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Abstract— Road curb detection is important for autonomous
driving. It can be used to determine road boundaries to
constrain vehicles on roads, so that potential accidents could be
avoided. Most of the current methods detect road curbs online
using vehicle-mounted sensors, such as cameras or 3-D Lidars.
However, these methods usually suffer from severe occlusion is-
sues. Especially in highly-dynamic traffic environments, most of
the field of view is occupied by dynamic objects. To alleviate this
issue, we detect road curbs offline using high-resolution aerial
images in this paper. Moreover, the detected road curbs can be
used to create high-definition (HD) maps for autonomous ve-
hicles. Specifically, we first predict the pixel-wise segmentation
map of road curbs, and then conduct a series of post-processing
steps to extract the graph structure of road curbs. To tackle
the disconnectivity issue in the segmentation maps, we propose
an innovative connectivity-preserving loss (CP-loss) to improve
the segmentation performance. The experimental results on a
public dataset demonstrate the effectiveness of our proposed
loss function. This paper is accompanied with a demonstration
video and a supplementary document, which are available at
https://sites.google.com/view/cp-loss.

I. INTRODUCTION

Detection of road curbs is a fundamental task for au-
tonomous driving. It can be used to determine the road
boundaries, so that autonomous vehicles can be constrained
on roads to avoid potential accidents, which is critical
to autonomous driving safety. Different from regular road
objects (e.g., vehicles and pedestrians), road curb is of line-
shaped and usually thin and long. So they cannot be precisely
detected by object detection methods [1] that annotate objects
with bounding boxes. In the past, vehicle-mounted sensors,
such as Lidar [2], [3] or camera [4]–[6], are usually used to
detect road curbs online by model-based methods. However,
online road curb detection could be seriously affected by
the occlusion issue. For example, in highly-dynamic traffic
environments, the camera filed of view could be severely
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occluded by dynamic road objects, so that there is insufficient
curb information, and hence the detection performance could
be degraded. Thus, in this paper, we detect road curbs using
bird-eye-view (BEV) images by semantic segmentation in
an offline manner. The offline detection results could assist
the autonomous vehicle as prior information, and they can
also be used to build high-definition (HD) maps so that
the large-scale deployment of autonomous vehicles could be
accelerated.

To be best of our knowledge, there is currently no
published work on offline road curb detection using BEV
images by segmentation. But similar works can be found
in the filed of road-network extraction [7], [8] and lane
detection [9], [10]. Some of these works obtain BEV images
from the pre-built point-cloud map, while other works rely
on aerial images captured by satellite or unmanned aerial
vehicle cameras. Although images obtained from the pre-
built point-cloud map are more precise, the point-cloud map
is time-consuming and expensive to build and update. Thus,
with high-resolution aerial images becoming more and more
world-widely available, we propose to detect road curbs from
aerial images in this paper.

Line-shaped objects like lanes and road-networks are
mainly detected in two steps: (1) Predict the pixel-wise
semantic segmentation map of the target objects and then (2)
conduct a series of post-processing such as thresholding and
skeletonization [8], [11], [12] on the segmentation map and
obtain the graph structure of the target objects. In this paper,
we focus on the first step (i.e., semantic segmentation of road
curbs). Our proposed segmentation method can be treated as
a module and applied to various line-shaped object detection
solutions that may have different post-processing algorithms
and pipelines. The correctness of the segmentation map is
critical to ensure satisfactory performance, including pixel-
level correctness and topological correctness. Since semantic
segmentation directly works on image pixels, the spatial
information of images is usually ignored and there lacks
constraints on connections between pixels. As a result, the
segmentation results tend to suffer from disconnectivity
issue, which is hard to be effectively handled by hard-code
post-processing algorithms. Therefore, the semantic segmen-
tation method should be enhanced from the perspective of
connectivity.

The cross-entropy loss (LCE) is a widely used pixel-
level loss function for semantic segmentation. Although it is
suitable for common segmentation tasks, it does not have a
satisfactory performance for line-shaped object segmentation
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due to its intrinsic local property. Focal loss (LFL) [13]
can relieve the disconnectivity issue to some extent by
assigning harder samples with higher weights, but it still
fails to explicitly penalize disconnectivity. Different from the
above two pixel-level loss functions, dice loss (LDice) [14]
can capture the structural information from a global scale
and directly optimize on the evaluation metric. However,
LDice cannot locate pixels affected by disconnectivity, either.
Inspired by [15], we combine LDice and LCE for both pixel-
level and image-level supervision.

In this paper, we propose a novel connectivity-preserving
loss function (CP-loss) to relieve the aforementioned dis-
connectivity issue. Our CP-loss can compare skeletons of
the predicted segmentation result and the ground-truth label,
then enlarge the training weights of pixels belonging to areas
where the disconnection occurs. In this way, the semantic
segmentation result will have better topological correctness
and the disconnectivity issue of the final road curb graph
structure can be greatly alleviated. Our contributions are
summarized here:
• We propose an innovative loss function CP-loss, which

enables the segmentation network to focus on regions
of disconnectivity. This loss can be directly applied in
existing line-shaped object detection solutions.

• We design a metric skeleton-connectivity measure
(SCM) to evaluate the connectivity of the obtained road
curbs.

• We perform extensive comparative studies to show that
the proposed CP-loss outperforms all the other baseline
loss functions.

II. RELATED WORKS

A. Line-shaped object detection

In recent years, line-shaped object detection has drawn
great attention. The current works have multiple different
goals, including road-network extraction [7], [8], [11], [16],
lane detection [9], [10], [12], [17], [18], automatic annotation
[19], [20], etc. Among them, some recent works detected
line-shaped objects by iterative graph growing (i.e., grow
the graph vertex by vertex) [7], [10], [20]–[22], but they
are limited to detecting objects with specific structures and
suffer from accumulated errors. In addition, these methods
are very slow due to the iterations. Another common cate-
gory of method is semantic segmentation followed by post-
processing. For example, Pan et al. [12] proposed a new
convolution approach to better extract spatial information of
the input image, and they achieved a much higher evalu-
ation score in the lane detection task. In [8], the authors
first obtained the segmentation result containing many dis-
connections, then they designed an algorithm to generate
candidate connections to bridge these disconnections, and
trained another neural network to filter candidate connec-
tions. However, these methods mainly work on designing
post-processing algorithms to refine the segmentation map
while leaving improving the topological correctness of the
segmentation map unexplored.

B. Structure-aware semantic segmentation

Past works from various research areas focus on designing
segmentation methods that can capture the structural infor-
mation of the input images. In [23], [24], the authors used
Persistent Homology (PH) to explicitly evaluate the topology
of the predictions, which obtained good results in simple
scenarios. But PH only constraints the Betti number of the
predictions and cannot capture the structural information
of more complicated shapes, such as branches. Thus it
cannot maintain good performance for complicated cases
and is very time-consuming. Affinity learning [25], [26]
is another category of method to enhance connectivity by
finding the shortest paths between pixels. Oner et al. [25]
proposed a novel loss function by calculating the shortest
path between each pair of pixels of the background. If there
exists disconnecivity of the predicted road-network, the loss
function would rise. These works could explicitly define
the connectivity so they tend to have impressive outcomes.
However, they are usually time-consuming and only work for
specific structures. Different from past works on pixel-level
loss functions, Shit et al. [27] first made use of skeletons to
emphasize connectivity. In this work, a differentiable soft-
skeletonization algorithm and a soft-dice loss function based
on obtained skeletons were proposed. But their method did
not fully utilize the structural information of the skeletons
considering that only a naive dice loss was implemented.

III. THE PROPOSED METHOD

A. Overview

This work aims to detect road curbs in aerial images and
relieve the disconnectivity issue of semantic segmentation.
Our model takes as input an aerial image and outputs a
skeleton of road curbs. In past semantic segmentation works,
connectivity is not specially considered and emphasized,
so the disconnectivity cannot be avoided and is hard to
fix by hard-code post-processing. Cross-entropy loss (LCE)
is a pixel-level loss function and dice loss (LDice) is an
image-level loss function. We combine them together to
supervise the training, so that the network can capture
both pixel-level and image-level information. However, both
LCE and LDice cannot explicitly define disconnectivity and
effectively penalize it. Thus we need to find the regions
where disconnectivity happens and make the network focus
on them. To locate the disconnectivity, we extract skeletons
of both the predicted segmentation map S and the ground-
truth label GT as SkelP and SkelG, respectively. Then the
difference between two skeletons are measured based on
Euclidean distance. After comparing two skeletons, we will
penalize SkelfG (failed-retrieved ground-truth skeleton) and
SkelfP (false-positive predicted skeleton). Both LCE and
LDice will be assigned with weights calculated from SkelfG
and SkelfP to emphasize disconnectivity. Then LCE and
LDice are summed up as CP-loss, which is expressed in the
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Fig. 1: The overview of CP-loss. We first get the segmentation result S from a segmentation network, then we skeletonize
both S as well as the ground-truth label GT . After that, the skeleton of S as SkelP and the skeleton of GT as SkelG are
obtained. Please note that GT is already of one-pixel-width, so GT = SkelG. By comparing SkelP and SkelG, we have the
failed-retrieved ground-truth skeleton pixels denoted as SkelfG (red pixels), and the false-positive predicted skeleton pixels
denoted as SkelfP (green pixels). SkelfG can be used to measure disconnectivity of S and SkelfP is used to penalize ghost
skeletons. The weight coefficients of our CP-loss are calculated based on SkelfG and SkelfP . For better visualization, the
lines in this figure are widened but they are actually of one-pixel-width. The figure is best viewed in color.

following equation:

LCP =LCE + LDice

=
∑
i

[−uigilog(pi)− vi(1− gi)log(1− xi)]

+ (1− 2

∑
i βipigi∑

i(βipi)
2 +

∑
i g

2
i

),

(1)

where gi indicates the ground-truth value of a pixel xi and pi
is the prediction of xi. ui, vi and βi are Euclidean distance-
based weight coefficients to emphasize the connectivity.
Details about the above equation is given in III-D. Note
that the ground-truth label is already of one-pixel-width, so
GT = SkelG and the skeletonization on GT can be omitted.
The schematic overview of our method is visualized in Fig.
1.

B. Semantic Segmentation network

This paper concentrates on loss function design, so we
directly use a current representative deep network for binary
segmentation (i.e., UNet [28]). Since our loss function CP-
loss does not have any requirement on network structures,
it can be directly plugged into any semantic segmentation
network to enhance the connectivity.

C. Skeletonization

Skeletonization is a morphological operation in computer
vision. It takes as input a binary image and outputs a one-
pixel-width binary skeleton which represents the shape of
the input. The obtained skeleton maintains the general shape
and topology of the input binary image, so it can be used to
represent the structure of the input image. Since skeletoniza-
tion is used to calculate the weight coefficients of CP-loss,
it does not have to be differentiable, thus we directly use the
off-the-shelf library skimage.morphology.skeletonize1. After
we obtain the segmentation result S, we first threshold it by
a threshold τBin to generate a binary image. Then we extract

1https://scikit-image.org/docs/dev/auto_examples/
edges/plot_skeleton.html

Algorithm 1: CP-loss
Input: Segmentation result S, ground-truth label GT

1 begin
2 SBin ← (S > τBin)
3 SkelP ← Skeletonization(SBin)
4 SkelG ← Skeletonization(GT )
5 SkelfG ← SkelG·far region(SkelP ,∆)
6 SkelfP ← SkelP ·far region(SkelG,∆)
7 for xi ∈ S do
8 ui ← [1 + exp[−min dis(xi,SkelfG)

σ ]− pi]2

9 vi ← [exp[−min dis(xi,SkelfG+SkelfP )
σ ] + pi]

2

10 βi ←
1
4 [1 + exp[−min dis(xi,SkelfG+SkelfP )

σ ]− pi
2 ]

11 end
12 LCE ←

∑
i[−uigilog(pi)− vi(1− gi)log(1−xi)]

13 LDice = 1− 2
∑

i βipigi∑
i(βipi)2+

∑
i g

2
i

14 return LCE + LDice
15 end

the skeleton of S as SkelP by skeletonization. We can get
the skeleton of the ground-truth label GT as SkelG in the
same way.

D. CP-loss

Different from pixel-level errors, disconnectivity is hard
to formulate merely based on discrete pixels. Thus CP-loss
relies on morphological skeletons SkelP and SkelG, which
capture the structural information of the whole image. The
algorithm to calculate CP-loss is shown in Alg. 1.

In CP-loss, the disconnectivity is measured by the failed-
retrieved skeleton SkelfG. The more pixels in SkelfG, the
worse connectivity is. However, SkelfG cannot be directly
located based on raw SkelP and SkelG, because skeletons
are of one-pixel-width and the mismatch between SkelP and
SkelG cannot be perfectly avoided. Therefore, we soften
SkelfG and define a pixel xi in SkelG as failed-retrieved

https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html
https://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html


(a) Ground-truth (b) BCE (c) Focal loss [13] (d) Distance CE [29] (e) Balance CE [30] (f) Dice loss [14] (g) Ours

Fig. 2: Sample demonstrations of the experimental results. (a) Ground-truth labels (cyan lines). (b)-(f) The final road curb
skeletons of baselines. (g) The final road curb skeletons of CP-loss (green lines). Each row represents the experiment results
of one testing image. From the visualization, we can see that the segmentation output of the network trained with CP-loss
outperforms all the baselines, considering that it has better connectivity and fewer ghost skeletons. For better visualization,
road curb lines in this figure are widened but they are actually of one-pixel-length. Please zoom in for details.

if its distance to SkelP is larger than a threshold ∆. If
∆ = 1, SkelfG is directly obtained from the raw SkelG and
SkelP . For computation convenience, we define a function
far region(Skel′, δ) to find all the pixels whose shortest
distance to the skeleton Skel′ is larger than δ. In this way,
we can obtain the soft SkelfG, whose pixels are outside ∆
distance to SkelP . The soft SkelfP can be obtained similarly
and it is used to punish ghost skeletons that represent false-
positive predictions.

The original LCE is a pixel-level loss function and cannot
effectively grasp structural information. To make it aware of
disconnectivity, we add a weight coefficient ui or vi calcu-
lated from skeletons to each pixel xi in the segmentation
result S, where ui is for foreground pixels (gi = 1) and vi
is for background pixels (gi = 0). For foreground pixels, we
need to concentrate on SkelfG, so pixels closer to SkelfG
should be assigned with larger ui. The function to measure
the distance is a Gaussian function exp[−min dis(xi,SkelfG)

σ ],
where σ is a hyper-paramter and function min dis(x,Ω)
calculates the shortest distance between a pixel x and a set
Ω:

min dis(x,Ω) = min({‖x− xi‖2|∀xi ∈ Ω}). (2)

In this way, the closer the foreground pixels to SkelfG
the larger weights they will receive. Since Focal loss has
a tremendous ability to focus on harder samples, it is con-
sidered when designing ui. Then, we combine the distance
function and Focal loss by addition, which has better prop-
erties than multiplication (please refer to the supplementary
file for more details). For background pixels, we want to not

only emphasize connectivity but also avoid ghost skeletons.
So the background pixel closer to either SkelfG or SkelfP
receives larger weights. After calculating ui and vi, a new
weighted CE loss function aware of disconnectivity and ghost
skeletons is obtained.

To further enhance connectivity and avoid ghosts, LDice is
also modified by assigning Euclidean distance-based weights
βi for every pixel. Since LDice processes the foreground
and background at the same time, βi shares the same
distance function with vi (i.e., both SkefG and SkelfP are
considered). Inspired by [31], the design of βi mimics Focal
loss to focus on harder samples. Similar to weighted LCE
designed above, the distance function is combined with Focal
loss through addition. In Alg. 1, please note that pi in βi
is divided by 2 and the whole βi is divided by 4. These
two divisors are tuned to make the gradient of LDice more
appropriate for our task, otherwise more false-positive or
false-negative predictions would occur. Please refer to the
supplementary file for more details.

Finally, the weighted LCE and weighted LDice are
summed up as the final CP-loss, which takes the advantages
from both of them.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset

Currently, there exists no available datasets or benchmarks
about road curb detection yet. But in the New-York-City
planimetrics (NYC-planimetrics) dataset [32] provided by
NYC OpenData, road curbs are annotated as a new feature
in 2016. There are 2,049 high-resolution aerial images in



this dataset, and each of them is 5000× 5000-sized and has
four channels, including red, green, blue and infrared. All the
images have 0.5 ft/pixel≈15.2 cm/pixel resolution. The road
curb annotations are in the form of polylines and the vertices
are recorded by the WGS84 coordinate system. Because the
raw data cannot be directly used for our task, we create our
own dataset from this public-available dataset.

We split each image into 25 1000×1000 patches together
with corresponding annotations, and convert the annotations
from the WGS84 coordinate to the image coordinate. Patches
that have no road curbs or have inappropriate annotations are
removed. After the above pre-processing, we select around
18,000 image patches for our experiment. Among them,
17,000 images are used for training and the rest images are
for testing.

B. Implementation process

In our experiment, UNet serves as the segmentation net-
work and we train it with different loss functions. For
baseline loss functions, UNet is trained from randomly
initialized parameters for 30 epochs. Due to the existence
of the skeletonization operation in CP-loss, if we start the
training from random initialization, the training process will
become very slow and ineffective. Thus we train CP-loss
and its variants from checkpoints pre-trained by binary CE.
During testing, after the segmentation results are obtained,
we binarize the results with a threshold τ and skeletonize
them as the final output. For each loss function, the post-
processing is done with multiple τ and then we obtain two
statistical curves (i.e., precision-recall (P-R) curve and F1-
score-SCM (F-S) curve) which are shown in Fig. 3. The
learning rate is 10−4 with a 10−5 decay rate. During the
experiments, σ is set to 100 through tuning. The calculation
of CP-loss could be well paralleled, thus in our experiment it
is implemented by CUDA, and the efficiency is guaranteed.

C. Evaluation metrics

In past works about structural predictions, such as road-
network extraction [16] and road-lane detection [10], the
obtained results are evaluated by pixel-level metrics includ-
ing precision, recall and F1-score, as well as structure-
aware metrics, such as APLS [33] and Connectivity [10].
In our experiments, these metrics are calculated based on
binary skeletons instead of probabilistic maps. After ob-
taining wrong skeletons SkelfG and SkelfP , we can have
the correct skeletons SkeltG = SkelG − SkelfG and
SkeltP = SkelP − SkelfP . Then, the pixel-level metrics
can be calculated by the following equations:

P =
|SkeltP |
|SkelP |

, R =
|SkeltG|
|SkelG|

, F1 =
2P ·R+ s
P +R+ s

(3)

where P is precision, R is recall and s is a small constant
number to prevent zero denominators. | · | represents the
number of pixels of a skeleton.

APLS is good for evaluating large shapes with complicated
topologies, like road-network, but is not a proper choice for
road curb detection, whose output is of simple shape and

TABLE I: The quantitative results for the ablation study.
The best results are highlighted in bold font. For all the
metrics, larger values indicate better performance. We assess
the weighted LCE (C), weighted LDice (D), the weights of
LCE (WC) and the weight of LDice (WD).

C D WC WD Precision Recall F1-score SCM

X X X 0.8661 0.8998 0.8725 0.7809
X X X 0.8921 0.8832 0.8761 0.7729
X X 0.8814 0.8912 0.8758 0.7621

X X X X 0.8696 0.9117 0.8809 0.7994

might not be connected. Inspired by Connectivity [10], we
propose a new metric named skeleton-connectivity-measure
(SCM) to evaluate the connectivity of the obtained skeleton
SkelP . For each road curb instance SkeliG in SkelG, we find
the corresponding true-positive predictions as SkelitP , where
SkelitP = {xi|min dis(xi, SkeliG) < ∆,∀xi ∈ SkelP }.
Similarly, the truly-retrieved SkeliG denoted as SkelitG can
be obtained. Ideally, for each instance, there should be one
and only one predicted skeleton (i.e., SkelitP should be
a single connected skeleton). But when the prediction has
errors, there might be several separated skeleton segments in
SkelitP , and we record the number of separated segments
of SkelitP as ni. Then 1

ni
can be used to measure the

connectivity of the predicted road curb instance. After getting
1
ni

, we assign a weight wi =
|SkelitG|
|SkelG| to each instance and

sum them up as the final connectivity measurement. The
calculation of SCM is shown in the following equation:

SCM =
∑
i

|SkelitG|
|SkelG|

· ci, ci =

{
1
ni
, ni 6= 0

0, ni = 0
(4)

D. Ablation study

In this section, the significance of the components of
our loss function is evaluated. The quantitative results with
different threshold τ are visualized in sub-figure (a) and (b)
of Fig. 3. The trade-off result is listed in Tab. I.

Firstly, we build a variant loss function by removing
the cross-entropy loss. Compared with cross-entropy loss,
dice loss is less stable and is easy to be trapped in local
optimal. From the experiment result, we notice an inferior
performance of the network because of the lack of pixel-level
supervision. Thus, the weighted cross-entropy loss is critical
for satisfactory results.

Secondly, the dice loss is removed to make another variant.
Then CP-loss becomes a weighted cross-entropy loss. Even
though the weights of the cross-entropy loss enable the
network to be aware of disconnectivity to some extent, it
is still of pixel-level. Without the image-level dice loss, the
segmentation result is affected. So the weighted dice loss is
necessary for CP-loss.

Finally, we assess the importance of the weights used in
CP-loss, including ui, vi and βi. Without these weights, CP-
loss cannot obtain useful information on disconnections so
that it fails to emphasize connectivity as expected. In Tab. I,
we find that removing weights from CP-loss would seriously
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Fig. 3: Statistical curves of the experiment results. These curves are obtained by binarizing the segmentation outputs with
different threshold τ . P-R curve illustrates the relationship between precision and recall as τ varies, and F-S curve is about
F1-score and SCM. For both of these two categories of curves, being closer to the upper right corner indicates superiority.
From the curves, we can see that CP-loss has better performance than any other baseline or variant. This figure is better
viewed in color. Please zoom in for details.

TABLE II: The quantitative results for the comparative
experiments. The best results are highlighted in bold font.

Loss function Precision Recall F1-score SCM

BCE 0.8786 0.8702 0.8626 0.7364
Balance CE [30] 0.8179 0.9318 0.8582 0.7954
Distance CE [29] 0.8639 0.9073 0.8761 0.7623

Focal loss [13] 0.8615 0.9045 0.8723 0.7717
Dice loss [14] 0.8618 0.9047 0.8721 0.7716

CP-loss 0.8696 0.9117 0.8809 0.7994

harm the final performance of the network. Therefore, the
significance of our proposed disconnectivity-aware weights
is confirmed.

E. Comparative results

To illustrate the superiority of our CP-loss, we compare
CP-loss with multiple common-used loss functions for binary
segmentation tasks. Similarly, the evaluation result with
multiple τ is shown in sub-figure (c) and (d) in Fig. 3. The
trade-off result is listed in Tab. II. Some example images are
visualized in Fig. 2.

BCE refers to binary cross-entropy and it is simple but ef-
fective under most circumstances. However, BCE is a pixel-
level loss function and cannot obtain structural information
very well. Differently, dice loss is based on image-level
calculation and can capture the image feature globally. But
dice loss is less stable and is easy to be trapped in local
optimal. Focal loss can enhance the results by assigning
harder samples more weight, but it cannot explicitly em-
phasize disconnectivity, either. Therefore, the segmentation
results merely based on aforementioned baselines are not
sufficient for our task.

Balance CE is commonly used to handle the imbalance
between the foreground and background [30] by increasing
the weight of foreground pixels. But for road curb segmen-
tation whose shape is long and thin, it usually produces too
thick predictions. As a result, the recall is greatly improved
while the precision is seriously harmed. Moreover, it cannot
specially focus on disconnectivities.

Distance CE means cross-entropy loss function with

(a) Ground-truth (b) Segmentation (c) Skeleton

Fig. 4: Qualitative demonstrations for a failure case of
CP-loss. (a) The ground-truth label (cyan lines). (b) The
segmentation probabilistic map. (c) The final obtained road
curb skeleton (green lines). In this example, even though
CP-loss outperforms other baselines, it cannot handle the
disconnecivity issue very well since a large area of road curbs
is seriously occluded by trees. (a) and (c) are widened for
better visualization, but they are actually of one-pixel-width.

weights which are obtained by calculating the shortest dis-
tance between each pixel and the ground-truth label. Such
a loss function is a good option for boundary segmentation
tasks [29]. But it concentrates on all the boundary pixels
instead of those affected by disconnectivity. So distance CE
does not achieve satisfactory performance on the road curb
detection task.

F. Failure cases and limitations

Even though CP-loss can emphasize disconnectivity better
than baseline loss functions, it cannot guarantee that outputs
are free from disconnectivity issues, since deep learning
models cannot cast hard constraints on the output. Therefore,
there are still some failure cases caused by severe occlusion
(e.g., occlusion by trees or shadows). An example is shown
in Fig. 4. But compared with online detection, the occlusion
issue is still greatly alleviated. Such a problem could be
further relieved by designing better loss functions or using
more powerful segmentation networks in the future.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed an innovative loss function
named CP-loss to handle the disconnectivity issue in road



curb segmentation. CP-loss is a weighted combination of
cross-entropy loss and dice loss. We first obtained the skele-
tons of both the predicted segmentation map and ground-
truth label, then compared two skeletons and located areas
where disconnectivity happens. Image pixels closer to these
areas receive larger weights during training. We created our
own dataset by pre-processing a public dataset. To better
evaluate the connectivity of the obtained road curbs, we
designed a metric named SCM. The ablation studies and
comparative experiments demonstrated the superiority of our
CP-loss over commonly used loss functions for road curbs
segmentation. In the future, we plan to further refine our CP-
loss to improve its effectiveness and efficiency. In addition,
we will design new network structures incorporating our CP-
loss for road curb detection.
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