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without Instance or Category-Level 3D Models

Bowen Wen and Kostas Bekris

Abstract— Tracking the 6D pose of objects in video sequences
is important for robot manipulation. Most prior efforts, how-
ever, often assume that the target object’s CAD model, at least at
a category-level, is available for offline training or during online
template matching. This work proposes BundleTrack, a general
framework for 6D pose tracking of novel objects, which does not
depend upon 3D models, either at the instance or category-level.
It leverages the complementary attributes of recent advances in
deep learning for segmentation and robust feature extraction,
as well as memory-augmented pose graph optimization for
spatiotemporal consistency. This enables long-term, low-drift
tracking under various challenging scenarios, including signifi-
cant occlusions and object motions. Comprehensive experiments
given two public benchmarks demonstrate that the proposed
approach significantly outperforms state-of-art, category-level
6D tracking or dynamic SLAM methods. When compared
against state-of-art methods that rely on an object instance CAD
model, comparable performance is achieved, despite the pro-
posed method’s reduced information requirements. An efficient
implementation in CUDA provides a real-time performance of
10Hz for the entire framework. Code is available at: https:
//github.com/wenbowen123/BundleTrack

I. INTRODUCTION

Robot manipulation often requires information about the
pose of the manipulated object. In some cases, this can
be achieved through forward kinematics (FK), assuming
the object’s motion equivalent to the end-effector’s motion.
Frequently, however, FK is insufficient to accurately estimate
the object’s pose [1]. This can be due to slippage during
grasping or in-hand manipulation [2], or during handoffs or
due to the compliance of a suction cup (Fig. 1). In these
cases, dynamically estimating an object’s pose from visual
data is desirable. Single-image 6D pose estimation methods
have been studied extensively [3]–[7]. Some of them are
fast and can re-estimate poses from scratch for every new
frame [8], [9]. Nevertheless, this is redundant, less efficient,
leading to less coherent estimations over consecutive frames
and negatively impacts planning and control. On the other
hand, given an initial pose estimate, tracking 6D object
poses over image sequences can improve estimation speed
while providing coherent and accurate poses by leveraging
temporal consistency [10]–[12].
Most existing 6D object pose estimation or tracking ap-

proaches assume access to an object instance’s 3D model [3],
[9]. Having access to such instance 3D models complicates
generalization to novel, unseen instances. To overcome this
limitation, recent efforts have relaxed this assumption and
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Fig. 1: Top: NOCS Dataset [13] example: The target object exits the camera’s
frustum during tracking but BundleTrack maintains its estimate without re-initialization.
Bottom: YCBInEOAT Dataset [22] example: The object is successfully tracked during
pick and place manipulation by a robotic arm, despite the lack of texture, severe self-
occlusion and motions due to the arm and the compliant suction cup. Computing object
pose from forward kinematics is unreliable in this setup due to the end-effector.

require only category-level 3D models for 6D pose estima-
tion [13]–[16] or tracking [17]. They often achieve this by
training over a large number of CAD models from the same
category. While promising results have been demonstrated for
previously seen object categories, there are still limitations.
These methods are constrained by the variety of categories
in the training database. Popular 3D model databases, such
as ShapeNet [18] and ModelNet40 [19], contain 55 and 40
categories respectively. This is still far from sufficient to
cover diverse object categories present in the real world.
Furthermore, 3D model databases often require nontrivial
manual effort and expert domain knowledge to build, involv-
ing steps such as scanning [20], mesh refinement [21] or
CAD design.
Another line of work from the SLAM literature has

moved to address dynamic, object-aware challenges [23]–
[26], where dynamic objects are being reconstructed on-the-
fly while being tracked without the need for object 3D models
beforehand. However, tracking-via-reconstruction [24], [26]
tends to accumulate errors when fusing observations with
erroneous pose estimates into the global model. These errors
adversely impact model tracking in subsequent frames.
Motivated by the above limitations, this work aims for

accurate, robust 6D pose tracking that is generalizable to
novel objects without instance or category-level 3D models.
It exploits recent advances in video segmentation as well as
learning-based keypoint detection and matching for a coarse
pose estimate, followed by a memory-augmented pose-graph
optimization step to achieve spatiotemporal consistent pose
output. Instead of aggregating into a global model, represen-
tative historical observations are maintained as keyframes
in a memory pool, providing candidate nodes for future
graphs so as to enable multi-pair data association together
with the latest observation. An efficient implementation of
this framework in CUDA allows to achieve competitive
running times. Extensive experiments have been conducted
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on two large-scale public benchmarks, shown in Fig. 1. Both
qualitative and quantitative results demonstrate a significant
improvement over existing state-of-art approaches, including
methods using instance or category-level 3D models or
SLAM-like methods.
In summary, this work’s contributions are the following:
1) A novel integration of methods that result in a 6D pose

tracking framework that generalizes to novel objects without
access to instance or category-level 3D models.
2) A memory-augmented pose graph optimization for

low-drift accurate 6D object pose tracking. In particular,
augmenting the memory pool with historical observations
enables multi-hop data association and ameliorate the dearth
of correspondences between a pair of consecutive frames.
Additionally, maintaining keyframes as raw nodes instead of
aggregating into a global model significantly reduces tracking
drift.
3) An efficient CUDA implementation, which allows to

execute online the computationally-heavy multi-pair feature
matching as well as pose-graph optimization for 6D object
pose tracking (for the first time to the best of the authors’
knowledge).
These contributions result in a new state-of-art perfor-

mance by boosting the previous best accuracy from 33.3% to
87.4% under the “5°5cm” metric in the NOCS Dataset [13],
even when compared against approaches utilizing category-
level 3D models for training. They also result in compa-
rable performance on the YCBInEOAT dataset [22], even
when compared against approaches utilizing instance-level
3D models [22].

II. RELATED WORK
6D Object Pose Tracking - For setups where object CAD

models are available, significant progress has been made in
6D pose tracking. This includes techniques based on hand-
crafted probabilistic filtering [11], [27], [28], optimization
[12], [29]–[31], and machine learning [10], [22]. The require-
ments, however, of such instance-level 3D models, either for
training offline or model-frame registration during tracking,
complicate generalization to novel instances. More recently,
a 6D pose tracking approach [17] relaxed the assumption
to category-level 3D models using 3D object CAD model
databases for training [18]. During testing, the target ob-
ject category needs to be identified and the corresponding
network for that category is utilized for tracking. Instead
of being limited to the number of categories such database
is able to include, this work employs deep features that in
principle can be trained on arbitrary 2D images. It allows
generalization to diverse novel objects, as shown in the
accompanying experiments.

Dynamic Object-aware SLAM - In order to track dy-
namic objects’ pose and decouple them from static back-
ground, frame-model Iterative Closest Point (ICP) combined
with color [23]–[26], probabilistic data association [32], or
3D level-set likelihood maximization [33] has been applied.
Object models are simultaneously reconstructed on-the-fly by
aggregating the observed RGB-D data with the newly tracked

pose. Nevertheless, frame-model tracking can be challenging
for object reconstruction, since errors in pose estimation
transfer to the reconstructed model and adversely affect the
subsequent tracking [34]. This work does not fuse observed
frames but instead maintains them as nodes in a pose
graph, allowing to correct previously erroneous estimates,
and reduces drift in long-term tracking. The aforementioned
SLAM-family approaches may also face challenges in robot
manipulation setups that involve small, textureless, flat or
shiny objects due to the dearth of sufficient correspondences
between the pair of consecutive frames. To ameliorate this
issue, BundleTrack searches correspondences among current
and multiple historical frames, consisting of both feature and
geometric terms, as the edges in the pose graph. Its effec-
tiveness has been shown in extensive experiments including
for such challenging manipulation scenarios.

3D Hand-held Object Scanning - Promising results have
been demonstrated in scanning dynamic hand-held objects
[35]–[39], where the object’s motion needs to be taken
into account similar to the current setup. In particular, a
framework for robot manipulation [37] performs simultane-
ous object reconstruction and tracking, which leads to sim-
ilar issues as the aforementioned dynamic SLAM methods.
In addition, forward kinematics is required in its Kalman
Filtering framework, preventing generalization in scenarios
when objects are not held by the robotic manipulator. While
estimating object poses is part of the scanning process, there
are key differences from online 6D pose tracking. For the
scanning application, external assistance including human
interaction or deliberate motion is acceptable [36], [38], [39]
but it is not assumed in the current work. Furthermore, time
consuming global-optimization steps are often adopted at
the end of scanning to polish the models and their poses
while intermediate erroneous pose estimations and associated
frames can be discarded and not fused into the global model
[36], [38], [39]. In contrast, this work aims to provide fast
and accurate pose tracking output online.

III. PROBLEM FORMULATION

𝑻𝟎𝑪 𝑻𝟎𝑪

𝑻𝟎→𝝉

𝒕 ൌ 𝟎 𝒕 ൌ 𝝉

Assume a rigid body
for which there is no
its corresponding 3D
model, nor its category-
level 3D model database
for training. The objective is to continuously track its 6D
pose change relative to the start of tracking, i.e., the relative
transformation 𝑇0→𝜏 ∈ 𝑆𝐸 (3), 𝜏 ∈ {1,2, ..., 𝑡} in the camera’s
frame 𝐶. The input is the following:
• 𝐼𝜏 : A sequence of RGB-D data 𝐼𝜏 , 𝜏 ∈ {0, ..., 𝑡}.
• 𝑀0: A binary mask on the first image 𝐼0, indicating the
target object region to track in the image space.
• 𝑇𝐶

0 (optional): The initial pose in the camera’s frame 𝐶.
Used if the objective is to recover the object’s absolute
pose in 𝐶, otherwise set to identity.

The initial mask 𝑀0 can be obtained in multiple different
ways to initialize tracking. For instance, via semantic seg-
mentation [40]–[42] or non-semantic methods, such as image
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Fig. 2: BundleTrack framework from left to right: (1) an image segmentation network returns the object mask given the prior one; (2) a network detects keypoints and their
descriptors; (3) keypoints are matched and coarse registration is performed between consecutive frames to estimate an initial relative transform T̃𝑡 ; (4) keyframes are selected
from a memory pool to participate in the pose graph optimization; (5) online pose graph optimization outputs a refined spatiotemporal consistent pose T𝑡 ; and (6) the latest
frame is included in the memory pool, if it is a novel view to enrich diversity.

segmentation, [43]–[45], point cloud segmentation/clustering
[46], [47], or plane fitting and removal [46], etc.
The object’s pose in the camera’s frame 𝐶 can be

recovered at any timestamp by applying the relative
transformation 𝑇0→𝜏 in the camera’s frame T𝜏 = 𝑇𝐶

𝜏 =

𝑇𝐶
0 [(𝑇

𝐶
0 )
−1𝑇0→𝜏𝑇

𝐶
0 ] = 𝑇0→𝜏𝑇

𝐶
0 ∈ 𝑆𝐸 (3). For simplicity, the

rest of this document will refer to T𝜏 as the output of the
process but 𝑇0→𝜏 is what is actually computed as tracking.

IV. APPROACH
An overview of the proposed BundleTrack framework is

depicted in Fig. 2. The currently observed RGB-D frame
𝐼𝑡 and the object segmentation mask computed during the
last timestamp 𝑀𝑡−1 are forwarded to a video segmentation
network to compute the current object mask 𝑀𝑡 . Based on
𝑀𝑡 and 𝑀𝑡−1 respectively, the target object regions in both 𝐼𝑡
and 𝐼𝑡−1 are cropped, resized and sent to a keypoint detection
network to compute keypoints and feature descriptors. A
data association process consisting of feature matching and
outlier pruning in the manner of RANSAC [48] identifies
feature correspondences. Based on these correspondences,
a registration between 𝐼𝑡−1 and 𝐼𝑡 can be solved in closed-
form, which is then used to provide a coarse estimate T̃𝑡

for the transform between the two snapshots. The estimate
T̃𝑡 is used to initialize the current node T𝑡 as part of a
pose graph optimization step. To define the rest of the nodes
of the pose graph, no more than K keyframes are selected
from a memory pool to participate in the optimization. The
choice of K is made to balance an efficiency vs. accuracy
tradeoff. Pose graph edges include both feature and geometric
correspondences, which are computed in parallel on GPU.
Given this information, the pose graph step outputs online
the optimized pose for the current timestamp T𝑡 ∈ 𝑆𝐸 (3). If
the last frame corresponds to a novel view, then it is also
included in the memory pool.

A. Propagating Object Segmentation
The first step is to segment the object’s image region from

the background. Prior work [24] used Mask-RCNN [49] to
compute the object mask in every frame of the video. It deals
with each new frame independently, which is less efficient
and results in temporal inconsistencies.
To avoid these limitations, this work adopts an off-the-

shelf transductive-VOS network [50] for video object seg-
mentation, which is trained on the Davis 2017 [51] and

Youtube-VOS [52] datasets. The network uses dense long-
term similarity dependencies between current and past fea-
ture embeddings to propagate the previous object mask to
the latest frame. The object mask needed by BundleTrack
is simply binary, i.e., 𝑀𝜏 = {0,1}𝐻×𝑊 , 𝜏 ∈ {0,1, ..., 𝑡} and
distinguishes the object region from the background. The
only requirement is an initial mask 𝑀0 of interest. Neither
the transductive-VOS network nor the following steps of
BundleTrack require 𝑀0 to come from semantic/instance
segmentation. Therefore, it can also be obtained in alternative
ways depending on the application, e.g., low-level image
segmentation [43], [53], point cloud segmentation/clustering
[46], [47], or plane fitting and removal [46], etc.
While the current implementation uses transductive-VOS,

the following techniques do not depend on this specific
network. If the object mask can be computed via simpler
means, such as computing a region of interest (ROI) from
forward kinematics followed by point cloud filtering in robot
manipulation scenarios [2], the segmentation module can be
replaced.

B. Keypoint Detection, Matching and Local Registration
Local registration is performed between consecutive

frames 𝐼𝑡−1 and 𝐼𝑡 to compute a initial pose T̃𝑡 . To do so,
correspondence between keyframes detected on each image
is performed. Different from prior work [17], which relies
on category-level 3D models to learn a fixed number of
category-level semantic keypoints, this work aims to use
generalizable features not specific to certain instances or
categories. The LF-Net [54] is chosen given its satisfac-
tory balance between performance and inference speed. It
only requires training on general 2D images, such as the
ScanNet dataset [55] used here, and generalizes to novel
scenes. During testing, for the newly observed frame 𝐼𝑡 , LF-
Net receives the segmented image (Sec. IV-A) as input. It
then outputs 𝑛 keypoints 𝑥𝑖 , 𝑖 ∈ {0,1, ..., 𝑛 − 1} along with
the feature descriptor 𝐷𝑖 ∈ 𝑅128, where 𝑛 is 500 in all
experiments. Due to the potentially imperfect segmentation
in previous step, outlier keypoints can arise from the back-
ground. It is thus critical to perform feature matching and
outlier pruning via RANSAC [48], executed in parallel on
GPU in this work. Each registration sample consists of 3
pairs of keypoints matched between the two images. A pose
hypothesis is generated from a sample via least squares
[56]. When evaluating samples, inlier correspondences have



a distance between transformed point pairs below a threshold
𝛿 and an angle formed by the normals within a threshold
𝛼. The values of 𝛿 and 𝛼 are empirically set to 5𝑚𝑚 and
45° in all experiments. After RANSAC, a preliminary pose is
computed by T̃𝑡 = T𝑡−1𝑇 𝑡−1

𝑡 where 𝑇 𝑡−1
𝑡 is the best sampled

correspondence hypothesis.

C. Keyframe Selection
T̃𝑡 is then refined during a pose graph optimization step.

The number of keyframes participating in the optimization
is limited to 𝑘 6 K for the sake of efficiency, where K = 15
is the number used in the experiments. When the size of the
keyframe memory pool N is larger than K, the objective is
to find the set of keyframes with the largest mutual viewing
overlap to make good use of multi-view consistency. This
challenge can be formulated as the minimum H-subgraph of
an edge-weighted graph problem [57]:

argmin
𝑥

∑︁
𝑖∈N

∑︁
𝑗∈N, 𝑗≠𝑖

𝑥𝑖𝑥 𝑗 · 𝑎𝑟𝑐𝑐𝑜𝑠
(
𝑡𝑟 (𝑅𝑇

𝑖
𝑅 𝑗 ) −1
2

)
so that :

∑︁
𝑖∈N

𝑥𝑖 =K and 𝑥𝑖 ∈ {0,1}, 𝑖 ∈ N ,

where 𝑅𝑖 is the rotation matrix of the corresponding
keyframe’s pose. The goal is to find the optimal binary vector
𝑥 ∈ 𝑅𝑁 that indicates the selections. The weight of the edge
between frame pair (𝑖, 𝑗) is the geodesic distance of their
rotations. Mutual viewing overlap is maximized when the
mutual rotation difference relative to the camera is min-
imized. Combinatorial optimization algorithms for solving
this problem have a complexity of 𝑂 (NK/𝑙𝑜𝑔N) [57]. In
practice, an iterative greedy selection is followed by starting
with the keyframe set {𝐼0} until the number of selected
keyframes reachesK. 𝐼0 is chosen since the initial frame does
not suffer from any tracking drift and serves as the reference
frame. In each iteration, the keyframe with the smallest sum
of geodesic distances against 𝐼𝑡 as well as all previously
selected keyframes is added. This reduces complexity to
𝑂 (NK3 +NK2), making the selection practical (under a
millisecond) without degrading performance.

D. Online Pose Graph Optimization
The pose graph can be denoted as 𝐺 = {𝑉,𝐸}, |𝑉 | = 𝑘 +1,

where each node corresponds to the object pose in the
camera’s frame at the current and 𝑘 selected timestamps
𝜏 ∈ {𝑡, 𝑡 − 𝑡1, 𝑡 − 𝑡2, ..., 𝑡 − 𝑡𝑘 }. For simplicity, the subscripts
of graph nodes will be denoted as simple indices 𝑖 ∈ |𝑉 |
instead of the actual timestamp 𝑡 − 𝑡𝑖 . Each node’s pose can
then be denoted as T𝑖 , 𝑖 ∈ |𝑉 |. Inspired by [58], for the edges
between each pair of nodes, two types of energies E 𝑓 and
E𝑔 are considered. The energy E 𝑓 relates to the residuals
computed from feature correspondences and E𝑔 relates to
the geometric residuals measured by dense pixel-wise point-
to-plane distance. The spatiotemporal consistency is achieved
when the total energy of the graph E is minimized:

E =
∑

𝑖∈ |𝑉 |

∑
𝑗∈ |𝑉 |, 𝑗≠𝑖

(𝜆1E 𝑓 (𝑖, 𝑗) +𝜆2E𝑔 (𝑖, 𝑗)) (1)

E 𝑓 (𝑖, 𝑗) =
∑

(𝑚,𝑛) ∈𝐶𝑖, 𝑗

𝜌

(


T−1𝑖 𝑝𝑚−T−1
𝑗
𝑝𝑛





2

)
(2)

In order to compute E 𝑓 , feature correspondences 𝐶𝑖, 𝑗

between each pair of nodes (𝑖, 𝑗) are determined. If 𝐶𝑖, 𝑗

has been built during a previous pose graph optimization,
it is reused. Otherwise, the data association process of Sec.
IV-B is performed to compute 𝐶𝑖, 𝑗 . These multi-pair feature
correspondences are built in parallel on GPU. In Eq. (2) and
(3), 𝑝 represents the unprojected 3D points in the camera’s
frame, 𝜌 is the M-estimator, where Huber loss is used.
E𝑔 (𝑖, 𝑗) =

∑
𝑝∈ |𝐼𝑖 |

𝜌

(


𝑛𝑖 (𝑥) · (T𝑖T−1𝑗 𝜋−1
𝐷
(𝜋(T 𝑗T−1𝑖 𝑝)) − 𝑝)





2

)
(3)

For E𝑔, dense pixel-wise correspondences are associated
by point re-projection, while outliers are filtered based on
the distance between the point pair and the angle formed by
their normals; 𝜋(·) is the perspective projection operation;
𝜋−1
𝐷
(·) denotes the unprojection mapping, which recovers a

3D point in the camera’s frame by looking up the depth value
on the pixel location; 𝑛𝑖 (·) returns the normal of the pixel
on the frame 𝐼𝑖 , 𝑖 ∈ |𝑉 |.
In Eq. (1), 𝜆1 and 𝜆2 are the weights balancing E 𝑓 and

E𝑔. To emphasize the lack of sensitivity to the choice of
these values, 𝜆1 and 𝜆2 are set to 1 in all experiments unless
otherwise specified. Then, the goal is to find the optimal
poses, such that:

𝜉∗ = argmin
𝜉

𝜌(Ē(𝜉))

where Ē(𝜉) is the stacked energy residual vector, 𝜉 =

(𝜉𝑡 , 𝜉𝑡−𝑡1 , 𝜉𝑡−𝑡2 , ..., 𝜉𝑡−𝑡𝑘 )𝑇 ∈ 𝑅6×(𝑘+1) is the stacked pose vec-
tor corresponding to the current frame and 𝑘 selected past
keyframes, while the pose corresponding to the initial frame
𝐼0 is kept constant as reference. Each block 𝜉𝑖 = 𝑙𝑜𝑔(T𝑖) ∈
𝔰𝔢(3) is parametrized in Lie Algebra [59], consisting of 3
parameters for translation and 3 parameters for rotation. A
common approach is to apply first-order Taylor expansion
around 𝜉, such that the iteratively re-weighted nonlinear least
squares can be solved by a Gauss-Newton update:

(J𝑇 WJ)Δ𝜉 = J𝑇 WĒ
where J is the Jacobian matrix with respect to 𝜉, W is a
diagonal weight matrix computed by the M-estimator 𝜌 and
residual, which is updated in each iteration. To better take
advantage of the sparsity of J and W, inside each Gauss-
Newton step, an iterative PCG (Preconditioned Conjugate
Gradient) [60] solver is leveraged, where the diagonal ma-
trix J𝑇 WJ is used as the preconditioner. Incremental pose
updates are accumulated in the tangent space after each
iteration 𝜉← 𝜉 �Δ𝜉. The entire pose graph optimization is
implemented in CUDA for parallel computation.
At the end of the optimization, the object pose corre-

sponding to each graph node is obtained by T𝑖 = 𝑒𝑥𝑝(𝜉𝑖) ∈
𝑆𝐸 (3), 𝑖 ∈ |𝑉 |. The one corresponding to the current times-
tamp 𝑡 becomes the output tracked pose T𝑡 , while poses
corresponding to the historical keyframes are updated in the
memory pool. The entire process is causal, i.e. past frames’
corrected poses cannot be updated in the output. However,
their corrected pose estimates provide better initialization
in following pose graph optimization steps to benefit the
solution of new observations. This significantly reduces long-



term drift compared against tracking-via-reconstruction [24],
where any intermediate erroneous pose estimation introduces
noise when fused into the global model and adversely affects
the subsequent tracking.

E. Augmenting the Keyframe Memory Pool
The initial frame 𝐼0 is always selected as it does not suffer

from any tracking drift. For later frames, once the current
object pose T𝑡 is determined, its rotation geodesic distance
against each existing keyframe in the pool is compared. If
all pair-wise distances are larger than 𝛼 (𝑎𝑟𝑐𝑐𝑜𝑠(10°) in all
experiments), 𝐼𝑡 is added into the keyframe memory pool.
This encourages to add frames from novel views, such that
multi-view diversity is enriched.

V. EXPERIMENTS
This section evaluates the proposed approach and com-

pares against state-of-the-art 6D pose tracking and estima-
tion methods on two public benchmarks, the NOCS dataset
[13] and the YCBInEOAT dataset [22]. Experiments are
performed over diverse types of objects and various tracking
scenarios (e.g., moving camera or moving objects). Both
quantitative and qualitative results demonstrate that Bundle-
Track achieves comparable or even superior performance
relative to alternatives, although it does not require instance
or category-level 3D models. Concretely, no CAD models
or training data from a 3D object database are used by
BundleTrack. All experiments are conducted on a standard
desktop with Intel Xeon(R) E5-1660 v3@3.00GHz processor
and a single NVIDIA RTX 2080 Ti GPU.

A. Datasets
NOCS dataset [13]: Among existing datasets, this is the
closest to the setup here, where instance 3D models are not
provided during evaluation. The dataset contains 6 object
categories: bottle, bowl, camera, can, laptop, and mug. The
training set consists of: (1) 7 real videos containing 3
instances of each category in total, annotated with ground
truth poses; and (2) 275K frames of synthetic data generated
using 1085 instances from the above 6 categories using a 3D
model database ShapeNetCore [18] with random poses and
object combinations in each scene. The testing set has 6 real
videos containing 3 different unseen instances within each
category, resulting in 18 different object instances and 3,200
frames in total.
YCBInEOAT dataset [22]: This dataset helps verify the
effectiveness of 6D pose tracking during robot manipulation.
It was originally developed to evaluate approaches relying on
CAD models. The available CAD models, however, are not
used by BundleTrack. In contrast to the NOCS dataset where
objects are statically placed on a tabletop and captured by
a moving camera, YCBInEOAT contains 9 video sequences
captured by a static RGB-D camera, while objects are dynam-
ically manipulated. There are three types of manipulation:
(1) single arm pick-and-place, (2) within-hand manipulation,
and (3) pick to hand-off between arms to placement. These
scenarios and the end-effectors used make directly computing

Assumption Methods Metrics bottle bowl camera can laptop mug Overall

Category
-Level

3D Model

NOCS [13]

5°5cm 5.5 62.2 0.6 7.1 25.5 0.9 17.0
IoU25 48.7 99.6 90.6 77.0 94.7 82.8 82.2
Rerr 25.6 4.7 33.8 16.9 8.6 31.5 20.2
Terr 14.4 1.2 3.1 4.0 2.4 4.0 4.9

KeypointNet
[62]

5°5cm 5.9 16.8 1.8 4.3 49.2 3.1 13.5
IoU25 23.1 74.7 30.9 42.6 94.6 52.0 53.0
Rerr 28.5 9.8 45.2 28.8 6.5 61.2 30.0
Terr 9.5 8.2 8.5 13.1 4.4 6.7 8.4

6-PACK w/o
temporal [17]

5°5cm 23.7 53.0 8.4 25.0 62.4 22.4 32.5
IoU25 92.0 100.0 91.0 89.9 97.8 100.0 95.1
Rerr 15.7 5.3 43.9 12.5 4.9 20.3 17.1
Terr 4.2 1.6 5.5 5.0 2.5 1.8 3.4

6-PACK [17]

5°5cm 24.5 55.0 10.1 22.6 63.5 24.1 33.3
IoU25 91.1 100.0 87.6 92.6 98.1 95.2 94.2
Rerr 15.6 5.2 35.7 13.9 4.7 21.3 16.0
Terr 4.0 1.7 5.6 4.8 2.5 2.3 3.5

No
Model

ICP [63]

5°5cm 10.1 40.3 12.6 17.2 14.8 6.2 16.9
IoU25 29.9 79.7 53.1 40.5 50.9 27.7 47.0
Rerr 48.0 19.0 80.5 47.1 37.7 56.3 48.1
Terr 15.7 4.7 12.2 9.4 9.2 9.2 10.5

TEASER++*
[64]

5°5cm 13.9 35.5 10.7 11.7 40.9 7.5 20.0
IoU25 100.0 99.9 99.9 100.0 99.9 99.9 99.9
Rerr 17.0 10.6 18.8 20.4 7.2 23.0 16.2
Terr 2.7 1.8 2.8 2.7 2.6 2.4 2.5

MaskFusion
[24]

5°5cm 15.5 32.3 11.7 8.8 73.9 16.4 26.5
IoU25 51.4 71.4 60.8 49.7 99.9 56.2 64.9
Rerr 36.7 12.3 43.0 34.9 3.4 40.6 28.5
Terr 11.3 5.3 11.1 9.3 3.5 9.2 8.3

BundleTrack
(Ours)

5°5cm 86.5 99.6 85.8 99.2 99.9 53.6 87.4
IoU25 100.0 99.9 99.9 100.0 99.9 99.9 99.9
Rerr 1.6 1.7 3.0 1.5 1.5 5.2 2.4
Terr 2.3 2.1 2.1 2.1 2.2 2.2 2.1

TABLE I: Results on the NOCS dataset [13]. For the metrics of 5°5cm and IoU25, a
higher value is preferable. For the metrics of Rerr and Terr, a lower value is preferable.
Under each type of 3D model assumption, the best results are highlighted in bold font.
TEASER++* denotes TEASER++ [64] operating over the same segmented point cloud
and feature correspondences as in the proposed BundleTrack.

poses from forward kinematics unreliable. The manipulation
videos involve 5 YCB Objects [61]: mustard bottle, tomato
soup can, sugar box, bleach cleanser and cracker box.

B. Results on the NOCS Dataset
Table I and Fig. 3 present the quantitative and qualita-

tive results of state-of-art methods on the NOCS dataset
respectively. The comparison points include learning-based
methods relying on a category-level prior, such as NOCS
[13], KeypointNet [62], and 6-PACK with or without tem-
poral prediction [17]. These methods are offline trained on
both real and synthetic training sets, which are rendered
with 3D object models extracted from the same categories
of ShapeNetCore [18]. In contrast, ICP [63], MaskFusion
[24], TEASER++* [64] and the proposed BundleTrack have
no access to any training data based on 3D models.
The evaluation protocol is the same as in prior work [17].

A perturbed ground-truth object pose is used for initializa-
tion. The perturbation adds a uniformly sampled random
translation within a 4cm range to evaluate robustness against
a noisy initial pose [17]. No re-initialization is allowed during
tracking. To evaluate robustness against missing frames, the
same uniformly sampled 450 frames out of 3200 in the
testing videos are dropped [17]. Four metrics are adopted:
1) 5°5cm: percentage of estimates with orientation error <
5°and translation error < 5cm - the higher the better; 2)
IoU25 (Intersection over Union): percentage of cases where
the overlapping prediction and ground-truth 3D bounding box
volume is larger than 25% of their union - the higher the
better; 3) Rerr: mean orientation error in degrees - the lower
the better; and 4) Terr: mean translation error in centimeters -
the lower the better. For Rerr and Terr, estimates with IoU≤25
are not counted when computing averages1 [17].

1https://github.com/j96w/6-PACK/blob/master/benchmark.py

https://github.com/j96w/6-PACK/blob/master/benchmark.py
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Fig. 3: Example qualitative results of BundleTrack and representative comparison points
on NOCS Dataset. In all methods, each object is tracked individually and depicted in
the same image for visualization. Methods’ names are colored in blue and green to
denote assumption on category-level 3D model and no model respectively. For more
qualitative results, please refer to the supplementary video.

The results of comparison points other than MaskFusion
and TEASER++* come from the literature [17]. The open-
sourced code2 of MaskFusion is used for evaluation, where
the global SLAM module is disabled to avoid inferring object
poses from the camera’s estimated ego-motion. The dynamic
object tracking module is kept to solely evaluate object
pose tracking effectiveness. Its original segmentation module
Mask-RCNN [49] is fine-tuned on the real training data
provided in the NOCS dataset for better performance while
the synthetic data rendered using category-level 3D models
are not used, as this method is also agnostic to any 3D models
[24]. In addition to ICP reported in [17], another state-of-
art 3D registration approach [64] is included for comparison
and denoted as TEASER++*, which is robust to outlier cor-
respondences and agnostic to 3D models. It takes as input the
segmented point cloud and feature correspondences that are
computed using the same modules proposed in BundleTrack.
For BundleTrack, an initial mask 𝑀0 is required as input to
the framework and is provided via the aforementioned Mask-
RCNN. During execution, BundleTrack does not require
external mask input nor any form of re-initialization. As
exhibited in Table I, BundleTrack significantly outperforms
the comparison points under all metrics and over all object
categories, despite not accessing instance or category-level
3D models.

2https://github.com/martinruenz/maskfusion
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Fig. 4: Example qualitative results of BundleTrack and representative comparison points
on YCBInEOAT Dataset. Methods’ names are colored in red, blue and green to denote
assumption on instance 3D model, category-level 3D model and no model respectively.
For more qualitative results, please refer to the supplementary video.

C. Results on YCBInEOAT Dataset
Evaluation exclusively on static objects captured by a

moving camera cannot completely reflect the properties of
a 6D pose tracking method [22]. For this reason, the YCBI-
nEOAT dataset is chosen to evaluate tracking in scenarios
where objects are moving in front of the camera. The
same evaluation protocol is followed as in prior work [22].
Results are computed from accuracy-threshold AUC (Area
Under Curve) measured by 𝐴𝐷𝐷 = 1

𝑚

∑
𝑥∈𝑀 | |𝑅𝑥+𝑇 − (𝑅̂𝑥+

𝑇) | |, which performs exact model matching, and 𝐴𝐷𝐷-
𝑆 = 1

𝑚

∑
𝑥1∈𝑀 min𝑥2∈𝑀 | |𝑅𝑥1+𝑇 − (𝑅̂𝑥2+𝑇) | | [3] designed for

evaluating symmetric objects. Similar to prior work [22], the
ground-truth object’s pose in the camera’s frame is provided
as initialization. No re-initialization is allowed during the
tracking process.
Quantitative and qualitative results are shown in Table II

and Fig. 4 respectively. Comparison points include state-of-
art 6D pose tracking methods that use object CAD mod-
els, such as RGF [28], dbot PF [11] and 𝑠𝑒(3)-TrackNet
[22]. 6-PACK [17] is a state-of-art 6D pose tracking ap-
proach relying on category-level 3D models. Its evaluation
on objects “021_bleach_cleanser”, “006_mustard_bottle” and
“005_tomato_soup_can” are performed by using the officially
released3 networks trained on “bottle” and “can” category
respectively . For the rest of the objects “003_cracker_box”
and “004_sugar_box”, no suitable corresponding category
can be found in existing 3D model database [18] and thus 6-
PACK is not able to be retrained and evaluated on them. For
6-PACK, 3D bounding box of the object model, computed
from forward kinematics, is provided in every frame to crop
ROI from point cloud, since it is more reliable than its
default module of extrapolating the 3D bounding box by
estimated motion. For MaskFusion [24] and BundleTrack,

3https://github.com/j96w/6-PACK



Assumption Methods
003_cracker_box 021_bleach_cleanser 004_sugar_box 005_tomato_soup_can 006_mustard_bottle ALL
ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

Instance 3D Model
RGF [28] 34.78 55.44 29.40 45.03 15.82 16.87 15.13 26.44 56.49 60.17 29.98 39.90
dbot PF [11] 79.00 88.13 61.47 68.96 86.78 92.75 63.71 93.17 91.31 95.31 78.28 89.18

se(3)-TrackNet [22] 90.76 94.06 89.58 94.44 92.43 94.80 93.40 96.95 97.00 97.92 92.66 95.53

Category-Level 3D Model 6-PACK [17] - - 4.18 18.00 - - 12.82 60.32 34.49 80.76 - -

No Model
MaskFusion [24] 79.74 88.28 29.83 43.31 36.18 45.62 5.65 6.45 11.55 13.11 35.07 41.88
TEASER++* [64] 63.24 81.35 61.83 82.45 51.91 81.42 41.36 71.61 71.92 88.53 57.91 81.17
BundleTrack (Ours) 85.07 89.41 89.34 94.72 85.56 90.22 86.00 95.13 92.26 95.35 87.34 92.53

TABLE II: Results of AUC measured by ADD and ADD-S metrics on YCBInEOAT Dataset [22]. Under each type of 3D model assumption, best results are in bold. TEASER++*
denotes TEASER++ [64] operating over the same segmented point cloud and feature correspondences as in the proposed BundleTrack.
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Fig. 5: Experimental analysis performed on NOCS dataset as described in Sec V-
D. (a) Ablation study investigating effectiveness of pose graph optimization and each
energy term. (b) Sensitivity of BundleTrack to inaccurate initial pose by deliberately
introducing different translation and rotation noise levels. (c) Average running time
decomposition of different modules. (d) Rotation and translation error w.r.t. timestamps
compared against representative related works [17], [24], [64] for tracking drift study.

the initial object mask is obtained by table fitting and
removal, followed by Euclidean Clustering implemented in
PCL [46]. The original MaskFusion’s segmentation module
Mask-RCNN cannot be retrained on this benchmark due to
the lack of training set. Therefore, during tracking, the target
object mask is computed by segmenting out the region of
robot arm and end-effector from forward kinematics. For in-
stances of irregular shapes or colors (“021_bleach_cleanser”,
“006_mustard_bottle”) within the “bottle” category that 6-
PACK has been trained on, it struggles to get satisfactory
result. Nevertheless, BundleTrack consistently demonstrates
high quality tracking without any retraining or fine-tuning.
This establishes generalizability of BundleTrack to novel
object instances regardless of their out-of-distribution prop-
erties within the category. BundleTrack also achieves compa-
rable or superior performance even when compared against
methods relying on object instance CAD models [11], [22],
[28].

D. Analysis
Ablations Study: An ablation study investigates the effec-
tiveness of the online global pose graph optimization and
each energy term, presented in Fig. 5 (a).

Sensitivity to Initial Pose: As mentioned, random transla-
tion noise within 4cm range is added to the initial pose. This
part further investigates robustness under different translation
and rotation noise levels, shown in Fig. 5 (b).
Computation Time: The average running time of modules
are given in Fig. 5 (c). The entire framework runs at
10Hz on average including video segmentation. The 6-PACK
[17], TEASER++* [64] and MaskFusion [24] methods from
related work run at 4Hz, 11Hz and 17Hz respectively on the
same machine.
Tracking Drift Analysis: Fig. 5 (d) presents the rotation
and translation error w.r.t. timestamps compared against
representative related works [17], [24], [64]. Results are
averaged across all videos on the NOCS Dataset.
Generalization: The neural networks’ weights and hyper-
parameters in BundleTrack are fixed without any retraining
or fine-tuning across all evaluations (Sec. V-B, V-C). When
applied to novel instances, the framework does not require
access to instance or category-level 3D models for training
or registration.
Failure Cases: While BundleTrack is able to robustly keep
tracking in all experiments without lost or re-initialization,
intermediate imprecise estimates are observed, such as the
cases illustrated in Fig. 6.

𝑻𝟎𝑪 𝑻𝟎𝑪

𝑻𝟎→𝝉

𝒕 ൌ 𝟎 𝒕 ൌ 𝝉

Time
Raw Object

Fig. 6: Some of the most challenging cases for BundleTrack on the NOCS Dataset. Top:
Severe self-occlusion prevents data association around the mug’s handle, introducing
challenges for solving the orientation around the green axis. Nevertheless, with better
visibility in subsequent frames, BundleTrack is able to recover from drifts and continue
tracking, thanks to the memory-augmented pose graph optimization. Bottom: Near the
end of video, noisy segmentation (purple mask) falsely ignores the side of the bowl,
preventing relevant feature extraction and leads to slight translation offset. With future
development of more advanced segmentation module, the overall tracking performance
is expected to be boosted.

VI. CONCLUSION
This work presents BundleTrack, a general framework for

tracking the 6D pose of novel objects without any assump-
tions on instance or category-level 3D models. Extensive
experiments demonstrate that it is able to perform long-term
accurate tracking under various challenging scenarios. It even



achieves comparable performance to state-of-art methods that
depend on the target object’s CAD model. Future research
includes the exploration of combining BundleTrack with
model-free grasping methods [65], [66], to perform robust
pick-and-place [67], [68] or in-hand dexterous manipulation
for a wide variety of novel objects.
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