
Assembly Planning by Recognizing a Graphical Instruction Manual

Issei Sera1, Natsuki Yamanobe2, Ixchel G. Ramirez-Alpizar2, Zhenting Wang1

Weiwei Wan1, and Kensuke Harada1

Abstract— This paper proposes a robot assembly planning
method by automatically reading the graphical instruction
manuals design for humans. Essentially, the method generates
an Assembly Task Sequence Graph (ATSG) by recognizing a
graphical instruction manual. An ATSG is a graph describ-
ing the assembly task procedure by detecting types of parts
included in the instruction images, completing the missing
information automatically, and correcting the detection errors
automatically. To build an ATSG, the proposed method first
extracts the information of the parts contained in each image of
the graphical instruction manual. Then, by using the extracted
part information, it estimates the proper work motions and
tools for the assembly task. After that, the method builds an
ATSG by considering the relationship between the previous
and following images, which makes it possible to estimate the
undetected parts caused by occlusion using the information of
the entire image series. Finally, by collating the total number
of each part with the generated ATSG, the excess or deficiency
of parts are investigated, and task procedures are removed
or added according to those parts. In the experiment section,
we build an ATSG using the proposed method to a graphical
instruction manual for a chair and demonstrate the action
sequences found in the ATSG can be performed by a dual-
arm robot execution. The results show the proposed method is
effective and simplifies robot teaching in automatic assembly.

I. INTRODUCTION

In recent years, the life cycle of products has become
shorter. Additionally, manufacturing processes have begun to
change; instead of the mass production of one product, high-
mix low-volume production is being carried out. A typical
form of high-mix low-volume production is cellular manu-
facturing. However, cellular manufacturing requires consid-
erable labor and is significantly dependent on manpower. To
enable robots to perform such manufacturing tasks, without
providing detailed instructions of the task, a robot must be
able to automatically understand the details of the task and
accomplish it based on simple or ambiguous knowledge of
the task. Written, oral and illustrated instructions are the most
widely used types of task instructions for humans. To adopt
these types of task instructions on robots, it is necessary for
the robots to understand the meanings of the abstract instruc-
tions and convert them into robot-implementable forms.

In conventional research on task planning, instruction ex-
traction is mainly conducted using the linguistic information
[1][2]. Graphical instruction manuals are usually used in

1Graduate School of Engineering Science, Osaka University, 1-
3 Machikaneyama, Toyonaka, 560-8531, Japan {sera@hlab.,
ou@hlab., wan@, harada@}sys.es.osaka-u.ac.jp

2Automation Research Team, Industrial CPS Research Center, National
Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-
ku, Tokyo, 135-0064, Japan

Fig. 1: Workflow of the proposed method.

the assembly tasks of certain products, such as furniture.
However, only a few written task instructions exist in such
graphical instruction manuals. Thus in several cases, it is
necessary to understand the instructions solely from a series
of illustrated instruction images. Information about the parts
used for assembly can be obtained from each image included
in the illustrated image series, whereas other information
about the assembly task itself must be deduced. Moreover,
there is no guarantee that the information on the parts is
complete.

We proposed a robot assembly planning method based
on the illustrated image series of the graphical instruction
manual. Fig.1 shows the workflow of the method. At the
center of the method is an Assembly Task Sequence Graph
(ATSG), which is a graph that describes the assembly task
procedure that can be executed by a robot. To build an ATSG,
the part information is extracted from the instruction images
of a graphical instruction manual. Then, the information
necessary for planning the assembly task is estimated using
the extracted part information. The ATSG includes the rela-
tionship between a part and its motion, the task order and the
change in the part state owing to that motion, by considering
the constraints in the assembly task. First, part information
is extracted from each illustrated image included in the
illustrated image series of the graphical instruction manual
via an object detection system that utilizes deep learning.
Next, the information about the assembly task is estimated
from the part information, such as motions used to perform
the task and the type of tool required to perform the task. This
process enables the construction of the unit elements that
constitute the ATSG. Then, the unit elements are integrated
by considering the before and after relationships of the image
series to generate the ATSG. However, some parts may not
be detected in an illustrated image owing to occlusion or
occlusion-related conditions. To address this challenge, we
estimate the undetected part from the information of the
entire image series. Finally, by collating the total number of

ar
X

iv
:2

10
6.

00
42

4v
1 

 [
cs

.R
O

] 
 1

 J
un

 2
02

1



each part with the ATSG, the excess or deficiency in these
parts is evaluated, and task procedures are removed or added.

II. RELATED WORK

Robotic assembly is a classical research topic in robotics.
Many studies have been conducted to construct assembly
sequences based on the geometrical relationships of as-
sembly parts [3][4][5][6]. More recently, researchers have
been focused on combining robotic manipulation planning
with assembly task planning. Examples include but are
not limited to [7][8][9][10]. Compared to these previous
assembly studies, this work focuses on recognizing an as-
sembly sequence from a graphical instruction manual and
then planning robotic assembly motion. Consequently, we
concentrate our review on the generation of robotic task
motions via abstracted instructions.

By verbalizing the task contents, a task procedure can be
materialized and the reproducibility of the same work by
humans and robots can be improved. Previously, Nishimura
et al. [11] generated instructions by verbalizing a series of
task information from a series of cooking images. Erdal et al.
[2] proposed a framework that could automatically describe
task motions from demonstration videos of human tasks.
For the study on the generation of robotic task motions via
abstracted instructions, Blankenburg et al. [12] proposed a
framework that generates task sequence graphs from oral
instructions in a robot-executable format by considering the
constraints of the task order. In this study, the rules of the
sentence structure were defined beforehand, and a person
verbally instructed each motion or object to be operated
according to the defined rules. Paulius et al. [13][14][15]
modeled cooking tasks based on a human demonstration
video. They proposed a knowledge representation called
Functional Object-Oriented Network (FOON). The FOON
expresses the relationship between motions and objects, and
the change in the object state owing to those motions. By
using the FOON with the assistance of humans, robots can
realize difficult cooking tasks. Beetz et al. [16] converted
cooking recipes into a robot-executable format based on the
Action Description. The concept of object affordance, which
gives an idea about what kind of action can be performed on
an object based on its characteristics, has been proposed in
[17]. Schoeler et al. [18] inferred the functional meaning of
a tool based on the partial shape of the tool. Understanding
the role of objects used in a task is a clue to understanding
the meaning of the task.

Compared to the aforementioned studies, our work is
different in that it plans the robotic assembly motion using
an ATSG, which is automatically constructed by reading
graphical instruction manuals. We extract the information on
the assembly parts from the instruction images and estimate
several feasible information needed for the assembly task
such as the assembly motion, assembly tools, and state
change of assembly parts. The details of our method will
be presented in the following sections.

III. ASSEMBLY TASK SEQUENCE GRAPH (ATSG)

In this section, we present the background knowledge
about ATSG.

A. ATSG Structure

In the assembly task, multiple separate parts are combined
into one while satisfying the constraints derived from the
part structure by task motions [19]. The ATSG is a network
structure that defines a series of assembly tasks, including
the motions of each object that satisfy the constraints. The
ATSG comprises assembly units, which are the smallest unit
structures in the ATSG. The assembly unit has multiple input
object nodes, one motion node and one output object node,
and it is connected by directed edges drawn from input object
nodes to the motion node and from the motion node to the
output object node. One assembly unit is generated for one
instruction image in the instructions.

As presented in Fig.2, Part A, B and C are input object
nodes, and by passing through the central motion node M,
Part A, B and C are combined into one output object node.
In other words, each input object node corresponds to a
child part, the output object node corresponds to a parent
part, and the change in the object state due to the motion is
expressed accordingly. The motion is determined from the
object affordance of the input object node. The upper part
of the output object node is the main child part, whereas
the lower part is the subordinate child parts, as illustrated
in Fig.2, A is the main child part, and B and C are the
subordinate child parts. The name of the output object node
is the name of the main child part. By determining the child
part information as well as the main-subordinate relationship
to the parent part (the output object node), the undetected
part can be estimated from the information of the entire
image series, even when all parts cannot be detected from
the illustrated image owing to the occlusion.

Fig. 2: A typical assembly unit of an ATSG.

The features of the ATSG are described from three aspects
that satisfy the requirements of assembly task sequence plan-
ning. The first aspect is the priority for achieving the part-
connection relationships. For example, in the assembly task
with fasteners, the combination parts are initially installed
and then the fasteners are inserted. In addition, because of
the branched structure, it is possible to express a task that can
be executed in parallel. This makes it possible to determine
the work order within a short work time by adopting multiple
arms. The second aspect is the usage conditions of the tools.
By indicating the tool corresponding to the part being oper-
ated in one graph, it is possible to automatically determine



the tool that should be used for each task. The third aspect is
the task difficulty. By expressing the relationship between the
tool and the assembly parts in the entire task with ATSG, for
the one-arm task, it is possible to determine the tasks that can
be completed continuously without changing the tool. This
makes it possible to determine the task order that reduces task
difficulty by minimizing the tool change task. In addition,
considering the characteristics of robots and humans, the
task procedure for inserting fasteners in the instructions is
automatically changed, and the number of tasks is reduced.

B. ATSG Generation from Graphical Instruction Manuals

YOLOv3 [20] was used for object detection. Here, the
illustrated image model for the graphical instruction manuals
of the target product type is learned. Using this model,
object detection was conducted on the image series in the
instructions. The ATSG is then generated based on the
detection results.

As the feature of graphical instruction manuals, there
are three problems in using them in robot assembly tasks.
In the ATSG generation, the problems derived from the
characteristics of the instructions were solved considering the
feasibility of assembly task. By estimating multiple motions,
the task order and tools from the relationship of parts, the
task of each instruction image is embodied in a particle size
that can be realized by robots.

IV. TASK EMBODIMENT OF INDIVIDUAL INSTRUCTION
IMAGE

It is difficult to embody the task of each instruction image
to particle sizes that can be realized by the robot (Problem 1).
Some symbols, such as arrows, are used in the instructions
to indicate the assembly procedure. However, there is no
specified operation information in the instructions, and it is
often necessary to perform multiple different motions in one
instruction image. For example, in Fig.3(a), the following
five steps are presented in a single instruction image: Place
the back rest the seat in step 1, and use four screws to fix
them in steps 2–5. Therefore, it is necessary to estimate
the task order and multiple assembly motions from the
combination of target parts.

Fig. 3: Example of a graphical instruction manual (Instruc-
tion image source: [21]).

By estimating the task order, multiple motions, and tools,
the task of each instruction image is embodied in a particle

size that can be realized by the robot. All these items are
estimated from the relationships between objects. There are
three major object relationships. The first is the connection
relationship between each part. This relationship includes the
role of each part in each instruction image and the parts that
are combined. For example, in the case of a chair, screws and
a seat are parts with fasteners and screw holes, and they are
combined. The second relationship is the main-subordinate
relationship of the child parts that occurs during the assembly
process. The main-subordinate relationship of the child parts
in the object node is determined according to the predefined
order of each part type based on the role of the part (whether
it is a fastener or not) and the part size.

First, the task order is estimated. If there are three or
more input object nodes in one assembly unit, by estimating
the appropriate task order, the assembly unit expansion is
performed to ensure that there are only two input object
nodes in one assembly unit. For example, if there are three or
more types of parts as input object nodes, including fasteners
such as screws and bolts, the assembly unit is expanded to
include multiple steps. Tasks on parts other than fasteners
are performed in step n, whereas tasks on fasteners are
assigned to the n + 1 step. For example, in Fig.4, F is the
fastener, PA and PB are parts other than the fastener. In the
graphical instruction manual, two steps: (1) placing part PA

at the location where it will be combined with PB and (2)
inserting fastener F (to fix PA,PB) are often expressed in
one instruction image. Under these conditions, the assembly
unit was expanded into two steps.

Fig. 4: Expansion of an assembly unit.

The next step is the estimation of multiple motions. Based
on the concept of object affordance [17], Fukuda et al.
[22] defined the Action relationship. Action relationship
generates executable assembly motions from the combination
of manipulated target objects. Taking Fig.3(a) as an example,
it can be estimated that the action of placing the seat plate
in a predetermined position of the seat is an action called
”place”. Furthermore, when inserting a screw into the seat,
a motion called ”screw” is considered (Fig.5).

Finally, the tool is estimated. In the assembly task of
robots, it is necessary to adopt a hand or tool with a shape
that is suitable for the part to be manipulated. Therefore,
when the ATSG is generated, a hand node suitable for the
object node is automatically assigned. The hand node is
connected by an edge to the same motion node with the



corresponding object node. For example, in the assembly of
a chair, the hands or tools play two roles: screw tightening
and gripping. In the real environment, a dual-arm robot can
use one hand holding a screw-tightening tool (wrench) and
another hand acting as a gripper, thus the hand node can
be illustrated as Fig.5. By setting the tools according to the
part to be manipulated in this way, it is possible to estimate
the tools suitable for various parts of each task process
when generating the ATSG and planning the task considering
actual robot conditions. Therefore, each instruction image
information is embodied by expanding the assembly unit
while estimating the task information.

Fig. 5: Motion and tool node estimation.

V. UNDERSTANDING THE RELATIONSHIP BETWEEN TASK
SEQUENCE AND EXTRACTING INFORMATION

It is difficult to determine the relationship between a series
of tasks (Problem 2). For example, from Fig.3(a), (b), and (c),
it is necessary to understand that (c) is the task of combining
the parts assembled in (a) and (b).

Furthermore, extracting task information is also difficult
(Problem 3). Unlike the demonstration video in the real
environment, the instructions, which are presented in images,
contain only intermittent task information, and the drawing
position and size of the same part also change in different
instruction images. Some parts may not be drawn owing
to occlusion or incorporation into other parts during the
assembly process. For example, in (c) of Fig.3, the seat
has a seat plate (the part with the lever) and eight screws,
However, it is difficult to obtain this information solely from
(c). Therefore, part information needs to be estimated not
only from a single instruction image but also from a series
of instruction images. Moreover, even if the products are of
the same type, the illustration design may differ depending
on the manufacturer. Therefore, it is difficult to construct a
highly accurate object detection model if a sufficient learning
dataset cannot be obtained.

A. Integrating the Graph and Inheriting the Child Part
Information

By connecting the assembly units and inheriting the child
part information, it is possible to elucidate the relationship of

a series of tasks (Problem 2) and extract the task information
from the instructions (Problem 3). In the instructions, the
same type of part may be drawn repeatedly. It is necessary
to ascertain whether the part requires additional operations
when the same type of part is already assembled in previous
instruction images, from the illustrated image series.

According to the assembly unit expansion rules described
in the previous section, all assembly units of each instruction
image are expanded such that each of them has only two
input object nodes. Subsequently, by referring to the part
information shared by the object nodes of all assembly units,
it is possible to determine the assembly status of the part
detected in each instruction image from the information of
previous instruction images, especially whether the part is
incorporated in the parent part. This excludes identically
created object nodes in all assembly units, which means
that the object nodes that have been assembled in the
previous instruction image can be excluded. Furthermore,
when the output object node matches the input object node
in the subsequent steps, the assembly units are connected by
integrating them. For example, as shown in Fig.6, the output
object node A of the nth step and the input object node A
of the mth step (m>n), are the identical parts that exist as
duplicates. Nodes of the same part are searched for and the
nodes between the assembly units of the nearest step are
integrated. The subordinate part information of the output
object node in the nth step is inherited by the final output
object node (output object node A at the lower right of Fig.6)
after concatenation. If the main child part of the output object
node in the nth step becomes a dependent child part in the
mth step, all the information of the child parts, including the
main child part in the nth step, is inherited as the subordinate
child part in the mth step.

Fig. 6: Consolidation and part information inheritance of
assembly unit.

By integrating the image sequence information in this
manner, the relationship of a series of tasks is generated as
the ATSG while complementing the information that cannot
be obtained solely in one instruction image.

B. Error Recovery for Object Detection

Owing to the challenge of object recognition in instruc-
tions, it is not always possible to detect a part with 100%
accuracy. Therefore, even when the object detection result
includes false or no detection, the ATSG is complemented



by the information of the total number of each part while
considering the assembly constraints. By verifying the con-
sistency between the total number of each part and the ATSG
final output object node (finished product), it is possible to
verify whether the parts included in the finished product have
excess or deficiency ((c) of Fig.1). If there is an excess or
deficiency, the total number of each part and the existing
ATSG information are adopted to reconstruct the ATSG
while considering the constraints of the assembly task. If
there is a missing part in the ATSG, the assembly unit related
to the missing part is additionally connected immediately
after the assembly step of the same type of part. Next, the
ATSG is reconstructed to correct the child parts information
and task order. If there are excess parts, the assembly units
are removed and the ATSG is reconstructed.

It takes a lot of effort to collect training datasets and build
a highly accurate object detection model. By adopting this
ATSG complementation method, it is possible to generate
an ATSG that can complete the task by using robots even
if there is a false detection part. Unless a large number of
similar parts is used or the number of parts used in each
instruction image is specified, if at least one unassembled
part can be detected in each instruction image, it is possible
to generate an ATSG that can realize the task.

VI. EXPERIMENTS AND ANALYSIS

A. Robot Execution Based on Graphical Instruction Manual

For the assembly task of the robot, the task order, the part
to be manipulated, its motion and the required tool were
determined according to ATSG.

1) Object Detection: Fig.7 presents the object detection
results obtained from the office chair graphical instruction
manual using YOLO v3. The part information for each
instruction image extracted by the object detection is pre-
sented in TABLE I, where the red letters represent falsely
detected parts. In Instruction Image 2 and 5 of Fig.7, the
part in the right square area (screw in Instruction Image
2 and cylinder in Instruction Image 5), which is drawn
as a supplementary explanation is detected. Because this
part is drawn repeatedly in the same instruction image, it
is considered a false detection. The parts expected to be
detected but not detected are the back rest in Instruction
Image 3 and a caster in Instruction Image 4. Most parts with
occlusion were not detected because they were incorporated
into other parts in the previous instruction images task. For
example, only the head of four screws inserted in the seat
in Instruction Image 1 is drawn in Instruction Image 2,
therefore, it was not detected. Additionally, the seat plate
in Instruction Image 6 was not detected.

2) ATSG Generation: Fig.8 presents the generated ATSG
based on the object detection results (TABLE I). In this
figure, the blue, green and red nodes denote the object, hand
and motion nodes, respectively. The ATSG branches in the
central part and branches are recombined. This means that
the parts (seat part and base part) assembled in Instruction
Image 3 and 5 of Fig.7 are combined in Instruction Image
6. From the branching structure, the processes corresponding

TABLE I: Detected Parts in Fig.7

Image 1 2 3 4 5 6

Seat Seat Seat Base Base Base
S. P. S. P. S. P. Caster Caster Caster

Screw Screw Caster Caster Caster
Screw Screw Caster Caster Caster

Part Screw Screw Caster Caster Caster
Screw Screw Caster Caster

Screw Cylinder Cylinder
B. R. Cylinder Seat

B. R.
* Candidate parts and their ground-truth total numbers in the manual:

Base ×1; Base Rest ×1; Caster ×5; Cylinder ×1; Screw ×8; Seat
Plate ×1. Abbreviations: S. P. = Seat Plate; B. R. = Back Rest.

to Instruction Image 1 to 3 and the processes corresponding
to Instruction Image 4 to 5 can be executed in parallel.

TABLE II presents the node configuration for each in-
struction image and the entire ATSG. This table can be used
to evaluate whether it is embodied in a feasible particle size
that can be realized by robots (Problem 1 in Section IV).
From the number of motion nodes in Instruction Images
1, 2 and 4, it can be observed that there are multiple
motions in one instruction image. In other words, the task
of one instruction image is embodied by multiple motions.
In Instruction Image 3, screw-tightening instructions are
obtained for the parts in Instruction Image 2. Therefore,
because the new assembly part is not illustrated in Instruction
Image 3, the node corresponding to Instruction Image 3 is
not generated. This indicates that when the same part is
detected, the necessity of an additional task is determined
by integrating the information of multiple instruction images.
The total number of object and hand nodes in all instruction
images does not match the number of object and hand nodes
in the entire ATSG. This is because the same object nodes or
hand nodes in each instruction image are connected by the
connection of the assembly units, and one node may be an
element in multiple instruction images, which means that the
task information of multiple instruction images is integrated.

TABLE II: Node Configurations for Each Instruction Image

Object Node Motion Node Hand Node

Image 1 11 5 7
Image 2 11 5 6
Image 3 0 0 0
Image 4 11 5 6
Image 5 3 1 2
Image 6 3 1 2

Entire ATSG 25 17 19

TABLE III presents the number of complemented as-
sembly parts for each instruction image. From this table,
we evaluate the feasibility of addressing the challenge in
elucidating the relationship of a series of tasks and extracting
the information from the instructions (Problem 2 and 3 in
Section V). It can be observed that the child part information
of the object nodes is inherited, and the parts that cannot
be detected because of occlusion are complemented. For



Fig. 7: Object detection result of office chair (Instruction image source: [21]).

Fig. 8: The generated ATSG based on the object detection results (TABLE I).

Fig. 9: Office chair model produced by 3D printer (right
figure). On the left figure are images [21] of the finished
product and each part.

example, the value of Part Information Add Instruction
Image 2 indicates that four incorporated screws in Instruction
Image 1 are added as part information. In addition, the
assembled parts are excluded from the drawing targets as
input object nodes, even if they are detected. For example, the
value of Part Information Removed of Instruction Image 6

TABLE III: Number of Complementary Parts for Each
Instruction Image

Part Information Total Number of Each Part

Add Remove Add Remove

Image 1 0 0 0 0
Image 2 4 1 0 1
Image 3 9 2 0 0
Image 4 0 0 0 0
Image 5 0 4 0 1
Image 6 9 7 0 0

All Images 22 14 0 2

indicates that all parts other than the seat and base assembled
in Instruction Image 1-5 are not illustrated as input object
nodes, and no additional task for the assembled parts in the
previous instruction images is required. At the point of the
ATSG reconstruction, the screws in Instruction Image 2 and
cylinders in Instruction Image 5, which are false detection



Fig. 10: Robot execution. The (a-c) sub-figures correspond to assembly denoted by the red boxes in Fig.8.

parts, are removed based on the total number of each part
(Removed of Image 2 and 5 in TABLE III). From these, we
confirmed that it is possible to understand the relationship
of a series of operations and the proposed method can be
used under conditions where extracting the information is
challenging.

The ATSG was also generated for the color box and steel
rack based on the manually created object detection results.
In the experiment, only minimal information was provided
as the object detection result, and it was assumed that all
the assembled parts in previous instruction images are not
detected. By complementing the task information from the
image series, we generated an ATSG that could be assembled
successfully.

3) Robot Execution: According to the ATSG in Fig.8, the
product model was assembled using a robot. The UR3e robot
from Univeral Robot Ltd. was used in the experiment. The
screw-tightening tool in [23] was used. RRT-connect [24]
was adopted to generate the route of the assembly operation.
Because it is difficult to operate a real office chair with
UR3e, we created a pseudo model using a 3D printer, as
illustrated in figure Fig.9. The office chair was successfully
assembled by performing an assembly task based on the
generated ATSG.

Fig.10 presents the robot experiment. The (a-c) sub-figures
correspond to assembly denoted by the red boxes in Fig.8.
The execution results are consistent with the ATSG and the
instruction image. In (a), the instruction image information
is expanded to multiple motions, and the appropriate motion
”place” is determined from the combination of the input
object nodes (seat and seat plate nodes at the top). In
addition, the output object node (center left seat node) holds
the placed parts as subordinate child part information (seat
plate), and the screw is inserted into the seat in the next
step. Furthermore, the seat plate and screw are assigned
a gripper and wrench hand node, respectively. The ATSG
determines the tool that the robot should use. In (b), the sixth
screw is screwed in the seat, and simultaneously, the third
caster is inserted into the base. These tasks can be performed
independently and using different hands benefiting from the
branching structure of the ATSG. Therefore, when multiple
hands can be used, work time can be shortened by perform-
ing the task in parallel based on ATSG. In (c), the seat and
base parts, which can be assembled independently, are finally

combined into one. The final output object node holds all
the parts as the child part information without excess or
deficiency. Therefore, even if an error occurs in the object
detection result, a task plan that can be realized by robots
can be generated.

B. Error Recovery for Object Detection

To address the problem of incomplete object detection, we
intentionally created a table on the object detection results
obtained from the illustration images that are identical to
the source images of Fig.7, including the undetected parts
(TABLE IV). Only the parts written in black were used for
the ATSG generation. Although the parts written in red are
presented in the illustrated image, they are assumed to be
undetected and are not used for ATSG generation. The ATSG
generated based on TABLE IV is identical to the ATSG
in Fig.8. From these results, we confirmed that a robotic
assembly task can be realized by incomplete object detection.

TABLE IV: Manually Created Object Detection Result in-
cluding Undetected Parts.

Image 1 2 3 4 5 6

Seat Seat Seat Base Base Base
S. P. S. P. S. P. Caster Caster Caster

Screw Screw Screw Caster Caster Caster
Screw Screw Screw Caster Caster Caster
Screw Screw Screw Caster Caster Caster

part Screw Screw Screw Caster Caster Caster
Screw Screw Cylinder Cylinder
Screw Screw Seat
Screw Screw S. P.
Screw Screw B. R.
B. R. B. R.

* Candidate parts and abbreviations are the same as TABLE I.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a method to generate an ATSG
by extracting part information from an illustrated image
series of a graphical instruction manual. The generated ATSG
can deduce the task motions and their orders, assembly state,
and tools. Additionally, the generated ATSG can reconstruct
and express instructions for humans into a form that is
executable by robots.

In the future work, we will automatically generate robot
motions from the ATSG, and consider the incorporation of



the environmental information into the ATSG. Since task and
motion planning (TAMP) depends on the work environment,
it is necessary to integrate the ATSG with environmental
information such as the location of the parts and tools
in motion planning. Furthermore, directly obtaining task
motions and object relationship information from a graphical
instruction manual, and applying the ATSG to a variety of
tasks that use instruction manuals, such as industrial products
in other domains and cooking, are expected.

REFERENCES

[1] J. Hatori, Y. Kikuchi, S. Kobayashi, K. Takahashi, Y. Tsuboi, Y. Unno,
W. Ko, and J. Tan. Interactively picking real-world objects with
unconstrained spoken language instructions. In Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[2] A. E. Erdal, O. Ekaterina, O. Adil, Y. Yezhou, and A. Tamim.
Unsupervised linking of visual features to textual descriptions in
long manipulation activities. IEEE Robotics and Automation Letters,
2(3):1397–1404, 2017.

[3] L. S. H. de Mello and A. C. Sanderson. And/or graph representation
of assembly plans. IEEE Transactions on Robotics and Automation,
6(2):188–199, 1990.

[4] S. J. Kwak, K. Hasegawa, and S. Y. Chung. A framework for automatic
generation of a contact state graph for robotic assembly. Advanced
Robotics, 25(13-14):1603–1625, 2011.

[5] R. H. Wilson and J. C. Latombe. Geometric reasoning about mechan-
ical assembly. Artificial Intelligence, 71(2):371–396, 1994.

[6] H. Fakhurldeen, F. Dailami, and A. G. Pipe. Cara system architecture
- a click and assemble robotic assembly system. In Proceedings of
International Conference on Robotics and Automation (ICRA), pages
5830–5836, 2019.

[7] U. Thomas, T. Stouraitis, and M. A. Roa. Flexible assembly through
integrated assembly sequence planning and grasp planning. Proceed-
ings of IEEE International Conference on Automation Science and
Engineering (CASE), pages 586–592, 2015.

[8] M. Dogar, A. Spielberg, S. Baker, and D. Rus. Multi-robot grasp
planning for sequential assembly operations. Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[9] Weiwei Wan, Kensuke Harada, and Kazuyuki Nagata. Assembly
sequence planning for motion planning. Assembly Automation, 2018.

[10] Ryota Moriyama, Weiwei Wan, and Kensuke Harada. Dual-arm
assembly planning considering gravitational constraints. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5566–5572, 2019.

[11] T. Nishimura, A. Hashimoto, Y. Ushiku, H. Kameko, Y. Yamakata, and
S. Mori. Structure-aware procedural text generation from an image
sequence. IEEE Access, 9:2125–2141, 2021.

[12] M. Nicolescu, N. Arnold, J. Blankenburg, D. Feil-Seifer, S. Banisetty,
M. Nicolescu, A. Palmer, and T. Monteverde. Learning of complex-
structured tasks from verbal instruction. In Proceedings of IEEE-RAS
International Conference on Humanoid Robots (Humanoids), pages
747–754, 2019.

[13] D. Paulius, Y. Huang, R. Milton, W. D. Buchanan, J. Sam, and
Y. Sun. Functional object-oriented network for manipulation learning.
In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2655–2662, 2016.

[14] D. Paulius, A. B. Jelodar, and Y. Sun. Functional object-oriented net-
work: Construction expansion. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), pages 5935–5941,
2018.

[15] D. Paulius, K. Sheng P. Dong, and Y. Sun. Functional object-oriented
network: Considering robot’s capability in human-robot collaboration.
CoRR, abs/1905.00502, 2019.

[16] G. Kazhoyan and M. Beetz. Programming robotic agents with action
description. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 103–108, 2017.

[17] R. Shaw and NJ J. Bransford, Hillsdale. The theory of affordances, in
Perceiving, Acting, and Knowing. Towards an Ecological Psychology.
Lawrence Erlbaum, 1977. pp 67-82; repr. as ch. 8 in Gibson.

[18] M. Schoeler and F. Wörgötter. Bootstrapping the semantics of tools:
Affordance analysis of real world objects on a per-part basis. IEEE
Transactions on Cognitive and Developmental Systems, 8(2):84–98,
2016.

[19] L. S. H. Mello and A. C. Sanderson. And/or graph representation of
assembly plans. IEEE Transactions on Robotics and Automation, 6(2),
1990.

[20] J. Redmon and A. Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018.

[21] Nitori official online store, work chair. https://www.
nitori-net.jp/ec/cat/Chair/WorkChair/1/.

[22] K. Fukuda, I. G. Ramirez-Alpizar, N. Yamanobe, D. Petit, K. Nagata,
and K. Harada. Recognition of assembly tasks based on the actions
associated to the manipulated objects. In Proceedings of IEEE/SICE
International Symposium on System Integration (SII), pages 193–198,
2019.

[23] Z. Hu, W. Wan, K. Koyama, and K. Harada. A mechanical screwing
tool for 2-finger parallel grippers – design, optimization, and manip-
ulation policies, 2020.

[24] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), volume 2, pages
995–1001, 2000.

https://www.nitori-net.jp/ec/cat/Chair/WorkChair/1/
https://www.nitori-net.jp/ec/cat/Chair/WorkChair/1/

	I Introduction
	II Related Work
	III Assembly Task Sequence Graph (ATSG)
	III-A ATSG Structure
	III-B ATSG Generation from Graphical Instruction Manuals

	IV Task Embodiment of Individual Instruction Image
	V Understanding the Relationship between Task Sequence and Extracting Information
	V-A Integrating the Graph and Inheriting the Child Part Information
	V-B Error Recovery for Object Detection

	VI Experiments and Analysis
	VI-A Robot Execution Based on Graphical Instruction Manual
	VI-A.1 Object Detection
	VI-A.2 ATSG Generation
	VI-A.3 Robot Execution

	VI-B Error Recovery for Object Detection

	VII Conclusions and Future Work
	References

