for each of the
methods described above. Our proposed method achieves a
superior performance (Fig 4) compared to the previously
published methods in terms of performance of predicted
uncertainties.

It can be seen in Fig. 4 and in Table I that modern deep
approaches output accurate ADE, FDE but become overcon-
fident when predicting covariances of distributions, while
proposed method with sequentially trained Goal Predictor



TABLE I: Comparison of our method against previously published methods on the ETH dataset [1]. Both ADE and FDE are
reported in meters and presented here for reference(*is not valid since ground truth last pedestrian pose is used as input).
Our main contribution is accurately predicted uncertainties, which can be measured as part of errors inside 1σ 3σ interval
and its deviation from the ideal 2D Gaussian.

Method ADE FDE % errors inside 1σ
(∆ from expected)

% errors inside 3σ
(∆ from expected)

median Mahalanobis Distance

Social-LSTM [22] 1.09 2.35 4.7±11(35) 22 ±11(76.7) 3.4±5.66
Trajectron++ (Distribution) [4] 0.71 1.66 50±32(10.3) 56±30(42.4) –

SFM + FP 0.98* 0.2* 8.2±15(31.5) 11.6±23(87.2) –
CovarianceNet 1.39 2.18 51.2±0.3(11.5) 93.7±0.01(5) 1.21±2.16

Fig. 6: PPEI Evaluation of CovarianceNet method and Trajectron++(Distribution configuration) qualities of predicted
uncertainties peaking Trajectron++ Gaussian with the highest probability (out of GMM 25 Gaussians component).

and CovarianceNet models are capable to predict statistically
correct covariances. Despite the fact that Trajectron’s++
average PPEI1 over all horizon time is close to ideal, it
clearly can be observed a high deviation, ranging from a
high PPEI1 (under confident) at initial horizon times to
low values at the final horizon time (over confident), which is
shown with high variance, PPEI1=50 ±32 at Table I, while
our proposed method produces more consistent predictions
PPEI1=51.2 ±0.3.

The forward propagation (FP) method collapses and pro-
vides poor results due to vanishing gradients over mul-
tiple iterations. Trajectron shows a decreasing value of
PPEI, becoming clearly overconfident. Social-LSTM also
provides a overconfident covariance estimations, with mean
1σ PPEI=4.7% and 3σ PPEI=22%.

In Fig. 5 we show the median, 25 and 75 percentiles of
the Mahalanobis distances for the predicted distributions of
CovarianceNet and the Average Displacement Error(ADE)
over prediction horizon time for predicted mean trajectories,
with dashed red line we show median Mahalanobis Distance
(MD) for ideal bi-variate Gaussian. Our projected median
MD for the entire prediction horizon is 1.21, which is close
to the bi-variate Normal distribution, with a median MD of
1.17.

We use Trajectron++ [4] in Distribution configuration to
estimate probability distribution. We used only one Gaussian
distribution from GMM for the metric at each prediction
step, which had the highest probability. An example of such

a prediction and that interpretations can be seen in Fig. 1.
This evaluation interpretations have similar to previous in-
terpretations results, with overconfident distribution for large
prediction horizons and under confident for smaller time
horizons.

Fig 6 shows that individual Gaussians, composing GMM,
is far from ideal, which potentially can lead to unexpected
results when a person is outside the probabilistic estimate of
the pedestrian position.

V. CONCLUSIONS

We have presented a new hybrid method, CovarianceNet,
that combines model-based Human Motion Prediction with
a neural network approach for covariance prediction. Our
approach brings an efficient calculation of motion prediction,
by using the SFM recursively and calculates the uncertainty
associated with this prediction by using a conditional deep
generative model CVAE with Gaussian latent variables.

We have evaluated our results in the ETH dataset and com-
pared with state-of-the art approaches. While Social-LSTM
and Tajectron methods show better accuracy when evaluating
the prediction error, they are overconfident on their predicted
distributions, according to our proposed metric to measure
uncertainty prediction. Our method, CovarianceNet, is able
to predict correctly its uncertainty, thereby, our approach is
better suited for applications requiring accurate prediction of
distributions.
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