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Abstract—Relative localization between autonomous robots
without infrastructure is crucial to achieve their navigation,
path planning, and formation in many applications, such as
emergency response, where acquiring a prior knowledge of the
environment is not possible. The traditional Ultra-WideBand
(UWB)-based approach provides a good estimation of the
distance between the robots, but obtaining the relative pose (in-
cluding the displacement and orientation) remains challenging.
We propose an approach to estimate the relative pose between
a group of robots by equipping each robot with multiple UWB
ranging nodes. We determine the pose between two robots by
minimizing the residual error of the ranging measurements
from all UWB nodes. To improve the localization accuracy, we
propose to utilize the odometry constraints through a sliding
window-based optimization. The optimized pose is then fused
with the odometry in a particle filtering for pose tracking among
a group of mobile robots. We have conducted extensive exper-
iments to validate the effectiveness of the proposed approach.

I. INTRODUCTION

Localization is essential for robots to achieve true au-
tomatic movement [1]. The literature shows a number of
mature techniques and implementations for localization given
a known infrastructure (i.e., map of the environment or
distribution of the landmarks) [2] [3]. One example is the
use of GPS to provide meter-level positioning accuracy by
trilaterating the signals from at least four satellites in outdoor
environments, which is not suitable for indoor positioning
due to the block of the satellite signals from buildings [4].

However, a prior knowledge of the environment is not
always available. For example, the emergency response re-
quires a team of robots to explore an unknown site, where
the existing infrastructure might be damaged [5]. In this
case, knowing the relative position between the robots is
vital to perform the exploration task effectively. A number
of sensors, for example visual and LiDAR, can be used to
achieve the relative localization. These approaches provide
a good localization accuracy when the robots are within the
field of view, but it is challenging to deal with occlusions and
the algorithms often require a lot of computational resources.
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Fig. 1. Overview of the proposed approach of relative localization of
multiple robots (two robots as an example). Each robot carries a set of UWB
nodes for ranging. Our goal is to achieve the relative localization between
a group of robots based on the fusion of UWB ranging and odometry
measurements.

Radios (for example WiFi and UWB) are widely used for rel-
ative localization due to the detection of signals without line-
of-sight [6]. For example, UWB sensors provide centimeter-
level accuracy and offers a maximum reading range up to
100 meters. Recent research shows a growing deployment of
UWB for the positioning in robotics community, due to its
low cost, small size, and low power consumption.

Although a precise distance between the robots can be
obtained by the UWB, the lack of bearing information
makes it difficult to be applied in industrial environments
[7]. Acquiring the bearing is critical for autonomous robots
to perform various tasks, for example navigation, docking,
and formation control. The traditional Angle-of-Arrival-based
solutions require an expensive setup to determine phase shift
from different antennas, which are not suitable for robotics
applications. Therefore, this paper proposes an approach to
estimate the pose (position and orientation) between the
robots using a set of ranging measurements from UWBs.
In particular, we equip each robot with a number of UWB
nodes as shown in Figure 1. The installed positions of UWB
nodes on a specific robot are known in advanced. We achieve
the relative pose estimation by minimizing the residual error
of the ranging measurements from the multiple UWB nodes
installed on different robots.

The UWB ranging is susceptible to multipath phenomenon
in indoor environments [8]. This challenges the accurate pose
estimation using the ranging difference from the UWBs, in
particular when the distance between the UWB nodes on the
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same robot is short. Odometry determines the location of
a robot with dead reckoning [9] based on wheel encoder or
Inertial Measurement Unit (IMU). Although the odometry
will drift for a long term run, the estimation of odometry
in a short time is accurate. Hence in this paper, we propose
to refine the pose estimation by considering the odometry
as constraints through a sliding window-based optimization.
Finally, to track the pose of the moving robot, we propose to
use the particle filtering (PF) to fuse the optimized pose and
the odometry measurements. We evaluated the performance
of the proposed approach by a series of experiments. The
contributions of this paper are summarized as follows:

1) We propose a method to realize the relative pose
estimation between mobile robots through non-linear
optimization of the UWB ranging measurements from
multiple UWB nodes mounted on different robots.

2) We incorporate odometry measurements as constraints
to improve the accuracy of pose estimation based on a
sliding window-based optimization.

3) We fuse the odometry and the optimized pose obtained
from the sliding window-based approach using the
particle filtering to track the pose of a group of moving
robots.

4) We have performed extensive experiments to evaluate
the performance of the proposed approach. The re-
sults show that we achieved a positioning accuracy
of 0.312m in translation and 4.903◦ in rotation by
fusing the UWB and odometry measurements when
three robots are moving in the environment with a size
of 6m×12m.

The remainder of this paper is organized as follows: Sec-
tion II introduces the related work. Section III describes the
approaches for relative pose estimation using UWB rangings,
pose optimization with additional odometry constraints, and
the particle filtering for pose tracking. Extensive experiments
to validate the proposed approach are conducted in Sec-
tion IV. Finally, the conclusion and future work are given
in Section V.

II. RELATED WORK

Despite GPS is widely used in outdoor environment, it
cannot be applied in indoor scenarios, as satellite signals
are easily reflected and diffracted by city buildings [10]. A
large number of researchers focused on the localization in
GPS-denied environments with different sensor techniques
and implementations. Visual and LiDAR are two widely used
sensors that provide high positioning accuracy, with a number
of applications in the industry. Authors in [11] proposed
to use self-optimized-ordered visual vocabulary to find deep
connections between feature clusters and physical locations.
Authors in [18] proposed an approach that leverages visual
information captured by surveillance cameras and smart
devices to deliver accurate location information. Authors in
[13] proposed to use full information maximum likelihood
optimal estimation to improve the positioning accuracy of a
device equipped with LiDAR.

In many scenarios, however, the prior knowledge about the
infrastructure is not known. Therefore, relative localization
without any infrastructure is crucial for the robot to perform
navigation and formation control. Due to its low cost and
precise ranging accuracy [14], UWB has been used for lo-
calization in many industrial applications. Another advantage
is that UWB works well in non-line-of-sight environments,
due to its good capability to penetrate through a variety of
materials including walls, metals, and liquids. Authors in
[15] used four transceivers as base stations to improve the
robustness and precision of the positioning system. But the
orientation of the object cannot be estimated via this method.
Authors in [16] proposed a waveform division multiple access
scheme to enhance the positioning accuracy in multi-user
applications. In order to improve the performence of relative
localization, authors in [17] proposed a visual-inertial-UWB
fusion framework for relative state estimation. Meanwhile,
authors in [18] introduced a decentralized omnidirectional
visual-inertial-UWB state estimation system to solve the
issues of observability, complicated initialization, and insuf-
ficient accuracy.

Odometry plays an essential role for localization, as it can
provide accurate pose estimation for a mobile robot in a short
period [19]. Therefore, many researchers focus on the fusion
of odometry with other sources of sensors to improve the
localization accuracy. Authors in [20] proposed an indirect
cooperative relative localization method to estimate the posi-
tion of a group of unmanned aerial vehicles based on distance
and IMU displacement measurements. However, they only
discussed the problem of direct relative positioning to a static
UAV. Authors in [21] proposed an approach to combine IMU
inertial and UWB ranging measurement for relative position-
ing between multiple mobile users without the knowledge of
the infrastructure. But they assume the initial poses of the
users are known. Authors in [22] proposed a method to fuse
IMU, magnetometers, peer-to-peer ranging, and downward
looking cameras to provide high-precise estimation of UAVs.
However, this method has high computational complexity and
it is not suitable for non-line-of-sight applications.

III. RELATIVE POSE ESTIMATION

In this section, we first formulate the problem of the
relative positioning with multiple UWB rangings to localize
a group of robots. Then, we show the details of our pro-
posed relative positioning approach, which consists of three
modules. First, we achieve the relative pose estimation using
UWB ranging measurements from multiple UWB ranging
measurements. Second, we refine the pose estimation by in-
corporating odometry constraints through a sliding window-
based optimization technique. Third, a particle filtering is
used to fuse the odometry and optimized pose for the tracking
of a group of robots.

A. Problem Formulation

Figure 1 shows a scenario where a group of robots needs to
perform relative localization without any given infrastructure.
Each mobile robot carries a set of UWB nodes to provide



ranging information from neighbor robots in communication
range. Additionally, each robot offers odometry measure-
ment, which provides its relative movement between adjacent
timestamps. The goal is to achieve relative localization be-
tween multiple mobile robots through the UWB ranging and
odometry measurements without a prior knowledge about the
infrastructure. Our approach works in a centralized fashion,
which requires all robots to send the measurements (i.e.,
odometry and UWB) to a server for pose estimation.

Formally, lets denote the pose of the robot i (i ∈ [1 : N ]) at
time t as x(t)

i = [x
(t)
i , y

(t)
i , θ

(t)
i ], where x(t)i and y(t)i represent

its 2D position and θ(t)i denotes its orientation at time t. The
odometry of each robot provides its relative movement mt

i =
[∆xti,∆y

t
i ,∆θ

t
i ] at time t. We denote the relative position of

UWB k on robot i as Cki , k ∈ [1 : K], where K is the total
number of UWB nodes on robot i. Similarly, the position of
UWB l on robot j is denoted as Clj , l ∈ [1 : L], where L is
the total number of UWB nodes on robot j. r(t)

ik,jl
represents

the UWB ranging measurement between UWB node k on
robot i and UWB node l on robot j. At time t, robot i will
receive L × K UWB ranging measurements from robot j,
which is denoted as rti,j = {r(t)

ik,jl
}K,Lk,l=1. N (t)

i represents the
set of robots that are in range of robot i at time t. Therefore,
we use z

(t)
i = {r(t)i,j} (j ∈ N

(t)
i ) to denote the total UWB

ranging measurements received by robot i at time t. We aim
to determine the relative pose of robot i with respect to robot
j at time t, which includes the estimation of 2D relative
position and orientation.

B. Relative Pose Estimation based on UWB Rangings

The estimation of the relative pose between robot i and
robot j can be achieved by finding the best configuration of
the pose through minimizing the residual error of the UWB
ranging measurements:

T
t

i,j = arg min
x=(x,y,θ)

l=L,k=K∑
l=1,k=1

(r
(t)

ik,jl
− d(x, Cki , C

l
j))

2 (1)

where the function d(.) computes the distance between UWB
node k on robot i and UWB node j on robot k given a pose
x. The minimization in Equation 1 is considered as a non-
linear optimization problem, which is solved by general graph
optimization (g2o) [23] in this paper. In particular, the pose
to be estimated is denoted as the node in the graph and the
constraints are represented by the UWB ranging measure-
ments. The algorithm turns out to find the best configuration
of the node (i.e., relative pose T

t

i,j to be estimated) to satisfy
the UWB ranging constraints (i.e., measurements) based on
maximum likelihood estimation.

C. Pose Optimization by Adding Odometry Constraints

Due to the limitation of the size of the robot, the distance
between the node on a robot is set to be small, which requires
a high UWB ranging accuracy to guarantee a good relative
pose estimation. This is particularly challenging for indoor
environment, as the ranging of UWB is highly impacted
by the non-line-of-sight signal propagation. Therefore, we

consider to apply the odometry constraints to improve the
accuracy of pose estimation. Our solution is to perform pose
graph optimization using a sliding window-based technique
by considering the following two types of constraints: namely
odometry constraints mt

i and pose constraints T
t

i,j obtained
from the UWB rangings (see Section III-B):

arg min
x

N∑
i=1

t∑
t′=t−w

e(xt
′−1
i ,xt

′

i ,m
t′

i )TΩt
′

i e(xt
′−1
i ,xt

′

i ,m
t′

i )︸ ︷︷ ︸
Odometry-based constraint

+

N∑
i=1

N∑
j 6=i

t∑
t′=t−w

e(xt
′

i ,x
t′

j ,T
t′

i,j)
TΩt

′

i,je(xt
′

i ,x
t′

j ,T
t′

i,j)︸ ︷︷ ︸
Pose constraint using UWB ranging (Sect. III-B)

(2)

where w represents the size of the sliding window used
for optimization. e(·) denotes the error function which is
computed based on the given poses and the constraints
inferred from the observations (i.e., odometry mt

i and pose
estimation T

t

i,j obtained from UWB ranging measurements
in Section III-B). Both constraints are represented as a
3×1 vector, which includes the 2D displacement and the
orientation. Constraints are additionally parameterized with
a certain degree of uncertainty, which is denoted as the
information matrix (i.e., Ωt

′

i and Ωt
′

i,j) in Equation 2. As a
result, we obtain an optimized pose estimation T̂t

i,j at time t
by incorporating odometry constraints within a time window
w. The optimized pose T̂t

i,j is then passed into a particle
filtering for the tracking of the poses of the robot with a
combination of odometry, see Section III-D.

D. Pose Estimation with Particle Filtering

When robot i moves in the environment, a series of odom-
etry measurements (i.e., M = {m(1)

i ,m
(2)
i , ...,m

(t)
i }) and

UWB ranging measurements (i.e., Z = {z(1)i , z
(2)
i , ..., z

(t)
i })

are recorded. The goal is to estimate the joint posterior
probability P (x

(t)
i |M ,Z) based on odometry measurements

M and UWB ranging measurements Z in a global frame.
Instead of using the ranging z

(t)
i as the observations, we

use the optimized pose T̂t
i,j obtained from Section III-C for

updating the belief of posterior probability. Given the fact that
odometry and UWB ranging measurements are independent,
P (x

(t)
i |M ,Z) can be expressed as follows:

P (x
(t)
i |M ,Z)

= ηt · P (x
(t)
i |x

(t−1)
i ,M) · P (Z|x(t)

i ) · P (x
(t−1)
i |M,Z)

= ηt · P (x
(t)
i |x

(t−1)
i ,m

(t)
i ) ·

∏
j∈N(t)

i

P (T̂t
i,j |x

(t)
i ,x

(t)
j )

· P (x
(t−1)
i |M ,Z)

(3)

where ηt denotes normalization coefficient, which ensures
the sum of total probability is one. P (x

(t)
i |x

(t−1)
i ,m

(t)
i )

represents the motion model of the mobile robot, which
predicts the current state of the robot x

(t)
i (i.e., position

and orientation) at time t based on the previous state x
(t−1)
i



and odometry m
(t)
i . P (T̂t

i,j |x
(t)
i ,x

(t)
j ) represents the UWB

observations model, which gives the likelihood of obtaining a
optimized pose T̂t

i,j given the current states of x(t)
i and x

(t)
j .

We use the particle filtering [21] [24] as the implementation,
due to its advantage in dealing with non-linear and non-
Gaussian systems when compared with the Kalman filtering.
The algorithm uses a number of particles to estimate the
posterior probability distribution of the robot pose, i.e.,
{x(s,t)

i , w
(s,t)
i }Ss=1, where S denotes the number of particles.

Each particle carries two kinds of information, namely the
pose x

(s,t)
i (i.e., position x(s,t)i , y(s,t)i , and orientation θ(s,t)i )

and the weight w(s,t)
k . The particle filtering is carried out

with two steps, namely prediction and update, which will
be described in the rest of this section. An overview of the
approach is shown in Algorithm 1.

1) Prediction: According to the motion model
P (x

(t)
i |x

(t−1)
i ,M), we predict the pose (i.e., position

and orientation) of a particle according to:

x
(s,t)
i = x

(s,t−1)
i + ∆d

(t)
i · cos(θ

(s,t−1)
i ) +N (0, σ2

d)

y
(s,t)
i = y

(s,t−1)
i + ∆d

(t)
i · sin(θ

(s,t−1)
i ) +N (0, σ2

d)

θ
(s,t)
i = θ

(s,t−1)
i + ∆θ

(t)
i +N (0, σ2

θ)

(4)

where ∆d
(t)
i represents the moving distance of the

robot between two adjacent timestamps (i.e., ∆d
(t)
i =√

(∆x
(t)
i )

2
+ (∆y

(t)
i )

2
). N (0, σ2

d) and N (0, σ2
θ) denote that

Gaussian noise with the standard deviations of σd and σθ,
which are applied to the displacement and orientation of the
robot movement, respectively.

2) Update: In this step, the weight of each particle is
updated based on the optimized pose from Section III-C. The
likelihood of obtaining a pose estimation T̂t

i,j is computed
as:

P (T̂t
i,j |x

(t)
i ,x

(t)
j ) =

1√
2πλdλθ

exp(−1

2
d2(T̂t

i,j ,x
(t)
i ,x

(t)
j ))

(5)

where d2(·) assesses the translational and rotational dis-
placements given the optimized pose T̂t

i,j and the relative
pose between x

(t)
i and x

(t)
i . λd and λθ represent standard

deviations of the optimized pose T̂t
i,j in displacement and

orientation, respectively. In particular, d2(·) is computed as:

d2(·) =
(x̂ti,j − xti,j)2

λd
+

(ŷti,j − yti,j)2

λd
+

(θ̂ti,j − θti,j)2

λθ
(6)

After the update step, the resample will be performed to
generate a new particle set as a replacement the previous
particle set, which is critical to avoid degeneration of the
particles. In principle, the higher the weight of the particles,
the greater the probability of being selected during the
resampling process.

Algorithm 1: The proposed approach for relative
localization between a group of robots

Data: Previous state {x(t−1)
i }Ni=1, odometry

{m(t)
i }Ni=1, and UWB ranging {z(t)i }Ni=1

Result: Relative pose estimation at t: {x(t)
i }Ni=1

// Pose estimation based on UWB
ranging (Sect.III-B)

1 for i← 1 to N do
2 for j ← 1 to N with j 6= i do
3 � Compute the relative pose T

t

i,j between i
and j at time t according to Equation 1

4 end
5 end
// Pose optimization based on

odometry constraints (Sect.III-C)
6 � Pose graph optimization according to Equation 2
7 � Compute the optimized relative pose T̂t

i,j

// Particle filtering for sensor
fusion (Sect.III-D)

8 for i← 1 to N do
9 � Predict x(t)

i according to Equation 4 given
odometry m

(t)
i

10 for j ← 1 to N with j 6= i do
11 � Update the particle filtering according to

Equation 5 based on T
t

i,j

12 end
// Resampling

13 � Draw new particle sets according to the weights
14 end

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

In this section, we present extensive experimental evalua-
tions to demonstrate the proposed approaches with different
settings in an indoor environment. In our setup, each robot
carried four UWB nodes (LinkTrack), which are able to
provide a maximum reading range up to 100 meters. These
UWB nodes are placed in a square configuration on the robot.
The sampling rate of UWB is set to 50Hz. The robot outputs
the odometry measurements with a frequency of 20Hz. To
obtain the ground truth, Hokuyo LiDARs are installed on all
robots to perform adaptive Monte Carlo localization (AMCL)
[25] given a map created by GMapping [26]. An overview
of the experimental setup is shown in Figure 2(a).

In order to analyze the stability and effectiveness of the
proposed method, we designed two test cases, as shown in
Figure 2. For the first test case (see Figure 2(b)), one robot
(robot2) is stationary and one robot (robot1) is moving along
a rectangular path with a size of 7m×6m. For the second
test case (see Figure 2(c)), we have three robots moving
along different paths simultaneously. Two robots are moving
along two different square paths with a size of 5m×5m
and one is moving along a T-shape path with a size of
6m×12m. During the experiment, the maximum velocity of
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Fig. 2. Overview of the experimental setup. (a) Robot platform and sensors
carried by the robot; (b) Robot1 is moving along a rectangular path and
robot2 is stationary; (c) Three robots are controlled to move simultaneously.
Robot1 moves along the T path, Robot2 and Robot3 move along different
rectangular paths.

the robot was set to 0.2m/s. The relative pose (including the
translation and rotation) at a timestamp is compared between
the ground truth and our estimation. We then compute the
mean squared error (MSE) in translation and rotation to
evaluate the positioning accuracy of our approach. In the
next sections, we describe the experimental results of the
two test cases. In both experiments, we set the number of
particles S = 500, σd = 0.1, and σθ = 0.05 for the particle
filtering. In addition, we use λd = 1.0 and λθ = 0.1 to update
the weights in the particle filtering. We refer the readers to
[5] for a detailed settings of these parameters in the particle
filtering.

B. First Test Case: One Static and One Mobile Robot

In this test case, one robot is placed at the area and
remains static. Another robot is controlled to move along
a rectangular path several times. The goal of this series of
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Fig. 3. Experimental evaluation of the first test case. (a) Estimated
trajectories of robot1 under different approaches while robot2 remains static;
(b) Translational error (in meters) at different timestamps under different
approaches; (c) Rotational error (in degrees) at different timestamps under
different approaches.

experiments is to evaluate the feasibility of the proposed
approach. These experiments also help us to examine the
impact of different parameters on the localization accuracy.
Since the distance between the UWB nodes on a robot has
high impact on pose estimation, we tested the following three
distance configurations of the UWB nodes, namely 0.3m,
0.5m, and 0.7m.

A summary of the positioning results with different ap-
proaches and different UWB configurations are shown in
Table I. We also compared our approach with the traditional
approach that uses the UWB ranging to update the particle
weights [5]. As can be seen from Table I, with a large distance
setting of the UWB, we obtain a slightly better localization
accuracy. The table also shows that pose optimization with
additional odometry constraints gives improvement to the
localization accuracy. Regarding the sliding window size w, a



TABLE I
EVALUATION OF THE FIRST TEST CASE: THE TRANSLATIONAL (IN METERS) AND ROTATIONAL (IN DEGREES) ERROR OF ROBOT1 WITH RESPECT TO

ROBOT2 UNDER DIFFERENT CONFIGURATIONS OF UWB NODES AND THE PERFORMANCE UNDER DIFFERENT APPROACHES I.E., RELATIVE POSE
ESTIMATION BY UWB RANGING (SECTION III-B), POSE OPTIMIZATION BY ADDITIONAL ODOMETRY CONSTRAINTS (SECTION III-C), THE PARTICLE
FILTERING THAT FUSES THE ODOMETRY AND UWB RANGING [5], AND THE PARTICLE FILTERING THAT FUSES THE ODOMETRY AND THE OPTIMIZED

POSE (SECTION III-D).

Approaches
Distance between UWB nodes on the robot

0.3m 0.5m 0.7m
Trans.

error (m)
Rot.

error (◦)
Trans.

error (m)
Rot.

error (◦)
Trans.

error (m)
Rot.

error (◦)
Odometry 0.96±0.43 10.01±4.54 0.79±0.32 6.27±3.54 0.62±0.23 3.71±2.38
Pose est. with ranging (Sect. III-B) 0.48±0.26 7.57±5.57 0.39±0.24 5.27±4.34 0.37±0.22 5.05±3.63
Pose opt. with odom. (w=5) 0.42±0.18 7.02±5.53 0.35±0.17 4.77±4.15 0.33±0.18 4.69±3.95
Pose opt. with odom. (w=30) 0.38±0.14 4.46±2.24 0.33±0.13 3.75±2.36 0.32±0.13 3.19±2.63
Pose opt. with odom. (w=80) 0.33±0.11 2.99±2.33 0.30±0.10 2.55±2.06 0.30±0.12 2.35±2.56
Pose opt. with odom. (w=160) 0.37±0.18 3.49±1.86 0.30±0.14 2.91±1.76 0.31±0.15 3.09±2.34
PF with UWB rangings [5] 0.35±0.20 5.31±3.91 0.49±0.23 6.26±3.84 0.35±0.22 4.84±3.12
PF with optimized pose (Sect. III-D) 0.25±0.10 2.91±2.76 0.22±0.10 2.70±2.27 0.25±0.09 2.02±1.47

large sliding window produces a better localization accuracy.
On the other hand, optimizing with a large sliding window
requires more computational time.

As it can be also seen from Table I, our particle filtering,
which fuses the odometry and the optimized pose (with
a sliding window w = 30), gives the best localization
accuracy. Figure 3(a) shows the path estimated with different
approaches. Figure 3(b) and Figure 3(c) plot the localization
accuracy in translation and rotation with respect to different
timestamps.

C. Second Test Case: Three Mobile Robots
To better verify the feasibility of our proposed approach,

we controlled three robots to move along different paths. Fig-
ure 4 shows the trajectory estimated by different approaches.
We show the relative positioning error between the three
robots under different approaches in Table II. We set the
sliding window w = 30 in this set of experiments. As can be
see from Table II, the odometry shows an accumulative error
of 1.466m in translation and 22.076◦ in rotation. The use of
UWB obviously produces an improvement of the localization
accuracy. The pure UWB ranging based-approach (i.e., pose
estimation based on pure UWB ranging in Section III-B)
provides a translational error of 0.528m and rotational error
of 7.413◦, while this accuracy is improved to 0.312m in
translation and 4.903◦ in rotation by the particle filtering
that integrates odometry and optimized pose obtained with
a sliding window. In general, the accuracy we obtained with
three robots is much worse than the first test case, due to
the increase of the experimental space and the UWB ranging
error cause by the moving of robots.

Table II also compares the computational time of different
approaches for the second test case. We ran the algorithm on
a laptop with an Intel i5-6300HQ 2.30GHz CPU and 12.0G
RAM. In total, the proposed approach consumes approx.
81ms to perform one sensor update, including relative pose
estimation in Section III-B (21 ms), pose optimization by
sliding window with w = 30 in Section III-C (41 ms), and

TABLE II
EVALUATION OF THE SECOND TEST CASE: THE TRANSLATIONAL (IN
METERS) AND ROTATIONAL ERROR (IN DEGREES) BETWEEN THREE

ROBOTS AND AVERAGE COMPUTATIONAL TIME (IN MILLISECOND) FOR
ONE POSE UPDATE UNDER DIFFERENT APPROACHES.

Approaches
Trans.

error (m)
Rot.

error (◦)
Consumed
time (ms)

Odometry 1.466 22.076 —
Pose estimation

from UWB ranging 0.528 7.413 21

Pose optimization
with odom. (w=30) 0.424 5.648 41

PF with
UWB rangings 0.534 7.234 44

PF with
optimized pose 0.312 4.903 86

the sensor fusion by the particle filtering with a particle size
of 500 in Section III-D (45 ms). This allows us to produce
the estimation at a frequency of 12Hz (i.e., 1000/81≈12),
which is suitable for many robotics applications.

V. CONCLUSION

We proposed an approach for relative localization without
any infrastructure based on the fusion of multiple UWB
ranging measurements from different nodes installed on the
robots. We also proposed to optimize the pose estimation
by incorporating additional odometry constraints. This opti-
mized pose is then fused with a particle filtering for the pose
tracking of a group of robots. Our experiments show that,
with three robots moving in the environment, we are able to
achieve an accuracy of 0.528m in translation and 7.413◦ in
rotation (in an environment with a size of 6m×12m) based on
pure UWB ranging measurements. The accuracy is improved
to 0.424m in translation and 5.648◦ in rotation by adding
odometry constraints for optimization. The particle filtering
that fuses odometry and optimized pose provides a transla-
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Fig. 4. Trajectories estimated by different approaches. (a) Relative pose estimation of robot2 and robot3 by UWB ranging (Section III-B) assuming known
robot1 position; (b) Optimized pose of robot2 and robot3 with additional odometry constraints (Section III-C) assuming known robot1 position; (c) The
particle filtering by fusing odometry and optimized pose (Section III-D).

tional error of 0.312m and rotational error of 4.903◦. Our
approach provides a solution for the localization of a team
of robots without any knowledge about the infrastructure. In
the future work, we would like to extend our work to include
more robots and apply our approach for swarm and formation
control of multiple robots.
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