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Visual Identification of Articulated Object Parts
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Abstract— As autonomous robots interact and navigate
around real-world environments such as homes, it is useful
to reliably identify and manipulate articulated objects, such as
doors and cabinets. Many prior works in object articulation
identification require manipulation of the object, either by the
robot or a human. While recent works have addressed predict-
ing articulation types from visual observations alone, they often
assume prior knowledge of category-level kinematic motion
models or sequence of observations where the articulated parts
are moving according to their kinematic constraints. In this
work, we propose FormNet, a neural network that identifies the
articulation mechanisms between pairs of object parts from a
single frame of an RGB-D image and segmentation masks. The
network is trained on 100k synthetic images of 149 articulated
objects from 6 categories. Synthetic images are rendered via
a photorealistic simulator with domain randomization. Our
proposed model predicts motion residual flows of object parts,
and these flows are used to determine the articulation type
and parameters. The network achieves an articulation type
classification accuracy of 82.5% on novel object instances in
trained categories. Experiments also show how this method
enables generalization to novel categories and can be applied
to real-world images without fine-tuning.

I. INTRODUCTION

Reliable, autonomous robots have many potential appli-
cations as assistants to humans in settings such as homes,
businesses, and hospitals [1]-[6]. One prerequisite for these
applications is the capability for robots to both recognize
and manipulate articulated objects: objects that have moving
parts that are kinematically linked with each other, such as
doors, windows, drawers, caps, dials, buttons, and switches.
For example, a robot tasked with fetching medicine must
identify and interact with several articulated objects: opening
a door to enter a room, searching a cabinet of drawers
for a medicine bottle, twisting the bottle cap open, and
then delivering the contents. Manually specifying articulation
constraints for the vast diversity of objects is intractable, so
it is important for a robot to autonomously identify these
constraints and their parameters.

Interactive Perception (IP) is a well-known approach to
this problem [7]. With IP, the robot interacts with objects
in the environment through physical contact, observes the
changes, and predicts the underlying kinematic constraints.
For example, the robot may pull on a handle, and if the
handle’s trajectory forms a straight line, then the constraint
is prismatic (e.g., drawer); if the handle follows an arc, then
the constraint is revolute (e.g., door). Prior IP works often
share the limitation of not leveraging the object’s visual
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Fig. 1: Predicting articulation mechanisms using FormNet. Given
the inputs on the left (RGB-D image and segmentation masks of
a pair of object parts), a neural network predicts the articulation
type (revolute, prismatic, fixed, or unconnected) and appropriate
articulation parameters (e.g., location and direction of revolute axis).
The network is trained on synthetic data and infers articulation
parameters via predicting motion residual flows.

features — either at all [8]-[11] or only as a contextual prior
to exploration [12]. Most articulated objects that humans
interact with are designed to visually signify their articulation
affordances through pronounced geometry and texture. An
elongated bar with one contact at the end to another surface
is probably a revolute handle; a cabinet handle with a
connection at each end is likely prismatic.

Other approaches consider visual aspects while identifying
articulation mechanisms. Existing works in this direction
track the relative movements of object parts from videos and
predict the constraint types [13]-[19]. However, these still
require the articulated object to be manipulated — an onerous
assumption for robots operating in novel environments.

The contribution of our work is FormNe{'} a neural net-
work model that identifies articulation mechanisms between
objects with only single-frame vision observations, no inter-
actions, and no pre-specified object category model (Fig. [I).
We leverage recent developments in high-quality object mesh
datasetsﬁ that contain information about both object parts
and their relative kinematic constraints. Color and depth
(RGB-D) images, as well as part segmentation masks, are
collected across six object categories found in PartNet-
Mobility [20]. These categories include common household
objects like doors, windows, and cabinets. Training images
are rendered in simulation with domain randomization. To

FormNet stands for Flow of Object Residual Motion Network. The name
alludes to the form, or shape, of object motion under articulation constraints.

Zhttps://sim2realai.github.io/
Synthetic-Datasets—-of-Objects—-Part-1/
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predict articulation type, we represent and encode the dis-
placement of an object part under a given articulation mecha-
nism as motion residual flow. The network uses convolutions
to predict this flow and the parts’ “connectedness” (i.e.,
whether two object parts are connected), which we then post-
process with RANSAC to form the articulation type predic-
tion. We evaluate the performance of the trained network
with ablation studies across multiple object categories, and
we also demonstrate that it can predict articulation types of
objects in real-world images without further fine-tuning. See
supplementary materials at https://sites.google.
com/view/articulated-objects/home

II. RELATED WORK

Our work relates to two broad classes of vision-based
object perception for (1) articulation constraints and (2) pose
estimation in manipulation settings.

Visual identification of object articulation constraints.
To identify articulation mechanisms via visual observations,
the authors of [21] manually labeled a large dataset with mo-
tion parameters, such as the location and axis of revolute and
prismatic joints. Then, they proposed using motion-driven
features and losses to train neural networks that jointly solves
for motion-driven part segmentation and motion parameters.
Here, motion parameters were encoded as displacement and
orientation residuals, corresponding to prismatic and revolute
joints. However, this method assumes access to the complete
point cloud of an object, not a partial or noisy point cloud
that would be found with egocentric depth sensors used in
most robotic manipulation applications.

Later works relaxed the assumption of complete point
clouds, but they leveraged knowledge of a set of predefined
articulated object categories and their kinematic models. For
example, doors would be one category, and cabinets another.
Knowledge of object categories allow these algorithms to fit
predefined geometric and kinematic models to the observed
visual features, which are often point clouds. For instance,
in [22] the authors formed Gaussian mixture models over six
predefined kinematic models, and they trained a neural net-
work to predict parameters of the mixture model from single
depth images. The parameters include kinematic model pa-
rameters for each category, the object’s joint configurations,
and geometry parameters (e.g., door length). Training data is
generated in simulation, and the model generalizes to novel
objects within known categories.

In [23], the authors forgo mixture of Gaussians by propos-
ing the articulation-aware normalized coordinate space hier-
archy, a canonical representation for each articulated object
category. Within this representation, object scales, orienta-
tions, and articulation parameters are normalized, allowing
a neural network to directly regress to coordinates in this
space. The proposed model uses PointNet++ to process point
clouds extracted from depth images, and depth image data
for training is also generated in simulation.

The authors of ScrewNet [24] removed the assumption
of known object categories or kinematic models. Instead,
they represent the relative motion of point clouds as a screw

motion: rotation of a body around an axis coupled with a
translation in the axis. ScrewNet is a neural network that
directly predicts parameters of this screw motion between
articulated parts, inferring articulation type without known
kinematic models. However, to make this prediction, the
network requires a sequence of depth images, with the
articulated object parts moving relative to each other.

Procrustes-Lo-RANSAC (PLR) [25], [26] similarly pre-
dicts articulation types without a priori kinematic models.
PLR leverages a geometric vision-based algorithm instead of
a neural network, but it requires observations of the object
in two distinct articulation configurations.

Like [24]-[26], our work does not require prior definitions
of category-level kinematic models. Instead, our proposed
method uses a single image observation to predict articula-
tion type; no observations of part motion are required.

Vision-based object pose estimation for manipulation.
Our work can be viewed as a form of vision-based pose
estimation, wherein we infer the constrained poses that the
connected parts of an object would move under the predicted
articulation kinematics. In this view, our work relates to
pose estimation in manipulation settings, which includes
both objects [27]-[30] and robots [31]-[34]. Of these works,
PVNet [29] also regresses to a residual (pointing to object
keypoints for pose estimation), whereas our motion residual
is used to infer the kinematic constraint. For practical ma-
nipulation scenarios, we also note the success of DART [35],
a depth-based tracking algorithm for articulated models. Our
learning-based model facilitates single-image estimation of
articulation motion that generalizes without needing a model
specification for novel objects, as DART does. Lastly, our
system can be integrated into a vision-based manipulation
pipeline, such as the one described in [36]. Instead of
object pick-and-place, our approach would facilitate object
articulated motion, such as opening cabinets and doors.

III. METHOD

In this section, we describe the proposed neural network
model (FormNet) for vision-based identification of articula-
tions of object parts, how its training data is generated, and
the representations of the model’s inputs and outputs.

A. Overview

Our approach identifies kinematic constraints between
pairs of object parts from a stationary visual observation
alone. We construct a neural network model that takes as
input a single-view RGB-D image and segmentation masks
of two distinct object parts. We focused on designing and
training this network, and assume the part segmentation
masks are provided from a pre-existing algorithm (e.g., [37]).
The neural network provides two outputs for the segmented
parts: (1) a parts connectedness classification and (2) the
motion residual flow, which is the displacement of the second
part relative to the first part if the second part moves under
their kinematic constraint. Two parts are connected if they
are parts of the same articulated object and are neighbors
of one another in the object’s kinematic chain. The joint
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Fig. 2: Neural network architecture for FormNet. It takes as input the RGB, depth, and segmentation images of two queried object
parts. Conv means convolution layers, E means intermediate embedding, T-conv means transposed convolution layers, and FC means
fully-connected layers. The network produces two outputs: motion residual flow and binary part connectedness. If the two queried parts
are predicted to be connected, plane fitting via RANSAC is used to post-process the motion residual flows to estimate the articulation

mechanism’s type and parameters.

Door | Window | Faucet | Dishw. | Fridge | Cab.

Objects 30 28 23 30 20 18
Parts 92 112 115 92 98 109
Type R P R R R PR

TABLE I: Dataset Statistics. Objects shows the number of object
models. Parts shows the total number of distinct object parts. Type
lists the type of articulations that exist in that category, where R
= revolute and P = prismatic. Dishw. stands for Dishwasher, and
Cab. stands for Cabinet.

for two connected parts is classified as revolute, prismatic,
or fixed, depending on the predicted motion residual flow.
Furthermore, we apply RANSAC on the predicted motion
residual flow to extract articulation parameters for revolute
(rotation axis) and prismatic (direction of movement) joints.

By formulating our network to infer the articulation type
between a pair of object parts, our approach works with
images containing an arbitrary number of articulated objects.
Therefore, predefined categorical models or shared coordi-
nate spaces of articulated objects are not needed; the network
does not need to reason about multiple articulation mech-
anisms belonging to specific object categories. In addition,
this formulation also allows our model to generalize to object
categories unseen during training. The entire kinematic chain
of an articulated object in an image can be recovered by
querying the network with all pairs of object parts.

The proposed model is trained via a large dataset of
synthetically rendered images of articulated objects. Domain
randomization and augmentations are applied to the training
images, facilitating a network that is robust and invariant
to changes in viewpoint, lighting, textures, occlusions, and
object joint configurations. Models of articulated objects
came from PartNet-Mobility, from which we filtered and
cleaned models to form our training set.

B. Dataset of Articulated Objects

We considered several public datasets of objects with ob-
ject part information for making our training data, including
RBO [38], ShapeNet [39], and PartNet [40]. To train a gen-
eralizable articulation identification model, an object dataset
is needed that contains a wide variety of object categories,
a large number of diverse objects within each category, and
labels of articulation types between connected object parts.

The RBO dataset is a collection of 14 objects with 358 RGB-
D interaction video sequences. While it provides articulation
and part segmentation, the relatively small size makes it
inadequate as training data. ShapeNet consists of over 3
million 3D CAD models, of which 220K are classified to
3135 categories. PartNet contains roughly 26K models across
24 object categories with good part segmentation. While
ShapeNet and PartNet are sufficiently large, both datasets
lack articulation information.

In recent works, Shape2Motion [39] and PartNet-
Mobility [20] have augmented ShapeNet and PartNet to
include articulation information. Shape2Motion is large with
over 2.4K objects. However, it is not amenable to simulation
and rendering; it lacks joint limit information and object
textures. PartNet-Mobility does not face such limitations
and has our desired properties: the dataset has over 2.4K
objects across 46 categories, object textures, and articulation
information with joint limits. As such, we use PartNet-
Mobility to generate the training data for our articulation
prediction model (Table [[).

We processed meshes from PartNet-Mobility to choose (1)
categories with strong visual signals in kinematic constraints
and (2) characteristic subsets of objects from each chosen
category. The six categories chosen were doors, windows,
faucets, dishwashers, refrigerators and cabinets. In each
category, we choose a representative subset of objects that
maintains intra-category variability. In total, 149 objects were
selected. We cleaned the selected mesh models by scaling
meshes to realistic sizes and standardizing the orientation
of their coordinate frames. The former makes rendered
images more realistic (i.e., faucets are typically smaller than
refrigerators). The latter ensures that objects of the same
categories appear in similar poses when loaded for rendering.
Lastly, we removed object parts and articulation connections
that were too detailed. For example, the interior racks of
dishwasher models were ignored in our dataset.

C. Dataset of Scene Images with Articulated Objects

The network is trained using synthetic data with domain
randomization and image augmentation. Data was gener-
ated using NVIDIA Isaac Sinﬂ a GPU-accelerated robotics

3https://developer.nvidia.com/isaac-sim
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simulator that supports photorealistic rendering. Articulated
objects were loaded into a clean virtual scene and several
randomizations were applied, including camera pose, scene
lighting, object pose, size, texture, and distractor objects.

To make the trained articulation prediction model gener-
alizable across a wide variety of scenes, we perform domain
randomizations to render the synthetic dataset. The camera
is positioned randomly within the front upper hemisphere of
the object, a region where a robot is likely to be to perform
manipulation. Joint configurations of articulated objects are
randomized within their joint limits. Object sizes are also
randomly scaled between 0.5 and 2.0 during generation. In
addition, we randomize object textures and scene lighting.
These randomizations accommodate for intra-category vari-
ation. While household items have diverse appearances (i.e.,
the width, color, and length of doors might differ), these
particular differences do not affect the underlying articulation
mechanisms. Scaling and changing the visual properties of
the objects in the training data makes the model invariant to
such details. Lastly, distractor objects consisting of common
objects and household items are included to produce natural
occlusions of articulated object parts.

In total, approximately 100K image scenes were rendered,
each including an RGB-D image of resolution 640 x 480,
an object part segmentation image, and the articulation
information of objects in the scene.

In addition to domain randomization, we apply standard
image augmentation techniques during training, including
geometric transformations such as random rotations, flips,
and crops [41]. For RGB images, we perform random visual
transformations such as contrast and brightness. We also add
realistic noises to depth and segmentation masks to make
the trained model more robust. For depth images, we apply
additive correlated Gaussian noise and multiplicative gamma
noise to simulate realistic depth sensor noise [42]. To add
realistic noise to the boundaries of the binary segmentation
masks, we apply salt and pepper noise followed by a mor-
phological closing operation.

Each data sample during training is generated with a pair
of object parts in a rendered image. We first pick a pair of
object parts from the segmentation image. The network input
then consists of the RGB-D image of the entire scene and two
binary segmentation masks of the chosen pair of object parts.
The output consists of a binary part-connectedness label of
the corresponding pair as well as the motion residual flow of
the second part relative to the first part. The motion residual
flow is a W x H x 3 image, where each pixel is only non-
zero if it occupies a pixel belonging to the second object part.
See Figure ] for some examples. In these non-zero pixels, the
values of each pixel correspond to where the corresponding
point on the object part in 3D space would be if the object
part is moved by a fixed magnitude following its kinematic
constraint with the other part. The direction of the motion is
expressed in the camera frame. For fixed joints, the motion
residual is 0. For revolute joints, the movement magnitude
is 30°. For prismatic joints, the movement magnitude is
0.3M, where M is the maximum joint movement distance

provided by PartNet-Mobility. The exact magnitudes of these
movement offsets are not important, since the network is
not tasked with learning the range of motion of articulated
objects, just their articulation types.

D. Network Architecture

The neural network for our approach is an hourglass
encoder-decoder architecture similar to the network used for
DREAM [33]. As shown in Fig. Q the network takes as
input a stacked image observation of size 640 x 480 x 6,
with 4 RGB-D channels and 2 part-segmentation mask
channels. The network predicts the motion residual flow as
a 640 x 480 x 3 image and binary part-connectedness label.

The image encoder consists of the convolutional layers of
VGG19 pretrained on ImageNet [43]. The decoder (upsam-
pling) module has four 2D transpose convolutional layers
(stride = 2, padding = 1, output padding = 1), and each
layer is followed by a normal 3 x 3 convolutional layer
and ReLU activation layer. The first output head is the part
connectedness, consisting of 3 fully connected layers. The
second output head for the motion residual flow is composed
of 3 convolutional layers (3 x 3, stride = 1, padding = 1) with
ReLU activations with 64, 32, and 3 channels, respectively.
There is no activation layer after the final convolutional layer.

The network is trained with a Cross Entropy loss on
part connectedness and a Mean Square Error loss on the
motion residual flow. Let y¢ € {0,1} and y; € R640x480x3
respectively denote the binary part-connectedness and motion
residual flow of the nth training sample, and 9¢, /. be their
estimated counterparts produced by the neural network. The
weighted loss function on the two outputs is defined as:

SE(yf,4}) = Iyl — oL II” (1)
CE(yn,, Un) = —yn log(gy,) + (1 — yy,) log(1 — 97) (2)

N
1 c 9 c nc
L= N Z wseynSE(y,J:, y,{) + we.CE(ys, 95)
n=1
3)

Note that we only propagate the motion residual squared
error loss when the parts are connected. The weights w,, =
0.6 and w.. = 0.4 were chosen after hyperparameter search.

E. Articulation Prediction from Motion Residual Flows

If the network predicts that the two queried object parts
are connected, then we process the predicted motion residual
flow to robustly estimate the part articulation type and
parameters. Algorithm pseudocode can be found in the
supplementary materials. First, a plane is fitted on the point
cloud of the object part in the input observation. We refer
to this as the pre-motion plane. Next, we fit a second plane
on the point cloud of the object part, where each point is
translated by the predicted motion residual flow. We refer to
this as the post-motion plane. Refer to Fig. [3] for examples
of revolute and prismatic planes.

For fitting both planes, RANdom Sample Consensus
(RANSAC) [44] is used to obtain robust estimations given



Fig. 3: Visualizations of estimated pre-motion and post-motion
planes. In both images, pre-motion planes are outlined in bright
green on the original object part, while the post-motion planes are
visualized with a blue infill. In the left image, the red annotations
denote the estimated axis of the predicted revolute joint. In the right
image, the red arrow denote the direction of the prismatic joint.

depth and segmentation noise that exists in the network
inputs as well as estimation errors in the network outputs.

The articulation type and parameters can be inferred
through comparison of the position and orientation of the pre-
motion and post-motion planes. If the planes are sufficiently
close together (i.e., the predicted motion residuals are all
close to 0), then the predicted articulation type is fixed.
Otherwise, if the pre-motion and post-motion planes are
sufficiently parallel, then the articulation type is prismatic. In
this case, the direction of the prismatic kinematic constraint
is the direction of the average motion residual flow. Lastly, if
the motion residuals are not all close to 0 and the planes are
not parallel, then the predicted articulation type is revolute.
In this case, the axis and location of the revolute joint
is the line where the pre-motion and post-motion planes
intersect. Extracting articulation parameters from motion
residual planes in this manner allows the network to learn
a single output representation that works for fixed, revolute,
and prismatic joints.

IV. EXPERIMENTS

We evaluate our network on synthetic images and show
successful transfer to real-world data. Specifically, we report
(1) test accuracy achieved with our network with synthetic
images when trained on all object categories, (2) general-
ization to categories unseen during training in a leave-one-
out fashion, and (3) generalization to real-world images. See
Fig. [ for representative qualitative results. An ablation study
is further conducted to train the network on each single
category and test against all others, to analyze knowledge
transfer between categories.

A. Network Training

The neural network was implemented with PyTorch and
optimized via the Adam optimizers with a learning rate of
1.2 x 10~* and momentum of 0.9. These were tuned via
hyperparameter search. The training set consisted of 70k
images, and the remaining 30k were used in the test set.
The network took 30 epochs to train, taking 32 hours on an
NVIDIA Tesla V100 GPU.

B. Network Accuracy (All Object Categories)

To evaluate the accuracy of the classified articulation
types, we separate the predictions into 4 classes: prismatic,

Object Category
Metric | Door | Wind. | Fauc. | Dish. | Frid. | Cab. | Avg.
AT 85.6 75.1 84.4 72.1 76.2 | 67.7 | 76.4
PC 97.8 91.2 94.6 95.7 | 954 | 92.5 | 94.1
CA 88.7 79.6 87.5 78.6 | 84.2 | 775 | 825
B-CA 81.5 58.7 74.3 60.1 | 62.7 | 71.2 | 68.0

TABLE II: Accuracy by Category on Test Set. B-CA refers to a
classification-only baseline method where the output head of the
network is performing articulation and connectedness classification
directly instead of regressing to motion residual flows. All numbers
are shown in percentage.

Object Category
Metric | Door | Window | Faucet | Dishw. | Fridge | Cabinet
AT 78.8 26.5 66.2 76.3 60.3 33.5
PC 94.6 96.7 85.7 95.5 93.6 89.2
CA 82.1 47.2 73.0 81.48 73.8 58.6

TABLE III: Performance on Novel Object Categories.

revolute, fixed, and unconnected. We refer to this as com-
bined accuracy (CA). Two additional metrics are evaluated:
accuracy over part connectedness (PC) and accuracy over
connected articulation type (AT). The former is the binary
classification accuracy of whether or not two parts are
connected. The latter is only the articulation type accuracy
when the network predicts a true positive part connectedness.

Table [II] shows the test classification metrics by object
category when the network is trained on all object categories.
Similar test accuracies are achieved across categories. Fig. [3]
shows the accuracy of the predicted articulation parameters
(location and direction of revolute axes, and direction of
prismatic axes).

C. Generalization to Novel Object Categories

We also evaluate how well the proposed method general-
izes to novel object categories unseen during training. See
Table [T for results. We use a leave-one-out scheme for this
evaluation. Specifically, we train six additional models, with
the same hyperparameters, such that each model is trained
on all categories except a left out category. Each model is
then evaluated on the category it was not trained on.

We observe worst performance on windows and cabinets,
mediocre performance on faucets and refrigerators, and best
performance on doors and dishwashers. The difference be-
tween the best and worst performing category is significant,
differing by over 50% (windows at 26.5% vs doors at
78.8%). The prediction for windows was worse than chance.

We investigate the abnormally low AT performance of
windows in Table [T which mainly consists of sliding
prismatic joints. High PC across all categories shows that
the model identifies connected parts of windows, but it
is predicting the wrong articulation types. Analyzing the
outputs indicate that most wrong predictions are revolute. We
hypothesize two reasons for this: (1) lack of representation
of prismatic objects in the training data and (2) mislead-
ing revolute objects that share visual similarities with the
prismatic windows. Eliminating windows from the training
data leaves five categories, of which only one comprises of
prismatic-dominant joints.
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Fig. 4: Visualization of network inputs and outputs for the Door and Cabinet categories on synthetic data (top two rows) and real-world
images (bottom two rows). Additional categories are visualized in supplementary materials. PT means predicted articulation type, and
GT ground truth type. Articulation is either revolute (R), prismatic (P), fixed (F), or unconnected (U). The network takes in a stack
observation of RGB image, depth image, and two part segmentation masks. The green segmentation mask is the anchor object part and
the yellow segmentation mask is the candidate object part. The direction of the motion residual flow is visualized by color gradients,
where a prismatic articulation is a single solid color, while a revolute articulation is a gradient towards the axis of rotation.

We also observe similar visual features across windows,
doors, and refrigerators, with the latter two as revolute
objects. Specifically, they share similar frames, boards and
handles, as observed in Fig [6]

High visual similarity between windows and revolute
objects in the training set may explain the high prediction rate
of revolute for windows. The importance of visual similarity
is further reflected in cabinets, the other low-performing
category. Although cabinets consist of both prismatic and
revolute joints, 73% of the errors occur on the prismatic slots.
There was only one training category that was prismatic-
dominant (windows), and their object parts showed conflict-
ing visual features with the cabinets as seen in Fig

D. Generalization from Training on One Category

We formed hypotheses to explain the low transfer for
certain unseen categories in the previous section. A lack of
or misleading similarity in visual features of the object parts
resulted in misclassifications. This could be significant in

Train Test Category
Category | Door | Window | Faucet | Dishw. | Fridge | Cab.
Door 98.7 2.5 48.7 53.7 49.6 37.3
Window 32 93.2 8.9 7.8 5.6 38.2
Faucet 337 8.7 88.7 4.1 4.3 17.2
Dishw. 34.2 12.8 3.8 98.5 52.1 34.6
Fridge 56.2 15.5 232 55.2 87.5 38.7
Cab. 49.6 325 13.5 3.4 38.7 83.2

TABLE 1IV: Performance of Training on One Category. Overall
articulation accuracies when trained on one category (each row)
and tested on other categories (each column).

our understanding of category generalization. What features
and representation do we need in our training categories
for good generalization? To answer the question and test
our hypotheses, we perform an additional ablation study —
training networks on just a single category and testing them
across all the other five categories. See Table [[V|for results.

Learning is limited between articulation mechanisms. Dif-
ferent articulation mechanisms (prismatic, revolute) cannot
learn well from each other. When trained on a category with
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Fig. 5: Predicted articulation parameter accuracy for revolute axes
(top) and prismatic axes (bottom) on test set for all object categories.
The revolute axis distance error is the average distance between
the points on the ground truth axis to their projections on the
predicted axis. The revolute and prismatic angle errors are the angle
between the ground truth and the predicted axes. All plots show the
percentage of data points that have error below a given threshold.

il |l

Fig. 6: Misleading examples of a window (left) and two doors
(right). The shapes of the door panel and window frames, and
handles for the window and first door (brown) are similar.

¥

Fig. 7: Misleading examples of a prismatic cabinet (left) vs other
objects (prismatic window, revolute dishwasher, refrigerator). The
geometry of the cabinet drawer is different from that of the window,
but they both have prismatic joints. By contrast, the handle of the
drawer has a similar shape to those of the dishwasher and the
refrigerator, even though the latter have revolute joints.

only one articulation mechanism, predicting objects with
different articulation is low. For instance, a model trained on
windows (prismatic) performs below 10% for all but cabinets
(the only other category that contains prismatic joints). We
also observe relatively high, consistent performance when
testing cabinets, regardless of the trained category. Limited
learning between articulation mechanisms explain this better
performance because only cabinets contain both articulation
mechanisms. Therefore, cabinets have partial representation
in each trained category. Consequently, cabinets also fail
to achieve at least 40% for any trained category, due to
the presence of both articulation mechanisms. Having both
articulation mechanisms imply that one of the articulations
would be unseen in the train category.

The results also support our hypothesis that misleading
similarity in visual features create misclassifications. The
lowest transfer occurs between doors and windows. While
both performs well on its own category, correct prediction
of the other category falls in the 2 — 3% range. Comparing
two sample objects from the two categories show similar
handles, boards and frames in Fig. @ However, their ground
truth articulation types are different, which explains the low
performance. Dishwashers and refrigerators have the highest
transfer, and comparing two sample objects show similar
handles and physical structure in Fig. [7]

E. Real-world Experiments

Despite only being trained using synthetic data, our net-
work also bridges the reality gap when deployed in the real
world. To assess how well our model transfers to real-world
data, we took 18 RGB-D images of various household items
in our homes (comprising of refrigerators, doors, faucets,
and cabinets). Part segmentation masks were generated with
semi-automatic DEXTR segmentation [45]. Results showed
successful transfers, where the model predicts the correct
articulation types for 12 of the 18 images. Example visual-
izations are shown in the bottom rows in Fig [4]

V. CONCLUSION

We present FormNet, a deep learning approach that pre-
dicts articulation mechanisms of object parts from a single
image observation without physical interactions and pre-
specified categorical kinematic models. Training data is
generated with a photorealistic simulator with 6 object cate-
gories and 149 objects. Domain randomization over camera
poses, lighting, object sizes, textures, and occlusions make
the trained network robust to these variations. Experiment
results show that our approach generalizes to novel object
categories in simulation and can be applied to real-world
images without fine-tuning.
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APPENDIX I

Algorithm 1 Compute Articulation Type and Parameters
from Predicted Motion Residual Flow

Input: Depth image Ip € RW>*#  binary part segmentation
mask Ig € Z;/VXH, motion residual flow [ € RWxHx3,
small thresholds €, €.

Output: Articulation Type (AT) € {FIXED, PRISM, REV}
and articulation parameters if PRISM or REV.
if |If]|2 < € then

return FIXED
end if
Set original point cloud P < DEPROJECT(Ip[Is])
Set estimated displaced point cloud P’ <— P + Ir[Ig]
Set pre-motion plane and normals 7,7 < RANSAC(P)
Set post-motion plane 7/, 7' < RANSAC(P’)

if ATA' > 1— ¢ then
Find mean flow d ¢ ~———ror 35, Ir[w, 1]
w,h ) )

Normalize into direction d < Tl

return PRISM, d

else
Find intersecting line 1 <— INTERSECT(r, 7’)
return REV, 1

end if

2

APPENDIX II

Dataset Categories | Objects | Info
RBO [38] 14 14 Y
ShapeNet [39] 3315 220K N
PartNet [40] 24 26.6K N
Shape2Motion [21] 45 2.4K Y
PartNet-Mobility [20] 46 2.3K Y

TABLE V: This table summarizes the different public datasets of
meshes on their number of object categories, number of object
models, and whether it contains articulation information between
object parts. Column info represents articulation information (y/n).

APPENDIX III

See Figure [§] for an extension of Figure [4] with all the
object categories.
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Fig. 8: Extension of Figure E] with all object categories.
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