Publications of the DLR elib

This is the author’s copy of the publication as archived with the DLR’s electronic library at http://elib.dlr.de. Please
consult the original publication for citation.

Learning and Interactive Design of Shared Control Templates

Gabriel Quere, Samuel Bustamante, Annette Hagengruber, Joern Vogel, Franz Steinmetz and Freek
Stulp

‘ Copyright Notice

(©2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Citation Notice

@ARTICLE{quere2021learning,

author = {Gabriel Quere, Samuel Bustamante, Annette Hagengruber, Joern Vogel, Franz Steinmetz and Freek Stulp},
title = {Learning and Interactive Design of Shared Control Templates},

booktitle = {2021 IEEE International Conference on Intelligent Robots and Systems (IR0S)},

year = {2021},

organization = {IEEE}

}




Learning and Interactive Design of Shared Control Templates

Gabriel Quere, Samuel Bustamante, Annette Hagengruber, Jorn Vogel, Franz Steinmetz and Freek Stulp

Abstract— Controlling a robotic arm to achieve manipula-
tion tasks is challenging for humans. Especially if only low-
dimensional input signals can be provided, as is often the
case for users with motor impairments. Using shared control
to provide task-specific guidance and constraints facilitates
control - for instance with the Shared Control Templates (SCT)
framework — and enables even complex activities of daily living
to be performed successfully. However, designing SCTs is a
laborious task requiring robotic expertise. To make such design
easier and faster, we propose a method for semi-automatically
designing SCTs on the basis of demonstrations. Furthermore,
we propose two similarity metrics, and demonstrate how these
can be used to transfer knowledge from one SCT to another.
We demonstrate that the SCTs so acquired can be successfully
used in shared control for everyday tasks such as opening a
drawer or a cupboard on our assistive robot EDAN.

I. INTRODUCTION

In shared control, human input commands are combined
with semi-autonomous control systems to achieve a common
goal. Examples include the control of assistive devices, such
as our wheelchair-based robotic assistant EDAN [1]. EDAN
is an electrical wheelchair with a robotic arm and hand, and
its aim is to enable users with impairments to perform activi-
ties of daily living independently. Controlling the robotic arm
and the wheelchair is done with a continuous 3D signal from
either a joystick or signals extracted from the muscles with
surface electromyography (SEMG). Shared control alleviates
the many difficulties that arise from the direct control of a
high degree-of-freedom (DoF) system, such as cumbersome
mode switches between position, orientation, gripper and
wheelchair control [2].

We have previously proposed Shared Control Templates
(SCT) [3], which are shared control skills particularly suited
for tasks that consist of different phases. For instance, a
bottle should be kept upright during transport towards a
glass. However closer to the glass, it should be tilted with
its opening above the glass. SCTs achieve this by defining a
skill as a Finite State Machine (FSM), with one state for each
phase of a task. Within each state, the low-dimensional user
input commands are mapped to task-relevant end-effector
motions, e.g. during transport inputs map to translations, but
during pouring these same inputs map to tilting motions of
the bottle above the glass [3]. Furthermore, constraints on
the end-effector pose ensure that task requirements are not
violated, e.g. not tilting too much or not hitting the table
during pouring.
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Gabriel.Quere@dlr.de. This work was supported by the Bavarian
Ministry of Economic Affairs, Regional Development and Energy(StMWi)
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Fig. 1: SCT design method. A. Gathering of demonstrations via kinesthetic
teaching or direct teleoperation. B. Data segmentation according to contacts
or trajectory curvature. C. Models are selected and fitted to represent the
constraints of each phase of the task. D. Optionally, information from
previously learned SCTs can be used if phases are similar. E. An SCT
is represented as a Finite State Machine with state specific Input Mapping
and Active Constraints.

To allow such goal-directed support, SCTs — which are
detailed in Section III — assume that the goal is known or
inferred. However, the user is always in control, as there is
no robot motion without user input, and they can at any time
stop the task or change to another task.

A shortcoming of SCTs is that they require an expert
programmer to manually code the command mapping and
constraints for each task. To overcome this, our aim is
to automatically learn SCTs from demonstrations, to make
the design of new shared control skills faster and more
intuitive. To do so, the first contribution of this paper —
described in Section IV — is a method for semi-automatically
learning Shared Control Templates from demonstrations, as
illustrated in Fig. 1. We start with a set of end-effector trajec-
tories which are segmented based on trajectories curvature
or contact forces. Constraints can be learned from those
segments. Our algorithm helps to determine which models
best represent the constraints underlying the different phases
of the task.

Additionally, demonstrations for a new SCT can be com-
pared to a library of existing SCTs, to identify states



matching the demonstrations. This allows the transfer of
components from existing SCTs to a new SCT. Our second
contribution — described in Section IV-E — is to define two
comparison metrics to identify known states matching new
data, to enable this transfer. This process can serve to reduce
the number of demonstrations required to build an SCT, or
reduce the number of parameters which need to be hand-
designed.

To validate those contributions, we verify that the SCTs
that have been extracted from the demonstrations support
users during complex tasks of daily living, given only 3D
input. This evaluation is done on the EDAN robot, and
described in Section V.

II. RELATED WORK

In shared control of a robot, a user and an assistive
system jointly command the robot state variables, such as
the end-effector position or velocity. To this end, various
complementary approaches have been developed.

First, one may realize shared control as a policy blending
between the user-created teleoperation trajectory and the
robot commands, resulting from a motion planner or a con-
trol policy, as formalized by Dragan et al. [4]. This has been
used to guide a teleoperated robot with an invasive brain-
machine interface with constraints in the form of capture
envelopes [5]. Mehr et al. [6] additionally infer end-effector
constraints online while the user is doing a task.

A second facet is to constrain the available workspace of
the robot, as is also done in some of the above works [5],
[6]. This control method usually called virtual fixtures or
active contraints was surveyed by Bowyer et al. [7]. Con-
straints can take various forms; in particular they can be
applied to any dimension of the task space, usually either
the end-effector position, its orientation or the full pose.
Simple constraints like lines, planes, axial rotations or fixed
joints can be used [8]. Restrictions in the 3D Euclidean
manifold when using multiple demonstrations can also be
done with generalized cylinders [9]. Another example is from
Zeestraten et al. [10] who use statistical trajectory represen-
tations to constrain the end-effector orientation depending on
its position in teleoperation scenarios.

Third, one can restrict the workspace by modeling the
mapping of the user input. For example, Losey et al. [11]
learn an input mapping conditioned on the end-effector pose,
while Herlant et al. [2] present a human-inspired metric
to select the end-effector DoF controlled by the user at
any instant. Both methods implicitly constrain the available
workspace.

Our approach makes use of some of those constraint
models in a multi-model representation. This can be achieved
by constraining the end-effector with multiple models at
once, for example on different DoFs, or by having a skill
representation in multiple sections, corresponding to different
phases of the task. To do so, SCTs are represented with a Fi-
nite State Machine. A FSM is a finite set of states connected
by transitions, with one state active at a time. Its use is quite
common [12], [13]. Some works learn the transitions [14],

while others learn both the segmentation of the data in
different states and the model fitting in parallel [15]. In this
work, we segment considering either trajectory curvature or
contact points, and focus on the constraints representation,
using the FSM model of our previous work [3].

One of the contributions closest to ours is C-learn [16],
where a similar multi-model representation is used to build a
library of skills, which can then be reused. The key difference
is that we use it for shared control instead of supervised
autonomy. As such, we use a FSM with flexible transitions
instead of a succession of keypoints. We also use different
constraints models and metrics for skill transfer due to our
focus on shared control.

ITII. SHARED CONTROL TEMPLATE (SCT) FORMALISM

As illustrated in Fig. 2, an SCT takes low-dimensional user
commands as input and output desired end-effector poses
ge, applying various Input Mappings (IM) and Active Con-
straints (AC) during the individual phases of a task. Those
phases are modeled with a FSM, where transitions between
states depend on predicates with metrics such as estimated
force exceeding thresholds, distances between feature frames
or timeouts. On EDAN, those values are computed from a
world representation built by a perception system, see [1]
for details. When the defined transition predicate of a state
becomes true during the execution a task, the state changes
automatically.
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Fig. 2: Overview of an SCT, which is modeled as a Finite State Machine. In
each SCT state an Input Mapping and Active Constraints can act. Transitions
0;; need to be defined to switch between states. The output gg(t) of the
active SCT state is given to the task space interpolator, in order to apply it
on the robot. To limit error accumulation, g¢ is reset to the output of the
interpolator each time user commands are null.

Within the active state g, at every time-step iteration, the
IM are first applied. An IM first computes a displacement
AT :

map,: R", SE(3) — SE(3)

(D
Au(t), ge(t — 1) = AT

which is then applied on the end-effector pose g¢:



displace,: SE(3),SE(3) — SE(3)

)
ge(t —1), AT = ggim(t)

with Aw(t) the user command for a time step (Au €
[—1,1]%, K the dimension of the user input, ggim (1) = AT *
ge(t—1), and finally gg(t — 1) and gg(t), the target pose of
the end-effector at time-steps ¢ — 1 and ¢, respectively. Our
default IM is to map the 3-DoF input to x, y, z translations of
the end-effector. However when pouring liquid for instance,
an IM could map to a rotation around the tip of the object
grasped by the robot end-effector.

After applying the Input Mapping, which results in the
end-effector pose ggim(t), geometric constraints can be ap-
plied. An Active Constraint from a model m applies a
projection function project,,, of the form

project,,,: SE(3) — SE(3)

3
gEim(t) — ggac(t) ®

where geac is the constrained end-effector pose. An AC
may also apply to specific DoFs only. For example, to open
a door, the end-effector is constrained on the arc-circle path
traced by the door handle. Even with a 3 DoF Cartesian IM,
ge will be restricted to the 1 DoF arc-circle. In opposition to
force constraints for haptic teleoperation which provide more
forces the more they are violated, ACs can not be overcome
by the user.

We define project, as the sequential computation (if mul-
tiple models are defined) of project,, in state g. Finally, we
define step, as the composition of the map,, displace, and
project, functions, i.e. the action of an SCT on the end-
effector target pose gg at one time-step.

To sum up, ACs operate on poses and explicitly constrain
the workspace of the end-effector, while an IM does so
implicitly and operates on velocities. Providing appropriate
input mappings and active constraints during different phases
of the task facilitates the achievement of the task. We refer
to [3] for additional details on SCTs.

A. Constraint representation

Our aim is to semi-automatically build SCTs from demon-
strations. Whereas the previous section focused on explaining
SCTs top-down, in this section, we explain the individual
building blocks — the constraints — from which they are built
bottom-up.

There is a vast literature on constraints representations [7],
from which we use three different classes of models: 3D
surfaces, 3D volumes, and a third one related to force control.
Some examples are shown in Fig. 3. For example, pulling
open a drawer is a heavily constrained motion, which can be
represented with a prismatic constraint model. On the other
hand, approaching the drawer handle can be achieved when
constrained by a curved funnel, providing the user with a
large workspace to move the end-effector, in case they want
to switch to another task for example.

Fig. 3: Examples of constraints. A. A prismatic motion is needed to open
the drawer. B. An axial rotation is needed to open the cabinet. C. Two
phases from the data recorded by opening the cabinet door, fitted by a cone
and a plane, respectively.

1) Parameterized surfaces: Explicit constraints such as
lines or axial rotations are needed in constrained object
manipulation, e.g. while pulling on a drawer or opening a
door. They deliver consistent behavior from the user point
of view, and can be attached to a semantic meaning, like a
drawer being open or closed. The constraints we use in this
work, with their respective DoFs, split along translation and
rotation, are plane (2+3), planar (2+1), line (1+3), prismatic
(1+0), arc circle (3+0) and axial rotation (0+1).

2) Parameterized volumes: A parametric representation
of explicit volumes like cones, curved funnels or cylinders
can provide practical and easily identifiable constraints. They
are useful to guide the user motion while leaving some
freedom for fine control, e. g. towards the beginning or the
end of the task, or to limit the end-effector to safe regions.
Implemented volumes currently only concern the position
(i.e. with constrained DoFs (3,0)), but future work could
consider orientation, e. g. Task Space Regions [17].

3) Force constraints: Depending on the task and the end-
effector used, adding a force component to the control of the
end-effector can be efficient, for example to keep the robot
hand pressed on the drawer handle. This hybrid position/
force control has already been explored in various works;
here, within a specific state of an SCT, we simply apply a
constant force in a specific direction. This is controlled with a
Cartesian impedance controller [18] via a virtual end-effector
target. Force constraints can easily be computed from the
data by taking the mean direction and value of the force
from the input data.

IV. INTERACTIVE DESIGN PROCEDURE

The pipeline for learning a new SCT is depicted in Fig. 4
and presented in this section.

A. Data acquisition through robot demonstrations

To build an SCT, multiple demonstrations are recorded
to help capture variability within the task. Usually, up to ten
demonstrations are sufficient. The recorded data is composed
of end-effector trajectories and forces applied on the end-
effector during a task. The kinematic part can be acquired
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Fig. 4: Pipeline for interactive SCT design. A. Demonstration data is acquired. B. Recorded data is segmented. C. Multiple constraints models are fitted
for each segment. D. The constraints are heuristically ordered based on a cost for the most adapted ones to be selected by the SCT designer. E. Finally,
the Input Mappings and the Active Constraints of each state are specified by the SCT designer and assembled as a FSM.

from demonstrations in teleoperation or by kinesthetic teach-
ing. Force recordings can be obtained with either an end-
effector force sensor or with joint torque sensors during
teleoperation. The target object is used as a reference point,
to have an object-centric SCT representation.

B. Segmentation

The recorded data is then segmented to obtain a set of
segments S, each containing portions of each trajectory. The
goal of the segmentation process is to assemble data from
the trajectories subjected to the same constraint. This forms
the different states of an SCT and allows to model the AC.

Trajectories are first pre-processed with Dynamical Time
Warping [19] to adjust timestamps. Then, segmentation can-
didate points are created on each demonstration, using either
sharp turns in the curvature (following [20]) or the contact
forces on rising and failing edges, under a minimal segment
length condition. Finally, each segmentation point is only
kept if there is also a segmentation point on each of the
other trajectories at a time step in close vicinity.

As an example, the segmentation results in four segments
when considering the demonstration of the SCT open drawer
are shown in Fig. 4.B. The first segmentation point arises
when the end-effector arrives at a pre-grasp pose, the second
when it gets in contact with the drawer and the third when
it starts to pull the drawer open. The contact force and its
location can be detected and estimated using a momentum-
based framework [21].

C. Constraints fitting

Once data is segmented, geometric constraints can be
assigned to the segments (see Fig. 4.C & 4.D). Here, for
every segment, all geometric models described in Section
III-A.1 and II-A.2 are fitted on the trajectories and the
force constraint (Section III-A.3) is calculated from the force
profile. Parameters of parameterized surfaces are learned by
fitting the geometric models to the kinematic information as
described in [8]. To fit parameterized volumes on the input
data, models are first initialized on a few random points, then
the black box optimization algorithm CMA-ES [22] is used,
optimizing the cost defined in (6). To reduce the probability
of finding a bad local optimum, the best out of 20 runs is
taken for each model.

A cost value is determined for each class of constraints
models, which helps the skill designer in choosing the most
appropriate constraints. The cost functions make use of a

custom distance metric D between two poses g4 and gp,
defined as

“4)

calculating the sum of the Euclidean distance in meters
and the weighted angle € in radian between g4 and gp in
an axis-angle representation. The weighting term or trade-off
factor « is set to 0.2.

The cost function for a parameterized surface model mg
is defined using (3) and (4) as

D(ga,gp) = ||position 4, — positiong|| + « - |6,

N

> D(ge(n), project,, . (ge(n))) (5)

n=1

1

COStsurface(mS) = N

with number of recorded poses N .
The cost function for a parameterized volume model my
is also defined using (3) and (4) as

1

N
COStvolume(mV) —N Z D(gc‘f (n)7 pI‘OjCCth (95 (n)))
n=1

(6)
+ B - volume(my )

with trade-off factor S empirically set to 0.4, leading to
higher costs for bigger volumes.

Having calculated the costs for every geometric constraint,
the models are ordered by their costs within each model
class (surfaces and volumes). An example of this can be
seen in Table I. Models of different classes are not compared
with each other as they are calculated with different cost
functions. Based on these costs, as well as a visualization for
each model, a skill designer can choose the most appropriate
geometric constraint.

D. FSM building

Once AC have been modeled for each state, the skill
designer can finalize the skill representation. First, transitions
between states have to be implemented to build the FSM.
The IM of each state can then be specified if the default
Cartesian control mapping is not appropriate, for example by
scaling down motions in DoFs perpendicular to the direction
of motion. Finally, various parameters like the end-effector
fingers configuration or the safety thresholds (i.e. force limits
the robot may not exceed) can be set. This methodological
step is conceptualized in Fig. 4.E.
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For our open drawer example, the final result is shown
in Fig. 5. Here, the skill designer has set the transitions as
distance to the handle (between states 1 and 2) and force
threshold (for the others). A default Cartesian control IM is
selected for each state, leaving no possibility for the user to
control the orientation, as it is not required for this task.

E. Transferring knowledge for new shared control skills

Our multi-model FSM representation can optionally be
used to bootstrap the learning of new SCTs from an ex-
isting SCTs library, for example to reduce the number of
required demonstrations or transfer hand-defined parameters.
As a concrete example, once the SCT open drawer has
been learned from demonstrations (using the pipeline from
Section III), it can be used to help build a new SCT open
cabinet door.

Although the last section of opening the cabinet door has
different constraints, the constraints for the first three states,
guiding the grasp of the handle, can be transferred from the
open drawer SCT, as in our experimental kitchen setup the
drawer and cabinet have the same type of handle.

Given a set S’ of segments from newly demonstrated and
segmented data, each segment s is compared to every state
q of a learned SCT of interest with two similarity metrics.
The first metric, m g¢, only takes the ACs into account and
considers the demonstrated data as a set of poses. A set of
N, poses consists of all poses of all segments of trajectories
of s. mac is defined similarly to (5):

N
mac(s,0) = - O Dlge(n),project, (ge(n))) (7
S n=1

The function project, projects the pose onto the workspace
permissible by the ACs. This metric calculates the average
distance between the demonstrated poses of the given seg-
ment to those same poses constrained by the ACs.

Similarly, we define a second metric mypr4ac which
considers the demonstrated data as a set of displacements
between consecutive poses ge(n) and ge(n + 1). It takes
as input a known state ¢ and its associated IM and ACs.
For each demonstrated displacement, we evaluate if this
displacement could have been commanded by the user with
state ¢ being active, and if not look for the most similar

commanded displacement. Hence, this metric computes how
close demonstrated data can be reproduced under the IM
and ACs of state ¢q. For example, using this metric on the
data used to learn the Approach state while considering the
Approach state itself as reference state will bring a null
or almost null cost, while using data for tasks requiring
completely different motions, positions or orientations will
have a high cost.

Computing this cost means applying the optimal com-
mands with step, to reproduce the demonstrated trajectories
as best as possible under the constraints of state g. Those
optimal commands are not known, and the function step, is
non-invertible in the general case, i.e. there is no function
that can determine the command responsible for a specific
displacement from one recorded pose to the next. Therefore,
the optimal command to get the closest constrained displace-
ment is found using a Evolution Strategy (ES) algorithm
on the command input. The ES algorithm uses the latest
best command (initialized as O for the first displacement) to
initialize its current solution and only keeps the best solution
at each iteration, see Algorithm 1.

Algorithm 1 Evolution Strategy: Computes the optimal
command to find the closest displacement from gg(n) to
ge(n + 1), constrained by the IM and ACs of state g.

Input: ge(n), ge (n + 1), Au,step,
Output: closest_constrained_pose,,
1: while not_converged do

2: solutions = [soly, sola, ...], sol; ~ N (Au, o)
3 for sol in solutions do
4: costsor = D(step, (sol, ge (1)), ge (n + 1))
5: end for
6:  Awu = argmin(cost)
7 if successful_mutations_ratio < 0.2 then
8: oc=o0x(1-0.6)
9:  else

10: o=o0x(1+0.6)
11: end if

12: end while
13: closest_constrained-pose,, = step, (Au, ge(n))

This simple black-box algorithm is efficient because of
the low DoF of the input, all the input dimensions having
the same order of magnitude, and the low complexity of
stepy. We use those closest_constrained_pose,, to compute
mrnv+ac(s,q), similarly to Eq. 7.

Those two metrics provide for each segment s of the
demonstrated trajectories a similarity measure to the states
of learned SCTs. An example for this is shown in Table II.
Those metrics guide the skill designer in the decision to
associate a known state ¢ to a newly demonstrated segment.
If that is the case, components such as the IM and SCT
parameters such as the end-effector finger configuration of ¢
are transferred to a newly created state based on s. The ACs
can be transferred as well or alternatively trained on the new
data using the same model.

To sum up, those two metrics are defined independently
from the models used for the skill representation. They favor
the reuse of states from learned SCTs of interest.
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Fig. 6: Learned SCTs. We show a visualization of the learned open drawer SCT (left), and the measured trajectories of the real robot of five executions of
opening a drawer (center) and a cabinet door (right) with a 3 DoF joystick. The colors illustrate the four different states of each SCT. The main difference
between the two SCTs is the fourth state, where an axial rotation constraint is used for open cabinet door instead of the prismatic motion of open drawer.

Constraint class  Constraint Cost Approach  Cost Pull
Parameterized plane 0.022 0.001
Surfaces line 0.051 0.004
planar 0.035 0.004
arc circle 0.051 0.008
prismatic 0.060 0.013
axial rotation 0.063 0.031
Parameterized cone 0.002 0.0006
Volumes curved funnel  0.020 0.009
cylinder 0.035 0.012
Force N 4 23
Direction [-0.5,-0.7,-0.3] [0.2,0.3,0.9]

TABLE I: SCT open drawer models fitting results for segment 1. Due to
the lack of an end-effector force sensor, segmentation results come from
kinesthetic demonstrations, seen in Fig. 4.B, while force values arise from
an extra teleoperated demonstration. The selected models are highlighted in
bold.

V. EVALUATION

The aim of this evaluation is to demonstrate that the
extracted SCTs can be used for successful task completion.
For more details on the general functionality of the Shared
Control Templates concept, the EDAN user-interface and
related user-studies, we refer to [3], [23], [24], [25].

We build SCTs for two tasks: the first one is learned
uniquely from the demonstrations, then serves to populate
an empty SCT library. The second showcases an example of
SCT transfer.

A. Learning to open a drawer from demonstrations

With an empty SCT library, we first learn the SCT open
drawer from three kinesthetic demonstrations (plus an extra
one in teleoperation to compute a force estimate). The trajec-
tories are automatically segmented according to the curvature
method, resulting in four segments for each trajectory, as
seen in Fig. 4.B. A variety of models are learned on those
segments, providing the designer with the results seen in
Table 1.

The designer then selects different models: a cone for the
first state to guide the user to a pre-grasp pose while leaving a
large freedom of motion, prismatic motions to get in contact
with the drawer and when pulling it, and a force applied on
the handle when pulling it so that the end-effector doesn’t
slip. Finally, transitions are specified and the default IM is

set. The final skill representation is shown in Fig. 5 and
Fig. 6.Left.

B. Learning to open a cabinet door from demonstrations and
from the SCT open drawer

The second task of interest is to open a cabinet door. One
demonstrated trajectory is recorded with kinesthetic teaching
and automatically segmented. Since the two tasks are similar,
the resulting segments match the ones used to learn open
drawer. Then for each segment of the demonstrated trajec-
tory and each state of open drawer, m 4c and mypry ac are
computed, with results shown in Table II.

N‘ Approach ‘ Push forward ‘ Push down ‘ Pull
Segment

AC: 0.022 AC: 0.061 AC: 0 AC: 0.08
1 IM+AC: 0.013 | IM+AC: 0.057 | IM+AC: 0.001 | IM+AC: 0.078
AC: 0.039 AC: 0.005 AC: 0 AC: 0.030
2 IM+AC: 0.030 | IM+AC: 0.005 | IM+AC: 0.002 | IM+AC: 0.031
AC: 0.054 AC: 0.013 AC: 0 AC: 0.016
3 IM+AC: 0.044 | IM+AC: 0.017 | IM+AC: 0.001 | IM+AC: 0.013
AC: 0.153 AC: 0.082 AC: 0 AC: 0.062
4 IM+AC: 0.1 IM+AC: 0.084 | IM+AC: 0.003 | IM+AC: 0.064

TABLE II: Comparison of a newly recorded open cabinet trajectory to the
SCT skill open drawer. In bold the relevant results for components transfer.
Costs from state Push down are negligible as there are no AC. m4¢ and
mynm+Ac are similar because the default IM is used for each state in this
example, but this could change greatly depending on the chosen IM.
Guided by those results and his prior knowledge, the skill
designer builds the first three states of open cabinet as copies
of the SCT open drawer, which correspond to grasping
an identical handle (see Fig. 3.B), with their associated
transitions. We can note in particular, highlighted in bold
in Table II, the similarities between segment 1 and state
Approach, as well as segment 2 and state Push forward. The
fourth segment does not match any of the existing states
and therefore is subject to a new set of constraints, which
is modeled by a combination of axial rotation to constrain
the position in the horizontal plane and a downward force
constraint for stability of the contact with the handle.

C. Successful task completion with learned SCTs

To demonstrate that the SCTs that have been extracted
from the demonstrations enable users to execute tasks even
with low-dimensional command signals, we demonstrate (as
able-bodied authors of this paper) five successful executions
of opening the drawer and the cabinet door while teleop-
erating EDAN. Command inputs are generated with a 3
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Fig. 7: Photo series of the different states of open drawer in the upper row (D1-D4) and open cabinet door in the lower row (C1-C4). The robot is
controlled with a 3D joystick by the user sitting in the robotic wheelchair. D1 & C1 Approach: The robotic manipulator is restricted within a cone to
guide the user. D2 & C2 Push forward: After reaching the pre-grasp pose, the user gets to the drawer through a prismatic motion. D3 & C3 Push down:
Transition to the next state is upon contact with the handle. D4 Pull open: A prismatic constraint and downward forces lead the robot to robustly pull
open the drawer. C4 Rotate open: An axial rotation contraint and downward forces are in effect to open the cabinet door.

DoF joystick. During execution of the open drawer task,
albeit only the end-effector is controlled by the user, the
wheelchair adjusts its position automatically to keep end-
effector manipulability by means of a whole-body impedance
control, presented in [26].

The constraints of open drawer and the trajectories result-
ing from the SCT skill’s executions are shown in Fig. 6 and
the attached supplementary video. The trajectories illustrate
that some constraints (e.g. the approach cone) provide more
freedom of movement (e.g. when starting to approach the
drawer handle) whereas other movements are more heavily
constrained (e.g. the linear movement required to open the
drawer).

VI. DISCUSSION

The presented method speeds up the design of SCTs
compared to [3], as it supports the skill designer in the most
time-consuming aspect of the SCT creation process, namely
the design of constraints. It does so both by auto-fitting
and evaluating multiple models, as well as by transferring
components from known SCTs.

The current number of different model classes may not
be that high, but the underlying methods proof the viability
and success of the approach. Expanding the range of model
classes will widen the scope of our skills, without burdening
the skill designer with additional work, but only add more
freedom of choice. Models of interest are for example Task
Space Regions [17], GMMs [10], Generalized cylinders
[9] and input mappings conditioned on the end-effector
pose [11]. Nevertheless, the current model classes already
give each SCT state more semantic meaning. For example,
it models that drawers are to be opened with a prismatic
motion and doors with a rotational motion.

The calculated costs for the different models may raise the
question, why — based on these costs — the best model cannot
be chosen automatically. This can be explained using the
trajectory segments for pulling open a drawer. Here, a plane
has the lowest cost, but arguably the phase is best constrained

by a prismatic motion. This is were the knowledge of the skill
designer comes into play. Additional refinement of the cost
metric, e.g. higher costs for higher dimensions, might be a
point for further automation.

Future work will also consider learning from demonstra-
tions the transitions between states, to further facilitate the
SCT design.

VII. CONCLUSION

In this paper, we have proposed a method to semi-
automatically learn Shared Control Templates (SCT) with
a multi-model representation from demonstrations. We also
presented an approach that allows transferring knowledge
from existing SCTs to new ones. The evaluation on a real-
world scenario proofed the effectiveness of our methods.
The reduced time required for creating new SCTs allows
to provide users with impairments more SCTs that are
individually fitted to the requirements of the user and the
environment, enabling more activities of daily living.
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