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Abstract— Learning from visual data opens the potential to
accrue a large range of manipulation behaviors by leveraging
human demonstrations without specifying each of them mathe-
matically, but rather through natural task specification. In this
paper, we present Learning by Watching (LbW), an algorithmic
framework for policy learning through imitation from a single
video specifying the task. The key insights of our method are
two-fold. First, since the human arms may not have the same
morphology as robot arms, our framework learns unsupervised
human to robot translation to overcome the morphology mis-
match issue. Second, to capture the details in salient regions that
are crucial for learning state representations, our model per-
forms unsupervised keypoint detection on the translated robot
videos. The detected keypoints form a structured representation
that contains semantically meaningful information and can be
used directly for computing reward and policy learning. We
evaluate the effectiveness of our LbW framework on five robot
manipulation tasks, including reaching, pushing, sliding, coffee
making, and drawer closing. Extensive experimental evaluations
demonstrate that our method performs favorably against the
state-of-the-art approaches. More results and analysis are
available at pair.toronto.edu/lbw-kp/.

I. INTRODUCTION

Robotic Imitation Learning, also known as Learning from
Demonstration (LfD), allows robots to acquire manipulation
skills performed by expert demonstrations through learning
algorithms [1], [2]. While progress has been made by existing
methods, collecting expert demonstrations remains expensive
and challenging as it assumes access to both observations and
actions via kinesthetic teaching [1], [2], teleoperation [3], [4],
or crowdsourcing platform [5]–[8]. In contrast, humans have
the ability to imitate manipulation skills by watching third-
person performances. Motivated by this, recent methods resort
to endowing robots with the ability to learn manipulation
skills via physical imitation from human videos [9]–[11].

Unlike conventional LfD methods [1]–[4], which assume
access to both expert obsevations and actions, approaches
based on imitation from human videos relax the dependencies,
requiring only human videos as supervision [9]–[11]. One of
the main challenges of these imitation learning methods is
how to minimize the domain gap between humans and robots.
For instance, human arms may have different morphologies
than those of robot arms. To overcome the morphology
mismatch issue, existing imitation learning methods [9]–[11]
typically leverage image-to-image translation models (e.g.,
CycleGAN [12]) to translate videos from the human domain
to the robot domain. However, simply adopting vanilla image-
to-image translation models still does not solve the imitation
from human videos task, since the image-to-image translation
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Fig. 1: LbW. Given a single human video, our LbW framework
learns human to robot translation followed by unsupervised key-
point detection. The resulting keypoint-based representations are
semantically meaningful and can be used to guide the robot to learn
manipulation skills through physical imitation.

models often capture only the macro features at the expense
of neglecting the details in salient regions that are crucial for
downstream tasks [13].

In this paper, we present Learning by Watching (LbW),
a framework for physical imitation from human videos for
learning robot manipulation skills. As shown in Figure 1,
our framework is composed of a perception module and a
policy learning module for physical imitation. The perception
module aims at minimizing the domain gap between the
human domain and the robot domain as well as capturing the
details of salient regions that are crucial for downstream tasks.
To achieve this, our perception module learns to translate the
input human video to the robot domain with an unsupervised
image-to-image translation model, followed by performing
unsupervised keypoint detection on the translated robot video.
The detected keypoints then serve as a structured representa-
tion that contains semantically meaningful information and
can be used as input to the downstream policy learning
module.

To learn manipulation skills, we cast this as a reinforcement
learning (RL) problem, where we aim to enable the robot
to perform physically viable learning with the objective to
imitate similar behavior as demonstrated in the translated
robot video under context-specific constraints. We evaluate
the effectiveness of our LbW framework on five robot ma-
nipulation tasks, including reaching, pushing, sliding, coffee
making, and drawer closing in two simulation environments
(i.e., the Fetch-Robot manipulation in OpenAI gym [14] and
meta-world [15]). Extensive experimental results show that
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our algorithm compares favorably against the state-of-the-art
approaches.

The main contributions are summarized as follows:
1) We present a framework for physical imitation from

human videos for learning robot manipulation skills.
2) Our method learns structured representations based on

unsupervised keypoint detection that can be used directly
for computing task reward and policy learning.

3) Extensive experimental results show that our LbW
framework achieves the state of the art on five robot
manipulation tasks.

II. RELATED WORK

Imitation from human videos. Existing imitation learning
approaches collect demonstrations by kinesthetic teaching [1],
[2], teleoperation [3], [4], or through crowdsourcing plat-
form [5]–[8], and assume access to both expert observations
and expert actions at every time step. Recent progress in
deep representation learning has accelerated the development
of imitation from videos [9]–[11], [16]–[25]. While apply-
ing image-to-image translation models to achieve imitation
from human videos has been explored [9], [11], [24], the
dependency on paired human-robot training data makes these
methods hard to scale.

Among them, AVID [10] is closely related to our work
which translates human demonstrations to robot domain via
CycleGAN [12] in an unpaired data setting. However, directly
encoding the translated images using a feature extractor for
deriving state representations may suffer from visual artifacts
generated by image-to-image translation models, leading to
suboptimal performance on downstream tasks.

Different from methods based on image-to-image transla-
tion models, Maximilian et al. [22] leverage 3D detection
to minimize the visual gap between the human domain and
the robot domain. SFV [21] enables humanoid characters
to learn skills from videos based on deep pose estimation.
Our method shares a similar reward computing scheme as
these approaches [21]–[23], [25]. The difference is that these
methods require additional label data, whereas our framework
is learned in an unsupervised fashion.
Cycle consistency. The idea of exploiting cycle consistency
constraints has been widely applied in the context of image-to-
image translation. CycleGAN [12] learns to translate images
in an unpaired data setting by exploiting the idea of cycle
consistency. UNIT [26] achieves image-to-image translation
by assuming a shared latent space between the two domains.
Other methods explore translating images across multiple
domains [27] or learning to generate diverse outputs [28]–
[30]. Recently, the idea of cycle consistency is also applied
to address various problems such as domain adaptation [31]–
[34] and policy learning [10], [35]. In our work, our LbW
framework employs a MUNIT [30] model to perform human
to robot translation for achieving physical imitation from
human videos. We note that other unpaired image-to-image
translation models are also applicable in our task. We leave
the discussion on the effect of different image-to-image
translation models as future work.

Unsupervised keypoint detection. Detecting keypoints from
images without supervision has been studied in the litera-
ture [36], [37]. In the context of computer vision, existing
methods typically infer keypoints by assuming access to
the temporal transformation between video frames [36]
or employing a differentiable keypoint bottleneck network
without access to frame transition information [37]. Other
approaches estimate keypoints based on the access to known
image transformations and dense correspondences between
features [38]–[40].

Apart from the aforementioned approaches, some recent
methods focus on learning keypoint detection for image-
based control tasks [41]–[44]. In our method, we adopt
Transporter [41] to detect keypoints from the translated robot
video in an unsupervised manner. We note that while other
unsupervised keypoint detection methods can also be used
in our framework, the focus of our paper lies in learning
structured representations that are semantically meaningful
and can be used directly for downstream policy learning. We
leave the development of unsupervised keypoint detection
methods as future work.

III. PRELIMINARIES

To achieve physical imitation from human videos, we de-
compose the problem into a series of tasks: 1) human to robot
translation, 2) unsupervised keypoint-based representation
learning, and 3) physical imitation with RL. Here, we review
the first two tasks, in which our method builds upon existing
algorithms.

A. Unsupervised Image-to-Image Translation

Similar to existing methods [9], [10], we cast human
to robot translation as an unsupervised image-to-image
translation problem. Specifically, we aim to learn a model
that translates images from a source domain X (e.g., human
domain) to a target domain Y (e.g., robot domain) without
paired training data [12], [26], [29], [30]. In our method, we
adopt MUNIT [30] as the image-to-image translation network
to achieve human to robot translation. MUNIT learns to
translate images between the two domains by assuming that
an image representation can be disentangled into a domain-
invariant content code (encoded by a content encoder Ec)
and a domain-specific style code (encoded by a style encoder
Es). The content encoders Ec

X and Ec
Y are shared in the two

domains, whereas the style encoders Es
X and Es

Y of the two
domains do not share weights. To translate an image from
one domain to the other, we combine its content code with a
style code sampled from the other domain. The translations
are learned to generate images that are indistinguishable from
images in the translated domain. Given an image x from the
source domain X and an image y from the target domain Y ,
we define the adversarial loss Lx

GAN in the source domain as

Lx
GAN = E

[
logDX(x)+log

(
1−DX

(
GX(cy, sx)

))]
, (1)

where cy = Ec
Y (y) is the content code of image y, sx =

Es
X(x) is the style code of image x, GX is a generator that
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Fig. 2: Overview of the proposed LbW. Our LbW framework is composed of three main components: an image-to-image translation
network T , a keypoint detector Ψ, and a policy network π. The image-to-image translation network translates the input human demonstration
video frame by frame to generate a robot demonstration video. Next, the keypoint detector takes the generated robot demonstration video as
input and extracts the keypoint-based representation for each frame to form a keypoints trajectory. At each time step, the keypoint detector
also extracts the keypoint-based representation for the current observation. The reward for physical imitation is defined by a distance metric
d that measures the distance between the keypoint-based representation of the current observation and those in the keypoints trajectory.
Finally, the keypoint-based representation of the current observation is passed to the policy network to predict an action that is used to
interact with the environment.

takes as input a content code cy and a style code sx and
generates images that have similar distributions like those in
the source domain, and DX is a discriminator that aims to
distinguish between the translated images generated by GX

and the images in the source domain. The adversarial loss
Ly

GAN in the target domain can be similarly defined.
In addition to the adversarial losses, MUNIT applies

reconstruction losses on images and content and style codes
to regularize the model learning. For the source domain, the
image reconstruction loss Lx

rec is defined as

Lx
rec = E

[∥∥GX(cx, sx)− x
∥∥], (2)

the content reconstruction loss Lcx
rec is defined as

Lcx
rec = E

[∥∥Ec
Y

(
GY (cx, sy)

)
− cx

∥∥], (3)

and the style reconstruction loss Lsx
rec is defined as

Lsx
rec = E

[∥∥Es
X

(
GX(cy, sx)

)
− sx

∥∥]. (4)

The image reconstruction loss Ly
rec, the content reconstruction

loss Lcy
rec, and the style reconstruction loss Lsy

rec in the target
domain can be derived similarly.

The total loss LMUNIT for training MUNIT is given by

LMUNIT = Lx
GAN + Ly

GAN + λimage(Lx
rec + Ly

rec)

+λcontent(Lcx
rec + Lcy

rec) + λstyle(Lsx
rec + Lsy

rec),
(5)

where λimage, λcontent, and λstyle are hyperparameters used to
control the relative importance of the respective loss functions.

B. Unsupervised Keypoint Detection

To perform control tasks, existing approaches typically
resort to learning state representations based on image
observations [10], [45]–[48]. However, the image observations
generated by image-to-image translation models often capture
only macro features while neglecting the details in salient
regions that are crucial for downstream tasks. Deriving state
representations by encoding the translated image observations
using a feature encoder would lead to suboptimal performance.
On the other hand, existing methods may also suffer from
visual artifacts generated by the image-to-image translation
models. In contrast to these approaches, we leverage Trans-
porter [41] to detect the keypoints in each translated video
frame in an unsupervised fashion. The detected keypoints
form a structured representation that captures the robot arm
pose and the location of the interacting object, providing
semantically meaningful information for downstream control
tasks while avoiding the negative impact of visual artifacts
caused by the imperfect image-to-image translation.

To realize the learning of unsupervised keypoint detection,
Transporter leverages object motion between a pair of
video frames to transform a video frame into the other by
transporting features at the detected keypoint locations. Given
two video frames x and y, Transporter first extracts feature
maps Φ(x) and Φ(y) for both video frames using a feature
encoder Φ and detects K 2-dimensional keypoint locations
Ψ(x) and Ψ(y) for both video frames using a keypoint
detector Ψ. Transporter then synthesizes the feature map



Φ̂(x, y) by suppressing the feature map of x around each
keypoint location in Ψ(x) and Ψ(y) and incorporating the
feature map of y around each keypoint location in Ψ(y):

Φ̂(x, y) = (1−HΨ(x))·(1−HΨ(y))·Φ(x)+HΨ(y)·Φ(y), (6)

where HΨ(·) is a Gaussian heat map with peaks centered at
each keypoint location in Ψ(·).

Next, the transported feature Φ̂(x, y) is passed to a
refinement network R to reconstruct to the video frame y.
We define the loss Ltransporter for training Transporter as

Ltransporter = E
[∥∥R(Φ̂(x, y)

)
− y
∥∥]. (7)

In the next section, we leverage the Transporter model to
detect keypoints for each translated video frame. The detected
keypoints are then used as a structured representation for
defining the reward function and as the input of the policy
network to predict an action that is used to interact with the
environment.

IV. PROPOSED METHOD

In this section, we first provide an overview of our approach.
We then describe the unsupervised domain transfer with
keypoint-based representations module. Finally, we describe
the details of physical imitation with RL.

A. Algorithmic Overview

We consider the task of physical imitation from human
videos for learning robot manipulation skills. In this setting,
we assume we have access to a single human demonstration
video VX = {xEi }Ni=1 of length N depicting a human
performing a specific task (e.g., pushing a block) that we
want the robot to learn from, where xEi ∈ RH×W×3 and
H ×W is the spatial size of xEi . We note that the human
actions are not given in our setting. Our goal is to develop a
learning algorithm that allows the robot to imitate the behavior
demonstrated by the human in the human demonstration
video VX . To achieve this, we present LbW, a framework
that comprises three components: 1) the image-to-image
translation network T (from MUNIT [30]), 2) the keypoint
detector Ψ (from the keypoint detector of Transporter [41]),
and 3) the policy network π.

As shown in Figure 2, given a human demonstration video
VX and the current observation Ot ∈ RH×W×3 at time t, we
first apply the image-to-image translation network T to each
frame xEi in the human demonstration video VX and translate
xEi to a robot demonstration video frame vEi ∈ RH×W×3.
Next, the keypoint detector Ψ takes each translated robot
video frame vEi as input and extracts the keypoint-based
representation zEi = Ψ(vEi ) ∈ RK×2, where K denotes the
number of keypoints. Similarly, we also apply the keypoint
detector Ψ to the current observation Ot to extract the
keypoint-based representation zt = Ψ(Ot) ∈ RK×2. To
compute the reward for physical imitation, we define a
distance metric d that computes the distances between the
keypoint-based representation zt of the current observation
Ot and each of the keypoint-based representations zEi of the
translated robot video frames vEi . Finally, the policy network

Stop gradient 

Stop gradient 

Fig. 3: Overview of the perception module. Our perception module
is composed of a MUNIT network (left) and a Transporter model
(right). Given a human video frame x and a robot video frame y,
the MUNIT model first extracts the content code of the human
video frame and the style code of the robot video frame. The
MUNIT model then generates the translated robot video frame v
by combining the extracted content code and style code. Next, the
Transporter model extracts the features and detects the keypoints
for both the translated robot video frame v and the input robot
video frame y and reconstructs the translated robot video frame v̂
by transporting features at the detected keypoint locations. Note that
the input robot video frame y is from a robot video generated by
using a random policy.

π takes as input the keypoint-based representation zt of the
current observation Ot to predict an action at = π(zt) that
is used to guide the robot to interact with the environment.
The details of each component are described in the following
subsections.

B. Unsupervised Domain Transfer with Keypoints

To achieve physical imitation from human videos, we
develop a perception module that consists of a MUNIT model
for human to robot translation and a Transporter network
for keypoint detection as shown in Figure 3. To train the
MUNIT model, we first collect the training data for the
source domain (i.e., human domain) and the target domain
(i.e., robot domain). The source domain contains the human
demonstration video VX that we want the robot to learn from.
To increase the diversity of the training data in the source
domain for facilitating the MUNIT model training, we follow
AVID [10] and collect a few random data by asking the
human to randomly move the hands above the table without
performing the task. As for the target domain training data,
we collect a number of robot videos generated by having the
robot perform a number of actions that are randomly sampled
from the action space. As such, the collection of the robot
videos does not require human expertise and effort.

Using the training data from both source and target domains,
we are able to train the MUNIT model to achieve human to
robot translation using the total loss LMUNIT in (5) and
following the protocol described in Section III-A. After
training the MUNIT model, we are able to translate the
human demonstration video VX = {xEi }Ni=1 frame by frame
to the robot demonstration video {vEi }Ni=1 by combining the
content code of each human demonstration video frame and
a style code randomly sampled from the robot domain.

As mentioned in Section III-B, we aim to learn keypoint-
based representations from the translated robot video in an
unsupervised fashion. To achieve this, we leverage Transporter
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Pushing Sliding Drawer closing Coffee making
Fig. 4: Task overview. We present the sample task scenes and one sample human video frame for the pushing, sliding, drawer closing,
and coffee making tasks, respectively. Our human videos can be collected in an environment with a plain background (i.e., the left three
columns) or with a noisy background (i.e., the rightmost column).

to detect the keypoints in each translated robot video frame in
an unsupervised fashion, as there are no ground-truth keypoint
annotations available.

As illustrated in Figure 3, following the protocol stated
in Section III-B, the Transporter model takes as input a
translated robot demonstration video frame v and a robot
video frame y from a robot video collected by applying
a random policy and extracts their features and detects
keypoint locations, respectively. The Transporter model then
reconstructs the translated robot demonstration video frame.
To train the Transporter model, we optimize the total loss
Ltransporter in (7). Once the training of the Transporter model
converges, we are able to use the keypoint detector Ψ of the
Transporter model to extract a keypoint-based representation
zEi = Ψ(vEi ) for each frame vEi in the translated robot
demonstration video to form a keypoints trajectory {zEi }Ni=1

and a keypoint-based representation zt = Ψ(Ot) for the
current observation Ot. The keypoints trajectory {zEi }Ni=1 of
the translated robot demonstration video {vEi }Ni=1 and the
keypoint-based representation zt of the current observation
Ot provide semantically meaningful information for robot
manipulation tasks. We then use both of them to compute the
reward rt and use the keypoint-based representation zt of the
current observation Ot to predict an action at. The details of
reward computing and policy learning are elaborated in the
next subsection.

C. Physical Imitation with RL

To control the robot, we use RL to learn a policy from
image-based observations that maximize the cumulative
values of a learned reward function. In our method, we
decouple the policy learning phase from the keypoint-based
representation learning phase. Given the keypoints trajectory

{zEi }Ni=1 of the translated robot demonstration video {vEi }Ni=1

and the keypoint-based representation zt of the current
observation Ot, our policy network π outputs an action
at = π(zt) which is executed in the environment to obtain
the next observation Ot+1. To achieve physical imitation, we
aim to minimize the distance between the keypoints trajectory
of the agent and that of the translated robot demonstration
video. Specifically, we define the reward rt as

rt = d
(
zt, zt+1, {zEi }Ni=1

)
= λr1 · r1(t) + λr2 · r2(t), (8)

where λr1 and λr2 are hyperparameters that balance the
importance between the two terms, and the aforementioned
goal is imposed on r1(t) and r2(t), which are defined by the
following equations:

r1(t) = −min ‖zt − zEp ‖, and (9)

r2(t) = −min
(∥∥(zt+1 − zt)− (zEq+1 − zEq )

∥∥), (10)

where 1 ≤ p ≤ N−1, 1 ≤ q ≤ N−1, r1(t) aims to minimize
the distance between the keypoint-based representation zt
of the current observation Ot and the most similar (closest)
keypoint-based representation zEp in the keypoints trajectory
{zEi }Ni=1 of the translated robot demonstration video {vEi }Ni=1,
and r2(t) is the first-order difference equation of r1(t).

We add the tuple (zt, at, zt+1, rt) to a replay buffer. Then,
the policy network π can be trained with any RL algorithms
in principle. We make use of Soft-Actor Critic (SAC) [49]
as the RL algorithm for policy learning in our experiments.

V. EXPERIMENTS

In this section, we describe the experimental settings and
report results with comparisons to state-of-the-art methods
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Fig. 5: Visual results and comparisons on the pushing task. Given a human video as input in the first row, we present the translated
images of CycleGAN [12] in the second row. In the third row, we visualize our translated images and the detected keypoints produced by
the perception module. Our perception module accurately detects the robot arm pose and the location of the interacting object.

on five robot manipulation tasks. Through experiments, we
aim to investigate the following questions:

1) How accurate is our perception module in handling the
human-robot domain gap and in detecting keypoints?

2) How does LbW compare with state-of-the-art baselines
in terms of performance on robot manipulation tasks?

A. Experimental Setting

We perform experimental evaluations in two simulation
environments, i.e., the Fetch-Robot manipulation in OpenAI
gym [14] and meta-world [15]. We evaluate on five tasks:
reaching, pushing, sliding, coffee making, and drawer closing.
Figure 4 presents the overview of each task, including the
task scenes and one sample human video frame for each task.
The goal of each task is described as follows.

1) For the reaching task, the robot has to move its end-
effector to reach the target.

2) For the pushing task, a puck is placed on the table in
front of the robot, and the goal is to move the puck to
the target location.

3) For the sliding task, a puck is placed on a long slippery
table and the target location is beyond the reach of the
robot. The goal is to apply an appropriate force to the
puck so that the puck slides and stops at the target
location due to friction.

4) For the coffee making task, a cup is placed on the table
in front of the robot, and the goal is to move the cup to
the location right below the coffee machine outlet. The
moving distance of coffee making task is longer than
the one in the pushing task.

TABLE I: Dataset statistics for perception module training for
each task. We summarize the number of video frames of both the
source (human) domain and the target (robot) domain for training
the perception module for each task.

Domain Reaching Pushing Sliding Drawer closing Coffee making

Source (human) 1,056 398 650 986 658
Target (robot) 3,150 1,220 2,120 2,940 4,007

5) For the drawer closing task, the robot has to move its
end-effector to close the drawer.

In the policy learning phase, the robot receives only an
RGB image of size 84 × 84 × 3 as the observation. The
robot arm is controlled by an Operational Space Controller
in end-effector positions. As each of the tasks is described
by a single human video, we set the initial locations of the
object and the target to a fixed configuration.

B. Comparison to Baseline Methods

To evaluate the effectiveness of our perception module,
we implement two baseline methods using the same control
model as LbW, which is adopted from SAC+AE [50], but
with different reward learning methods.
Classifier-reward. We implement a classifier-based reward
learning method in a similar way as VICE [51]. For each
task, given robot demonstration videos, instead of the human
videos, the CNN classifier is pre-trained on ground-truth goal
images with positive labels and the remaining images with
negative labels. To learn a policy in the environment, we
adopt the implementation from SAC+AE [50], where we use
the classifier-based reward to train the agent.



TABLE II: Success rates. Comparison of success rates for test evaluations of our LbW framework and the baselines.

Method Number of expert demonstrations Reaching Pushing Sliding Drawer closing Coffee making

Classifier reward 35 robot videos 100% 100% 30% 70% 50%
AVID-m 15 human videos 100% 60% 0% 50% 40%
LbW (Ours) 1 human video 100% 100% 80% 80% 70%

AVID-m. Since AVID [10] is the state-of-the-art method
that outperforms prior approaches, including BCO [52] and
TCN [17], we focus on comparing our method with AVID. For
a fair comparison, we reproduce the reward learning method
of AVID and replace the control module with SAC+AE
[50]. We denote this method as AVID-m. For each task,
given human demonstration videos, we first translate the
human demonstration videos to the robot domain using the
CycleGAN [12] model. Then the CNN classifier is pre-trained
on the translated goal images with positive labels and the
remaining translated images with negative labels. For RL
training, we adopt the implementation from SAC+AE [50].

C. Dataset Collection and Statistics
We decouple the training phase of the perception module

from that of the policy learning module.
Dataset for perception module training. To train our
perception module and the CycleGAN method, we collect
human expert videos and videos of a human performing
random actions without performing the tasks for the human
domain. For the robot domain, we first constrain the action
space of the robot such that unexpected robot poses will not
occur (i.e., robot arms are constrained to move above the
table), and then run a random policy to collect robot videos.
Note that we do not use robot expert videos for training the
perception module. Table I presents the dataset statistics for
each task for training the perception module.
Dataset for policy learning. For policy learning, we use only
one single human expert video to train our policy network.
The AVID-m method uses 15 human expert videos, while
the classifier-reward approach uses 35 robot expert videos.

D. Performance Evaluations
Following AVID [10], we use success rate as the evaluation

metric. At test time, the task is considered to be a success
if the robot is able to complete the task within a specified
number of time steps (i.e., 50 time steps for reaching and
pushing, and 300 time steps for sliding, coffee making, and
drawer closing). The results are evaluated by 10 test episodes
for each task. Table II reports the success rates of our method
and the two baseline approaches on all five tasks. We find
that for the reaching task, all three methods achieve a success
rate of 100%. For the sliding, drawer closing, and coffee
making tasks, our LbW performs favorably against the two
competing approaches.

The difference between the AVID-m method and the
classifier-reward approach is that AVID-m leverages Cycle-
GAN for human to robot translation, while the classifier-
reward method using ground-truth robot images directly.
As shown in Figure 5, the translated images of AVID-
m have clear visual artifacts. For instance, the red cube

disappears and the robot poses in the translated images do
not match those in the human video frames. The comparisons
between AVID-m and the classifier-reward method and the
visual results of AVID-m in Figure 5 show that using
image-to-image translation models alone for minimizing
the human-robot domain gap will have negative impact to
the performance of the downstream tasks. Our perception
module learns unsupervised human to robot translation as
well as unsupervised keypoint detection on the translated
robot videos. The learned keypoint-based representation
provides semantically meaningful information for the robot,
allowing our LbW framework compares favorably two
competing approaches. More results, videos, performance
comparisons, and implementation details are available at
pair.toronto.edu/lbw-kp/.

E. Discussion of Limitations

While results on five tasks demonstrate the effectiveness of
our LbW framework, there are two limitations. First, existing
imitation learning methods [9]–[11], [24] that are based on
image-to-image translation require the pose of the human
arms and that of the robot arms to be similar. As a result,
these methods may not perform well on human demonstration
videos that have larger pose variations or with more natural
poses. Our LbW framework also leverages an image-to-image
translation model, thus suffering from the same limitation as
these methods. Second, in our method, learning from only a
single human video limits the model generalization to new
scenes.

VI. CONCLUSIONS

We introduced LbW, a framework for physical imitation
from human videos. Our core technical novelty lies in the de-
sign of the perception module that minimizes the domain gap
between the human domain and the robot domain followed
by keypoint detection on the translated robot video frames
in an unsupervised manner. The resulting keypoint-based
representations capture semantically meaningful information
that guide the robot to learn manipulation skills through
physical imitation. We defined a reward function with a
distance metric that encourages the trajectory of the agent
to be as close to that of the translated robot demonstration
video as possible. Extensive experimental results on five
robot manipulation tasks demonstrate the effectiveness of
our approach and the advantage of learning keypoint-based
representations over conventional state representation learning
approaches.
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