
3D Radar Velocity Maps for Uncertain Dynamic Environments

Ransalu Senanayake∗1, Kyle Beltran Hatch∗1, Jason Zheng2, and Mykel J. Kochenderfer1

Abstract— Future urban transportation concepts include a
mixture of ground and air vehicles with varying degrees of
autonomy in a congested environment. In such dynamic envi-
ronments, occupancy maps alone are not sufficient for safe path
planning. Safe and efficient transportation requires reasoning
about the 3D flow of traffic and properly modeling uncertainty.
Several different approaches can be taken for developing 3D
velocity maps. This paper explores a Bayesian approach that
captures our uncertainty in the map given training data. The
approach involves projecting spatial coordinates into a high-
dimensional feature space and then applying Bayesian linear
regression to make predictions and quantify uncertainty in
our estimates. On a collection of air and ground datasets, we
demonstrate that this approach is effective and more scalable
than several alternative approaches.

I. INTRODUCTION

Future urban transportation system concepts include a
mixture of both autonomous and human-driven vehicles.
We anticipate driverless cars on roads as well as delivery
drones [1] and urban air mobility (UAM) systems with
vertical take-off and landing capabilities [2]. These advances
add complexity to our transportation systems (Figure 1a),
making decision making for autonomous vehicles operating
in such dynamic systems even more challenging.

Safe and efficient transportation in a congested environ-
ment requires accurately modeling the flow of traffic in
3D space at both the macroscopic and microscopic levels.
At the macroscopic level, the velocity maps estimate the
average behavior of vehicles at different locations in the
system, as opposed to estimating the current behavior of
surrounding targets (Figure 1b). We may have large amounts
of data to build such models, and we want to be able to
build them efficiently. At the microscopic level, we want
to model the surroundings of an individual vehicle from a
continuous stream of data to allow it to maneuver safely
(Figure 1c). These velocity maps estimate the behavior of
vehicles surrounding ego vehicle at the current point in time.
We often only have to learn models from very little data.

To provide robust control of these vehicles, it is important
to capture the uncertainty associated with our velocity maps.
For every point in the 3D space, for example, it would
be helpful to quantify both the mean and variance of the
various velocity components. While Bayesian nonparametric
methods such as Gaussian process-based models [3] can

∗Equal contribution.
1R. Senanayake, K. B. Hatch, and M. J. Kochenderfer are with the Stan-

ford Intelligent Systems Laboratory (SISL) in the Aeronautics and Astronau-
tics Department, Stanford University, 496 Lomita Mall, Stanford, CA 94305,
USA. Email: {khatch, ransalu, mykel}@stanford.edu.

2J. Zheng is with the Department of Computer Science, Stanford Uni-
versity. Email: jzzheng@stanford.edu.

provide uncertainty estimates, they (as well as many of their
approximations [4]) are generally not suitable for building
large-scale macroscopic models because their computational
complexity grows too quickly with the number of data
points [3], [5].

This paper applies an approach that has many of the
desirable attributes of a Gaussian process-based model, but it
is faster and more memory efficient. We adopt an approach
that involves projecting the spatial coordinates into a high-
dimensional, yet interpretable, feature space to capture in-
formation local to a given area. Bayesian linear regression is
used to learn the parameters of the model. We can then query
arbitrary points in the 3D space to obtain smooth estimates
of the mean and variance of the velocity components. The
model can be efficiently updated online, making it amenable
to changes in the environment. A theoretical analysis shows
that this model is robust against input noise. We demonstrate
our approach on simulated and real-world datasets.

II. RELATED WORK

Many robotics applications involve building maps of the
environment. Occupancy maps is the most common rep-
resentation. Occupancy maps alone can only be used to
navigate through an environment when surrounding obsta-
cles are stationary. However, in real urban environments an
autonomous vehicle must be able to safely navigate around
both stationary obstacles and moving vehicles. Developing
velocity maps are therefore crucial for planning algorithms
to plan safe trajectories for autonomous vehicles operating
in urban environments.

Techniques such as occupancy grid maps [6] discretize
the environment and model if a cell is free or occupied.
Such models assume the cells are independent, ignoring
neighborhood information. While such methods can model
the binary occupancy probability, they do not model epis-
temic uncertainty. To address these limitations, several 2D
Bayesian models have been proposed [5], [7]–[9]. These
models can be queried at an arbitrary resolution at run time.
There have also been various attempts to model occupancy in
dynamic environments [10]–[12]. However, such models do
not explicitly represent the velocity as a map. We model the
uncertainty of velocity in the 3D space which is computa-
tionally challenging compared to conventional 2D occupancy
mapping techniques. Although there are similarities with the
model we explore in this paper, these models use a binary
random variable to model occupancy [13]. In this work, we
are interested in modeling the velocity which is not a binary
variable.

ar
X

iv
:2

10
7.

11
03

9v
1

 [
cs

.R
O

]
 2

3
Ju

l 2
02

1

(a) A future urban environment. (b) Velocity of drone trajectories. (c) Radar point cloud velocity of the red car.

Fig. 1: (a) Since we will have complex urban environments with ground vehicles, delivery drones, and urban air mobility
(UAM) in the future, it is important to model the dynamics such as velocity and acceleration of the environment. (b) We
need to build macroscopic models of both ground and air roads for the whole city from large amounts of trajectory data. (c)
Vehicles also need to build microscopic models of the velocity of objects around them from small amounts of sparse data.
Being able to learn the velocity quickly helps making efficient decisions. Being able to quantify the associated uncertainty
aids in making safe decisions.

Velocity modeling has previously been studied in various
disciplines [14], [15]. However, these models are determin-
istic. Other models that attempt to estimate quantities that
change temporally include modeling the long-term occu-
pancy [4] and directions [16] in 2D. In contrast, the objective
of this paper is modeling velocity with their associated
epistemic uncertainties in 3D space.

III. BAYESIAN DYNAMIC FIELDS

This section introduces the proposed framework for mod-
eling 3D velocity maps. Since we want to model the spatial
field of dynamics such as velocity with its associated un-
certainty, we refer to this framework as Bayesian Dynamic
Fields (BDF). First, we explain how to generate high di-
mensional features from data using kernel functions. Then,
we discuss how to build a linear model from these features
and estimate uncertainty with Bayesian linear regression
with these basis functions. These basis functions can be
customized for different datasets. This model is applied to
build macroscopic and microscopic dynamic models. Finally,
a theoretical analysis of the robustness of the proposed
framework is presented.

A. High dimensional feature space

Our objective is to model the velocity field and its cor-
responding uncertainty field in a given 3D space. Velocity
variations exhibit nonlinear patterns with respect to spatial
location. A common tool for modeling nonlinear patterns
is deep neural networks, but they generally require large
amounts of training data and can be slow to train. We focus
on kernel methods [17], which have been successfully used
to model spatial quantities such as occupancy [7], [18], [19]
and directions [20] in robotics, soil concentration in geo-
statistics [21], and disease propagation in epidemiology [22].

Kernels are similarity functions. A kernel, k(xa,xb), takes
two inputs xa and xb and outputs a measure on how similar

the two inputs are. In this work, we use the squared-
exponential kernel because of its simplicity and interpretabil-
ity:

k(xa,xb) = exp(−γ‖xa − xb‖22), (1)

where γ is the inverse bandwidth hyperparameter. This
hyperparameter controls the sensitivity of the similarity.
Kernels with smaller values of γ capture correlations over
larger areas.

We use this kernel to define a set of M basis functions,
k(x, x̃1), . . . , k(x, x̃M), where x is any point in 3D space
and x̃1, . . . , x̃M are fixed points in that space. We arrange the
fixed points in a 3D regular grid. Although kernels can alter-
natively be computed through random Fourier features [19],
[23] or Nystrom approximation, we use a grid for simplicity,
interpretability, and accuracy [19]. If desired, these fixed
points can be learned alongside other parameters [24].

A data point x ∈ R3 may come, for example, from radar
(Figure 2a–b) or IMU measurements. For N such data points,
X = {xn}Nn=1, the feature matrix Φ(X) ∈ RN×M is defined
as,

Φ(X) =


k(x1, x̃1) k(x1, x̃2) . . . k(x1, x̃M)
k(x2, x̃1) k(x2, x̃2) . . . k(x2, x̃M)

...
...

. . .
...

k(xN , x̃1) k(xN , x̃2) . . . k(xN , x̃M)

 .
(2)

This matrix would be mostly sparse with many values close
to zero because the kernel function goes to zero when its
two inputs are far apart.

B. Bayesian inference

We want to build a model that can estimate the velocity of
a given point in the environment. For instance, as shown in
Figure 2, given some sparse velocity measurements, we want
to know the velocity at an arbitrary location indicated by the
three colored arrows. Because the three directional velocity

(a) Field of view.

(b) Radar measurements. (c) Uncertainty of velocity.

Fig. 2: Unlike LIDAR, automotive radars provides the veloc-
ity associated with each point in the point cloud. We want
to estimate the uncertainty of velocity at the arbitrary point
indicated by the three colored arrows. (a) The camera image
of an area an automotive radar can see. (b) The velocity
vectors from pre-processed 3D radar measurements [25]
are in black. (c) The estimates from our model are not
deterministic vectors but distributions of velocities for each
direction. For simplicity, we only show the red and blue
directions. A few resulting vectors are shown in black.

components v(x), v(y), and v(z) are independent with each
other, three different models are learned in parallel.

If the velocity component labels of each datapoint x is
denoted by v, then the training dataset can be defined as
D = {(xn, vn)}Nn=1 = (X,v). Since we projected the data
into M -dimensional space, we can now create a linear model
v = w>Φ(x) + ε with noise ε ∼ N (0, β−1) where β is the
noise precision. Our objective is to learn the parameter vector
w ∈ RM from D. The velocities at one of the three directions
in a given location are modeled as a Gaussian distribution.
Because measurements are i.i.d., the likelihood can be de-
composed as p(v|w,X, β) =

∏N
n=1N (vn|w>Φ(xn), β−1).

As illustrated in Figure 2c, we are not only interested in
estimating the velocity but also the associated uncertainty. In
order to model the epistemic uncertainty, we consider a prior
probability distribution over w. A Gaussian distribution over
w ∼ N (µ0,Σ0) is a conjugate prior to the likelihood model
of our interest. With this prior, the posterior distribution
p(w|X,v) = N (w|µ1,Σ1) from Bayesian linear regression

in the feature space can be computed analytically [26]:

µ1 = Σ1(Σ−10 µ0 + βΦ>(X)y) (3)

Σ1 = (Σ−10 + βΦ>(X)Φ(X))−1. (4)

Given that our prior knowledge about an area is minimal,
we can set µ0 = 0 and Σ0 = α−1I, where α is a
small parameter indicating the precision (i.e. the inverse of
variance) of the prior. This indicates an almost uninformative
prior. Furthermore, this prior acts as a natural regularizer for
the high-dimensional regression problem.

Having obtained the posterior distribution, the posterior
predictive distribution p(v∗|x∗,D, α, β) = N (v∗|µ∗,σ∗)
for an arbitrary unknown point x∗ ∈ R3 can be queried
analytically:

µ∗ = µ>1 Φ(x∗) (5)

σ2
∗ = β−1 + Φ>(x∗)Σ1Φ(x∗). (6)

If we have a batch of query points, Φ can be computed as
in (2).

C. Dimension-adjusted kernels

When defining the kernel in (1), we considered that the
norm between a data point x ∈ R3 and a fixed point x̃ ∈ R3

is scaled by the hyperparameter γ. However, if the nonlinear
patterns change in different rates in different axes of the 3D
space, we can scale them differently to better fit the model:

k(x, x̃) = exp
(
− (x− x̃)>Γ−1(x− x̃)

)
, (7)

where

Γ =

γx 0 0
0 γy 0
0 0 γz

 , (8)

is the hyperparameter matrix. Although it is possible to
consider the full non-diagonal matrix by considering the
hyperparameter-hyperparameter covariances, in this applica-
tion, we ignore such complex interactions for the sake of
simplicity. It is also possible to learn the parameters [24] or
learn a completely new kernel function (1) [27].

D. Macroscopic and microscopic velocity maps

As shown in Figure 1b, a macroscopic model represents
the velocity of a large area of an urban environment. These
models will especially be useful when designing urban air
mobility systems [28]. In order to build a global model,
trajectory information of vehicles in the environment are
collected for a long time period. This information can be
obtained from surveillance radar [29] or IMU data. The
velocity is represented as v = (vx, vy, vz) and we perform
inference separately for each of the different dimensions. For
each of these learning problems, we place a regular grid over
the entire space for fixed points.

In macroscopic mapping, we have to learn large environ-
ments with lots of data. In such environments, when data
arrives sequentially, it is possible to use the posterior distri-
bution from the previous time step as the prior distribution in

the current time step before applying the update rules in (3)–
(4). Furthermore, when data is obtained sequentially, we can
start with the assumption that the environment is static and
populate the 3D environment (training dataset) with quasi-
Monte Carlo (QMC) samples of velocity zero to improve
the learning efficiency. QMC sampling techniques are known
to be sample efficient over Monte Carlo techniques [30]. In
particular, Sobol and generalized Halton QMC sequences can
populate the 3D free space more evenly [30], [31]. Trajectory
data points that are in the neighborhood measured by the
Euclidean distance of the populated data are removed from
the dataset.

For the microscopic model, we are interested only in mod-
eling the field of view of the ego vehicle (Figures 1c and 2).
For such models, velocity information coming from automo-
tive radar is used. Since automotive radar point clouds, unlike
LIDAR measurements, are extremely sparse, modeling the
epistemic uncertainty is important so that we know which
of our velocity estimates are less reliable. Furthermore,
automotive radar measurements tend to have higher noise
levels and therefore, modeling the aleatoric uncertainty is
equally important. Equation (6) is the combined aleatoric-
epistemic uncertainty estimation.

E. Wasserstein robustness against input noise

Sensor measurements, especially radar measurements, are
typically corrupted by some noise. In this section, we theo-
retically analyze whether the proposed model can withstand
input perturbations [32].

Lemma 1: The squared 2-Wasserstein distance between a
normal distribution N (x, ν2I) and a point xm is W2

2 =
‖x− xm‖22 + ν2.

Proof: By computing inf E[‖x − xm‖22] between
N (x, C2) and N (xm, C

2
m), it can be shown that W2 =

‖x − xm‖22 + Tr
(
C2 + C2

m − 2(CmC
2Cm)

1
2

)
[32]. For

diagonal matrices Cm and C = νI , by reducing the Gaussian
to a Dirac delta distribution (by taking the limit of the
variance terms to zero), we obtain W2 = ‖x − xm‖22 + ν2.

Theorem 1: Expectation of estimations of the linear
model w>Φ(X) with weights {wm}Mm=1 where wm ∼
N (µm, σm) in Bayesian dynamic fields are unaltered by the
input noise N (0, ν2) under the 2-Wasserstein metric.

Proof: Let us rewrite the w>Φ(X) introduced in
Section III-B as a summation,

y ≈
M∑

m=1

wmk(x,xm)

=

M∑
m=1

wm exp
(
− γ(‖x− xm‖22 + ν2)

)
(Lemma 1)

=

M∑
m=1

wm exp(−γν2) exp(−γ‖x− xm‖22)

=

M∑
m=1

w′m exp(−γ‖x− xm‖22)

TABLE I: Datasets

Dataset Source Description

Chunks Synthetic 3 closely packed velocity clusters
Blobs Synthetic 3 separated velocity clusters as blobs
Carla Simulated Automotive radar data
Astyx Real Automotive radar data
nuScenes Real Automotive radar data
AirSim Simulated 60 drone trajectories to simulate UAM
Airport Real 100 aircraft trajectories around an airport

TABLE II: Effect of dimension adjustment

[γx, γy , γz] RMSE MSLL

[0.1, 0.1, 0.1] 1.368 −1445
[100, 0.1, 0.1] 0.778 −1426
[100, 100, 100] 1.496 −1413

The measurement noise is absorbed into the distributions
{w′m}Mm=1 with w′m ∼ N (µ′m, σ

′
m) whose parameters are

estimated during training. Therefore, the mean estimations
are unaffected by noise.

IV. EXPERIMENTS

A. Experimental setup

We studied the effectiveness of BDFs in constructing
macroscopic and microscopic models from a variety of
datasets summarized in Table I. These datasets were ob-
tained from hi-fidelity simulators and real-world benchmark
datasets. Since automotive radar is becoming increasingly
popular in driverless cars, we included some of those datasets
as well. The models we build using small automotive radar
datasets, Carla, Astyx, and nuScenes are microscopic be-
cause they only model their surroundings. These datasets
have only a few data points per scan (Figure 1c and 2b).
AirSim is a dataset that we generated using the AirSim sim-
ulator [33]. It contains 66859 data points of drone trajectories
(Figure 1b) in a large area 1000×400×60 m3. The airport
dataset contains 128349 data points of real aircraft tracks
within 30 nautical miles of the John F. Kennedy airport [29].

Twenty percent of each dataset is used as the test dataset.
For large areas, we normalized data to be in a cube of
between −1 and 1 and picked the hyperparameters γ and
grid distance using cross validation. The parameters α and

(a) Chunk dataset (b) [0.1, 0.1, 0.1] (c) [100, 0.1, 0.1]

Fig. 3: Effect of dimension-adjusted kernels. Colors indicate
velocity and the three values correspond to [γx, γy, γz]. In
(c), when γx > γy and γx > γz , the two boundaries between
the three velocity clusters are much crispier.

(a) Blobs datasets (b) Predictive mean at z = −0.6 (c) Predictive variance at z = −0.6

(d) Prediction on training (e) Filtered predictive mean (f) Filtered predictive variance

Fig. 4: Modeling the x velocity component of the Blobs training dataset. (a) Each point in the 3D space has its own x
velocity. We want to predict the mean and variance of any other point using these data points. (b) Predicted mean velocity
for z = −0.6. (c) Predicted variance of velocity for z = −0.6. Note that in areas where we do not have training data,
the variance is high. (d) Predictions on the training dataset. (e)–(f) Velocity is predicted for the entire cubes but only high
confidence predictions (σ∗ ≤ 30) are shown.

β were set to 10−2 and 102, respectively. The code and video
can be found at https://github.com/RansML/BDF.
Experiments were run on a 3.30 GHz CPU. Since Gaussian
process-based models are a common choice for modeling
epistemic uncertainty in many robotics tasks [5], [34], we
base-lined against full Gaussian process (FGP) [3] and its
scalable approximations such as subset of data Gaussian
process (SGP) [35] and more recent big data Gaussian
process (BGP) [4]. GPflow [36] was used for benchmarking.

B. Effect of dimension adjustment

As the first experiment, we verify that dimension-adjusted
kernels are useful to maintain sharp velocity transitions.
For this purpose, we use the the Chunks dataset as it has
sharp velocity transitions. Figure 3 shows that we get much
crisper edges when we use a higher γ in the x direction.
This is because gamma controls the contribution from each
direction. Table II further corroborates that higher γ for the
x-axis has the least root mean squared error (RMSE) for a
similar mean standardized log loss (MSLL) [3].

C. Runtime and accuracy

Figure 4 shows a detailed example of how we can model
the 3D space. Observe that the variance in areas where we do
not have data is higher, indicating the epistemic uncertainty.
Metrics for each dataset are reported in Table III. For almost
all datasets, our model has the least training time to achieve
similar accuracy to other methods. For small datasets (points
< 1000), SGP is equivalent to FGP as the subset is the

TABLE III: Runtime and accuracy

Dataset Method Train time (s) Query time (s) RMSE

Chunks
BDF 6.805 0.673 0.778
BGP 1819.469 0.075 1.258
SGP 9.169 0.163 1.252
FGP 9.169 0.163 1.252

Blobs
BDF 0.448 0.037 1.119
BGP 89.411 0.038 0.669
SGP 1.839 0.036 0.688
FGP 1.839 0.036 0.688

Carla
BDF 0.726 0.044 4.581
BGP 66.618 0.051 5.744
SGP 1.849 0.032 5.992
FGP 1.849 0.032 5.992

Astyx
BDF 5.517 0.087 0.329
BGP 2575.300 0.059 0.275
SGP 4.983 0.110 0.275
FGP 4.983 0.110 0.275

nuScenes
BDF 0.001 0.010 0.370
BGP 45.651 0.019 0.395
SGP 0.587 0.016 0.396
FGP 0.587 0.016 0.396

AirSim
BDF 16.213 0.533 0.514
BGP 2979.046 0.125 0.736
SGP 163.545 1.455 0.154
FGP ∞ (est.) ∞ (est.) n/a

Airport
BDF 16.129 0.856 1.801
BGP 2966.236 0.154 2.139
SGP 214.030 4.232 1.670
FGP ∞ (est.) ∞ (est.) n/a

Due to limited scalability of benchmarks, only 3.8% and 4.3% of
data in AirSim and JFK, respectively, was used for all four methods.

https://github.com/RansML/BDF

0 1 2 3 4 5

Number of training data points ×104

0

50

Ti
m

e
(s

) Train time
Test time
RMSE

0

25

50

R
M

S
E

(a) AirSim dataset

0.0 0.2 0.4 0.6 0.8 1.0

Number of training data points ×105

0

10

20

Ti
m

e
(s

) Train time
Test time
RMSE

0

200

400

R
M

S
E

(b) Airport dataset

Fig. 5: Effect of the increasing size of the dataset for the
macroscopic model.

same as the full dataset. Since BGP is based on a stochastic
gradient approach, it is typically harder to optimize compared
to other analytical forms and is not extremely useful in small
data settings.

The efficiency of our model is more pronounced in large
datasets such as Airport (Figure 6) and AirSim (Figure 7).
BDF is at least 10 times faster than the second best per-
forming model. This is because its asymptotic computational
complexity is O(M3) for M kernels. That is, the speed
depends only on the number of kernels but not on the
number of data points. In contrast, FGPs have a O(N3)
memory complexity for both training and query for N data
points. In their sparse approximations, P inducing points
are used to represent the key points in the dataset [38].
For P � N , the computational complexities of BGP and
SGP are O(P 2N) and O(P 3), respectively. Although SGP,
in theory, has a similar asymptotic computational complexity,
the major drawback of SGP is that it discards a large amount
of data to achieve this speedup. In our method, every data
point has an equal contribution when training the model.

Although BDFs have O(M3) complexity, in practice,
when M is finite (around 1000 in most of our experiments),
we observe a slight increase with the number of data points
due to the matrix product in (3). This can be observed in
Figure 5 in which we separately train the model for an
increasing number of data points. This slight increase of time
is negligible compared to BGP and FGP in which the training
time is 50 minutes before failing.

Since BDFs are parametric models that use kernels, we can
update parts of the model or combine various models. This
is because kernels are similarity functions, and therefore the
weight parameters of a kernel located at x̃ are not affected
by data far away from them. Similarly, a large-scale model
can be easily decomposed to create light-weight models that
cater to only a designated area of the environment.

(a) Ground truth

(b) Mean prediction

Fig. 6: Bird’s-eye view of 100 trajectories of the Airport
dataset. The mean predictions of vertical velocities are sim-
ilar to the ground truth.

(a) Ground truth trajectories

(b) Safe velocity tube

Fig. 7: One of the “air roads” simulated in AirSim. Color in-
dicates vertical velocity. A “3D tube” of velocity is obtained
by filtering mean predictions below a given variance thresh-
old. These tubes can be used for risk-aware control [37].

V. CONCLUSIONS

This paper presented Bayesian Dynamic Fields to model
velocity in the 3D space. The velocity of the environment
is represented as a continuous function that can be queried
at arbitrary resolutions. The training procedure is equally
suitable for both small and big data regimes, making it
suitable to build microscopic and macroscopic transporta-
tion models. The model captures both velocity estimates as
well as the uncertainty associated with those estimates. In
conjunction with common environment representations such
as occupancy maps in robotics, in the future, we will use the
uncertainty estimates of velocity for decision-making under
uncertainty and safety analysis [37].

ACKNOWLEDGMENT

The authors thank Soyeon Jung for assisting with prepro-
cessing the aviation radar dataset. Toyota Research Institute
(TRI) provided funds to assist the authors with their research,
but this article solely reflects the opinions and conclusions
of its authors and not TRI or any other Toyota entity.

REFERENCES

[1] S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone,
“Efficient large-scale multi-drone delivery using transit networks,”
in IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2020, pp. 4543–4550.

[2] J. Holden and N. Goel, “Fast-forwarding to a future of on-demand
urban air transportation,” Uber, Tech. Rep., Oct. 2016.

[3] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School on Machine Learning, Springer, 2003, pp. 63–71.

[4] R. Senanayake, S. O’Callaghan, and F. Ramos, “Learning highly dy-
namic environments with stochastic variational inference,” in IEEE
International Conference on Robotics and Automation (ICRA),
IEEE, 2017, pp. 2532–2539.

[5] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy
maps,” International Journal of Robotics Research (IJRR), vol. 31,
no. 1, pp. 42–62, 2012.

[6] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[7] R. Senanayake and F. Ramos, “Bayesian hilbert maps for dynamic
continuous occupancy mapping,” in Conference on Robot Learning
(CoRL), 2017, pp. 458–471.

[8] S. McLeod and J. Xiao, “Navigating dynamically unknown environ-
ments leveraging past experience,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2019, pp. 29–35.

[9] T. Duong, M. Yip, and N. Atanasov, “Autonomous navigation in un-
known environments with sparse bayesian kernel-based occupancy
mapping,” arXiv preprint arXiv:2009.07207, 2020.

[10] R. Senanayake, L. Ott, S. O’Callaghan, and F. T. Ramos, “Spatio-
temporal hilbert maps for continuous occupancy representation
in dynamic environments,” in Advances in Neural Information
Processing Systems (NIPS), 2016, pp. 3925–3933.

[11] M. Itkina, K. Driggs-Campbell, and M. J. Kochenderfer, “Dynamic
environment prediction in urban scenes using recurrent represen-
tation learning,” in IEEE International Conference on Intelligent
Transportation Systems (ITSC), IEEE, 2019, pp. 2052–2059.

[12] M. Toyungyernsub, M. Itkina, R. Senanayake, and M. Kochenderfer,
“Double-prong convlstm for spatiotemporal occupancy prediction
in dynamic environments,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[13] R. Senanayake and F. Ramos, “Building continuous occupancy
maps with moving robots,” in AAAI Conference on Artificial In-
telligence (AAAI), 2018, pp. 105–124.

[14] N. R. Lawrance and S. Sukkarieh, “Path planning for autonomous
soaring flight in dynamic wind fields,” in IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2011,
pp. 2499–2505.

[15] G. F. Homicz, “Three-dimensional wind field modeling: A review,”
Sandia National Laboratories, SAND Report, vol. 2597, 2002.

[16] R. Senanayake, M. Toyungyernsub, M. Wang, M. J. Kochenderfer,
and M. Schwager, “Directional primitives for uncertainty-aware
motion estimation in urban environments,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2020.

[17] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning
with kernels,” in Advances in Neural Information Processing Sys-
tems (NIPS), 2002, pp. 785–792.

[18] G. Vallicrosa and P. Ridao, “H-slam: Rao-Blackwellized particle
filter SLAM using Hilbert maps,” Sensors, vol. 18, no. 5, p. 1386,
2018.

[19] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” International Journal of
Robotics Research (IJRR), vol. 35, no. 14, pp. 1717–1730, 2016.

[20] W. Zhi, R. Senanayake, L. Ott, and F. Ramos, “Spatiotemporal
learning of directional uncertainty in urban environments with
kernel recurrent mixture density networks,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4306–4313, 2019.

[21] N. Cressie and C. K. Wikle, Statistics for spatio-temporal data.
John Wiley & Sons, 2015.

[22] R. Senanayake, S. O’Callaghan, and F. Ramos, “Predicting spatio-
temporal propagation of seasonal influenza using variational Gaus-
sian process regression,” in AAAI Conference on Artificial Intelli-
gence (AAAI), 2016.

[23] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R.
Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” in European Conference on
Computer Vision (ECCV), Springer, 2020, pp. 405–421.

[24] R. Senanayake, A. Tompkins, and F. Ramos, “Automorphing ker-
nels for nonstationarity in mapping unstructured environments,” in
Conference on Robot Learning (CoRL), 2018, pp. 443–455.

[25] M. Meyer and G. Kuschk, “Automotive radar dataset for deep
learning based 3d object detection,” in 2019 16th European Radar
Conference (EuRAD), 2019, pp. 129–132.

[26] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[27] M. Gönen and E. Alpaydın, “Multiple kernel learning algorithms,”
Journal of Machine Learning Research, vol. 12, pp. 2211–2268,
2011.

[28] D. P. Thipphavong, R. Apaza, B. Barmore, V. Battiste, B. Burian,
Q. Dao, M. Feary, S. Go, K. H. Goodrich, J. Homola, et al., “Urban
air mobility airspace integration concepts and considerations,” in
Aviation Technology, Integration, and Operations Conference, 2018.

[29] S. Jung and M. J. Kochenderfer, “Learning terminal airspace traffic
models from flight tracks and procedures,” in Digital Avionics
Systems Conference (DASC), 2019.

[30] C. Lemieux, Monte Carlo and Quasi-Monte Carlo sampling.
Springer, 2009.

[31] A. Tompkins, R. Senanayake, P. Morere, and F. Ramos, “Black box
quantiles for kernel learning,” in International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), 2019, pp. 1427–1437.

[32] D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-
Abadeh, “Wasserstein distributionally robust optimization: Theory
and applications in machine learning,” in Operations Research &
Management Science in the Age of Analytics, INFORMS, 2019,
pp. 130–166.

[33] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field
and Service Robotics, 2017.

[34] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian pro-
cesses for data-efficient learning in robotics and control,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 2, pp. 408–423, 2013.

[35] R. Herbrich, N. D. Lawrence, and M. Seeger, “Fast sparse Gaussian
process methods: The informative vector machine,” in Advances in
Neural Information Processing Systems (NIPS), 2003, pp. 625–632.

[36] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A.
Boukouvalas, P. León-Villagrá, Z. Ghahramani, and J. Hensman,
“GPflow: A Gaussian process library using TensorFlow,” Journal
of Machine Learning Research, vol. 18, no. 40, pp. 1–6, 2017.

[37] M. Cannon, Q. Cheng, B. Kouvaritakis, and S. V. Raković,
“Stochastic tube mpc with state estimation,” Automatica, vol. 48,
no. 3, pp. 536–541, 2012.

[38] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view
of sparse approximate Gaussian process regression,” Journal of
Machine Learning Research, vol. 6, no. Dec, pp. 1939–1959, 2005.

	I Introduction
	II Related Work
	III Bayesian Dynamic Fields
	III-A High dimensional feature space
	III-B Bayesian inference
	III-C Dimension-adjusted kernels
	III-D Macroscopic and microscopic velocity maps
	III-E Wasserstein robustness against input noise

	IV Experiments
	IV-A Experimental setup
	IV-B Effect of dimension adjustment
	IV-C Runtime and accuracy

	V Conclusions

