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Abstract— Manipulation of objects by exploiting their contact
with the environment can enhance both the dexterity and
payload capability of robotic manipulators. A common way
to manipulate heavy objects beyond the payload capability of
a robot is to use a sequence of pivoting motions, wherein,
an object is moved while some contact points between the
object and a support surface are kept fixed. The goal of this
paper is to develop an algorithmic approach for automated plan
generation for object manipulation with a sequence of pivoting
motions. A plan for manipulating a heavy object consists of a
sequence of joint angles of the manipulator, the corresponding
object poses, as well as the joint torques required to move the
object. The constraint of maintaining object contact with the
ground during manipulation results in nonlinear constraints in
the configuration space of the robot, which is challenging for
motion planning algorithms. Exploiting the fact that pivoting
motion corresponds to movements in a subgroup of the group
of rigid body motions, SE(3), we present a novel task-space
based planning approach for computing a motion plan for
both the manipulator and the object while satisfying contact
constraints. We also combine our motion planning algorithm
with a grasping force synthesis algorithm to ensure that friction
constraints at the contacts and actuator torque constraints
are satisfied. We present simulation results with a dual-armed
Baxter robot to demonstrate our approach.

I. INTRODUCTION

Manipulation of heavy and bulky objects is a challenging
task for manipulators and humanoid robots. An object is
considered heavy if the manipulator’s joint torques are not
large enough to balance the object weight while lifting it
off the ground. Thus, heavy objects cannot be manipulated
with usual pick-and-place strategy due to actuator saturation.
Consider the manipulation scenario shown in Fig. 1, where
a heavy object has to be moved from an initial pose CO
to a final pose CF by a dual-armed robot. The object has
to negotiate a step during the manipulation which implies
that the final pose cannot be achieved by either pick-and-
place strategies or by pushing. One possible way to move
the object and negotiate the step is to use a sequence of
pivoting motions, which we call object gaiting, and this is
a common strategy used by humans to manipulate heavy
objects. Therefore, the goal of this paper is to develop an
algorithmic approach to compute a plan for manipulating
heavy objects by a sequence of pivoting motions.

In a pivoting motion, we move the object while creating a
sequence of point or line contacts with the environment (see
Figure 1). A point contact acts like a spherical joint, whereas
a line contact acts like a revolute joint. The location and axes
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Fig. 1. Schematic sketch of dual-handed manipulation of a heavy object
between two given poses CO and CF by a sequence of pivoting motions.

of these joints change during a gaiting motion. These joints
are force-closed joints and can only be implemented through
adequate frictional force at the object-ground contact that
prevents slippage. Because of the making and breaking of
the contacts the equations of motion of the object change
and technically the system of equations form a hybrid
dynamical system. Planning of motion through intermittent
contact considering the switching dynamics is difficult and
computationally costly, in general, although some attempts
have been made in this direction(e.g., [1]). To reduce the
complexity and cost of planning, one approach is to decouple
the overall planning problem and first compute a kinematic
motion plan and then compute force inputs that follow the
kinematic motion plan and satisfy the dynamics constraints.
The challenge in the decoupled approach is to ensure that
the kinematic plans are dynamically feasible.

In this paper, we take the decoupled approach to motion
planning for pivoting. Thus, a plan for pivoting operations
consists of (a) Motion plan: a sequence of joint angles of
the manipulators and the corresponding object poses that
maintains contact with the ground and ensures that the
contacts between the hand and the object are maintained (b)
Force plan: a sequence of joint torques that are within the
actuator limits and ensure that there is enough force at the
object ground contact to prevent slippage. Furthermore, to
ensure that the kinematic plan is dynamically feasible, we
also want to ensure that the manipulator does not lose the
grasp of the object and there is no slippage at the hand-object
contact. In this paper, we will focus on the motion planning
problem. We have studied the problem of computing the
force plan (or force synthesis problem), for a given motion
plan, in [2], and we will combine it with our motion plan to
generate torques to achieve the motion.
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The key challenge in solving the motion planning problem
is that the kinematic constraints of the object maintaining
a spherical or a revolute joint with the ground during the
motion corresponds to nonlinear manifold constraints in the
joint space of the manipulator. For example, in the scenario
shown in Fig. 1, the configuration space is 20 dimensional
and since the position kinematics equations are nonlinear,
the pivoting constraints will form nonlinear manifolds in this
20 dimensional space. In sampling-based motion planning in
joint space (J-space), these constraints are hard to deal with,
although there have been some efforts in this direction [3],
[4], [5], [6], [7], [8], [9]. Furthermore, in manipulation by
gaiting, where we are performing a sequence of pivoting
operations, these manifold constraints are not known before-
hand since they depend on the choice of the pivot points
(or lines) which has to be computed as a part of the plan.
In this paper, we present a novel task-space (T-space) based
approach for generating the motion plan that exploits the fact
that the kinematic constraints of a revolute or spherical joint
constrains the motion of the object to a subgroup of SE(3).

Contributions: We present a two-step approach for com-
puting the motion plan. In the first step, we develop an
algorithm to compute a sequence of intermediate poses for
the object to go from the initial to the goal pose. Two
consecutive intermediate poses implicitly determine a point
or line on the object and the ground that stay fixed during
motion, thus encoding motion about a revolute or a spherical
joint. In the second step, we use Screw Linear Interpolation
(ScLERP) to determine a task space path between two
intermediate poses, along with resolved motion rate control
(RMRC) [10], [11] to convert the task space path to a joint
space path. The advantage of using ScLERP is that it (a)
automatically satisfies the kinematic motion constraints that
the contact points between the object and the ground co
not change during the pivoting motion without explicitly
encoding it (b) the object does not penetrate the ground (c)
the relative pose between the fingers (or manipulators) at the
grasping points do not change, i.e., the closed chain con-
straints formed by the manipulator and object is maintained
throughout the whole motion without explicitly encoding it.
Thus, the joint space path that we compute along with the
object path automatically ensures that the kinematic contact
constraints are satisfied and the object remains grasped.
This computationally efficient approach for motion planning
for manipulation by pivoting, where apparently complicated
constraints can be satisfied without explicitly modeling them,
is the key contribution of this paper. Assuming that the
inertial force are negligible, i.e., the motion is quasi-static,
we also show that our motion plan can be combined with the
second order cone programming (SOCP) based approach to
compute joint torques and grasping forces [2], while ensuring
that all no-slip constraints at the contacts and actuator limits
are satisfied. Thus, we can ensure that the kinematic plan is
feasible when one considers the forces and actuator limits.
We demonstrate our approach in simulation using a dual-
armed Baxter robot.

II. RELATED WORK

The use of external environment contacts to enhance the
in-hand manipulation capability was first studied by Chavan-
Dafle in [12]. More recently Hou et. al [13] have developed
a planning algorithm for quasi-static reorientation of 3D
objects on a table using a parallel-jaw gripper by having
3D mesh model of the objects. However, they are using a
gripper with a special mechanism to allow pivoting at the
gripper-object contact and compliant rolling at the object-
table contact. In another research, they have referred to
the use of environment contact as shared grasping wherein
they treat the environment as an additional finger [14].
They have provided stability analysis of shared grasping
by using Hybrid Force-Velocity Control (HFVC). Murooka
et. al. [15] proposed a method for pushing a heavy object
by an arbitrary region of a humanoid robot. Polverini et.
al. [16] also developed a control architecture for a hu-
manoid robot which is able to exploit the complexity of
the environment to perform the pushing task of a heavy
object. Pivoting was first was first introduced by Aiyama
et. al. [17] as a new method of graspless/non-prehensile
manipulation. Based on this method, Yoshida et. al. [18],
[19], [20] developed a whole-body motion planner for a
humanoid robot to autonomously plan a pivoting strategy for
manipulating bulky objects. They first planned a sequence
of collision-free Reeds and Shepp paths (especially straight
and circular paths in R2), then convert these paths into
a sequence of pivoting motions. However, this method is
limited to the motion on Reeds and Shepp curves to satisfy
a nonholonomic constraint, which is not always required.
Thus, it is not a general, efficient, and optimum way to
manipulate objects between two given poses, especially when
there are no obstacles in the workspace. Hence, we propose
a general gait planning method as an optimization problem
by defining the intermediate poses and using the ScLERP to
manipulate the object by gaiting between any two arbitrary
poses. Although there are task-space based force control
algorithms [21], [22], they do not consider planning through
the hybrid dynamics created by the intermittent contact.
Furthermore [21] approximates the second order friction
cone as a polyhedral cone, which can lead to infeasible
solutions even when feasible plans exist.

III. PRELIMINARIES

Quaternions and Rotations: The quaternions are the set
of hypercomplex numbers, H. A quaternion Q ∈ H can be
represented as a 4-tuple Q = (q0, qr) = (q0, q1, q2, q3), q0 ∈
R is the real scalar part, qr = (q1, q2, q3) ∈ R3 corresponds
to the imaginary part. The conjugate, norm, and inverse
of a quaternion Q is given by Q∗ = (q0,−qr), ‖Q‖ =√
QQ∗ =

√
Q∗Q, and Q−1 = Q∗/‖Q‖2, respectively.

Addition and multiplication of two quaternions P = (p0,pr)
and Q = (q0, qr) are performed as P+Q = (p0+q0,pr+qr)
and PQ = (p0q0 − pr · qr, p0qr + q0pr + pr × qr).
The quaternion Q is a unit quaternion if ‖Q‖ = 1, and
consequently, Q−1 = Q∗. Unit quaternions are used to rep-
resent the set of all rigid body rotations, SO(3), the Special



Orthogonal group of dimension 3. Mathematically, SO(3) ={
R ∈ R3×3

∣∣RTR = RRT = I3,
∣∣R |= 1

}
, where I3 is a

3 × 3 identity matrix and |·| is the determinant operator.
The unit quaternion corresponding to a rotation is QR =
(cos θ2 , l sin

θ
2 ), where θ ∈ [0, π] is the angle of rotation about

a unit axis l ∈ R3.
Dual Quaternions and Rigid Displacements: In general,
dual numbers are defined as d = a + εb where a and b
are elements of an algebraic field, and ε is a dual unit with
ε2 = 0, ε 6= 0. Similarly, a dual quaternion D is defined
as D = P + εQ where P,Q ∈ H. The conjugate, norm,
and inverse of the dual quaternion D is represented as D∗ =
P ∗+εQ∗, ‖D‖ =

√
DD∗ =

√
PP ∗ + ε(PQ∗ +QP ∗), and

D−1 = D∗/‖D‖2, respectively. Another definition for the
conjugate of D is represented as D† = P ∗ − εQ∗. Addition
and multiplication of two dual quaternions D1 = P1 + εQ1

and D2 = P2+εQ2 are performed as D1+D2 = (P1+P2)+
ε(Q1 + Q2) and D1D2 = (P1P2) + ε(P1Q2 + Q1P2). The
dual quaternion D is a unit dual quaternion if ‖D‖ = 1, i.e.,
‖P‖ = 1 and PQ∗ + QP ∗ = 0, and consequently, D−1 =
D∗. Unit dual quaternions can be used to represent the
group of rigid body displacements, SE(3) = R3 × SO(3),
SE(3) =

{
(R,p) | R ∈ SO(3),p ∈ R3

}
. An element T ∈

SE(3), which is a pose of the rigid body, can also be
expressed by a 4 × 4 homogeneous transformation matrix
as T =

[
R p
0 1

]
where 0 is a 1× 3 zero vector. A rigid body

displacement (or transformation) is represented by a unit
dual quaternion DT = QR + ε

2QpQR where QR is the unit
quaternion corresponding to rotation and Qp = (0,p) ∈ H
corresponds to the translation.
Screw Displacement: Chasles-Mozzi theorem states that the
general Euclidean displacement/motion of a rigid body from
the origin I to T = (R,p) ∈ SE(3) can be expressed as a
rotation θ about a fixed axis S, called the screw axis, and a
translation d along that axis (see Fig. 2). Plücker coordinates
can be used to represent the screw axis by l and m, where
l ∈ R3 is a unit vector that represents the direction of the
screw axis S, m = r × l, and r ∈ R3 is an arbitrary
point on the axis. Thus, the screw parameters are defined as
l,m, θ, d. The screw displacements can be expressed by the
dual quaternions as DT = QR+ ε

2QpQR = (cos Φ
2 , L sin Φ

2 )
where Φ = θ+εd is a dual number and L = l+εm is a dual
vector. A power of the dual quaternion DT is then defined
as Dτ

T = (cos τΦ
2 , L sin τΦ

2 ), τ > 0.

Fig. 2. Screw displacement from pose C1 to pose C2.

Screw Linear Interpolation (ScLERP): To perform a one

degree-of-freedom smooth screw motion (with a constant
rotation and translation rate) between two object poses in
SE(3), the screw linear interpolation (ScLERP) can be
used. The ScLERP provides a straight line in SE(3) which
is the closest path between two given poses in SE(3).
If the poses are represented by unit dual quaternions D1

and D2, the path provided by the ScLERP is derived by
D(τ) = D1(D−1

1 D2)τ where τ ∈ [0, 1] is a scalar path
parameter. As τ increases from 0 to 1, the object moves
between two poses along the path D(τ) by the rotation
τθ and translation τd. Let D12 = D−1

1 D2. To compute
Dτ

12, the screw coordinates l,m, θ, d are first extracted from
D12 = P + εQ = (p0,pr)+ ε(q0, qr) = (cos θ2 , l sin

θ
2 )+ εQ

by l = pr/‖pr‖, θ = 2 atan2(‖pr‖, p0), d = p · l, and
m = 1

2 (p × l + (p − dl) cot θ2 ) where p is derived from
2QP ∗ = (0,p) and atan2(·) is the two-argument arctangent.
Then, Dτ

12 = (cos τΦ
2 , L sin τΦ

2 ) is directly derived from(
cos τθ2 , sin

τθ
2 l
)

+ ε
(
− τd2 sin τθ

2 ,
τd
2 cos τθ2 l+ sin τθ

2 m
)
.

Note that θ = 0, π corresponds to pure translation between
two poses and the screw axis is at infinity.

IV. PROBLEM STATEMENT

Let us assume that we want to manipulate a heavy
cuboid object quasi-statically by using n manipulators, while
maintaining contact with environment, from an initial pose
CO ∈ SE(3) to a final pose CF ∈ SE(3). We assume
that both CO and CF are in the robot’s workspace. Let
Θi = [θi1, θ

i
2, · · · , θili ] ∈ Rli be the vector of joint angles

of the i-th li-DoF manipulator, which represents the joint
space (J-space) or the configuration space (C-space) of the
manipulator. Moreover, E i ∈ SE(3) is defined as the pose of
the end-effector of the i-th manipulator where E i = FK(Θi)
and FK(·) is the manipulator forward kinematics map.
Therefore, Θi

O ∈ Rli and E iO ∈ SE(3) represent the initial
configuration of the i-th manipulator (in J-space) and pose
of i-th end-effector, respectively, corresponding to the object
initial pose CO and Θi

F ∈ Rli and E iF ∈ SE(3) represent
the final configuration of the i-th manipulator (in J-space)
and pose of i-th end-effector, respectively, corresponding to
the object final pose CF . We assume that the position of the
manipulator-object contact ci is given and the transformation
between the frames {ei} and {ci} remains constant during
the manipulation, i.e., there is no relative motion (slippage)
at the contact interface.

Our motion planning problem is now defined as computing
a sequence of joint angles Θi(j), where j = 1, · · · ,m,
Θi(1) = Θi

O, Θi(m) = Θi
F , to manipulate the object while

maintaining contact with the environment from its initial
pose CO to a final pose CF when (CO, E iO,Θi

O) and (CF , E iF )
(i = 1, ..., n) are given. Moreover, our force planning prob-
lem is computing the minimum contact wrenches required
to be applied at ci during the object manipulation to balance
the external wrenches (e.g., gravity) and also the environment
contact wrenches using the method we have presented in [2].

Solution Approach Overview: Generally speaking, to
move an object while maintaining contact we can use two
primitive motions, namely, (1) sliding on a vertex, edge, or
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Fig. 3. An cuboid-shape object being tilted at one of its vertices.

face of the object in contact with the environment (Fig. 5-
a) and (2) pivoting about an axis passing through a vertex,
edge, or face of the object in contact with the environment
(Fig. 5-b,c, Fig. 1). All other motions can be made by
combining these primitive motions. Note that we consider
tumbling as a special case of pivoting when the axis of
rotation passes through an object edge or face. Manipulation
by sliding (or pushing) can be useful in many scenarios like
picking a penny off a table. However, in heavy and bulky
object manipulation scenarios, sliding may not give feasible
solutions. Thus, in this paper, we will focus on manipulation
using the pivoting primitive.

Our manipulation strategy can be described briefly as
follows. (i) Given the initial and final pose of the object, we
first determine if multiple pivoting moves have to be made
and, if necessary, compute intermediate poses of the object.
(ii) Using the dual quaternion representation of these poses,
we compute paths in SE(3) using the ScLERP for the object
and end-effectors. These paths automatically satisfies all the
basic task related constraints (without any additional explicit
representation of the constraints). (iii) We use the (weighted)
pseudoinverse of the Jacobian to derive the joint angles in
the J-space from the computed T-space path. (iv) Finally,
we compute the minimum required contact wrenches and
manipulators’ joint torques required for object manipulation.
Note that the steps (ii) to (iv) can be done either sequentially
or they can be interleaved in a single discrete time-step

V. FORCE PLANNING

In this section, we briefly review our force planning
algorithm proposed in [2]. Consider an object which is in
contact with the environment at m contact positions and
being manipulated quasi-statically by n li-DOF manipulators
(i = 1, ..., n) an n contact positions (Fig. 3). We define the
grasping force optimization problem (GFOP) as a convex
optimization problem as

minimize
FC ,FE ,τ

max(Fn) (1a)

subject to GCFC + GEFE + fext = 0, (1b)
FC ∈ KC , (1c)
FE ∈ KE , (1d)

τ + JTFC − τg = 0, (1e)
τmin ≤ τ ≤ τmax. (1f)

The objective function (1a) is the maximum normal force at
the object-manipulator contacts, where Fn ∈ Rn is the vector
of normal contact forces. Equation (1b) is the equilibrium
constraint where GCFC ∈ R6 and GEFE ∈ R6 are the
total wrenches exerted by the manipulators and environment
through the contacts, with respect to the body frame {b},
respectively, FC ∈ R6n and FE ∈ R6m are the vectors
containing all the contact wrenches at the manipulators and
environment contacts, respectively, GC is the grasp matrix
and GE is the matrix that converts the environment contact
wrench to the body frame, and fext ∈ R6 is the total external
wrench (including the object weight) applied to the object
at the body frame {b}. (1c) and (1d) represent the friction
cone constraints at all the manipulators and environment
contacts, respectively, where KC and KE are the second-
order cones (SOC). (1f) represents the manipulator joint
torque constraints, where τ ∈ Rl is a vector containing the
joint torques of all the manipulators and computing from
(1e), τg ∈ Rl is the vector of joint torques due to gravity,
and J = diag(J1, . . . ,Jn) ∈ R6n×l is the overall Jacobian
matrix of the manipulators (l =

∑n
i=1 li).

VI. PIVOTING

Pivoting is a motion where an object is moved while
maintaining a point or line contact with a support surface.
When an object maintains a point contact, the constraints
on motions are same as those imposed by a spherical joint.
Thus, the motion of the object is restricted to SO(3), which
is a subgroup of SE(3), and the axis of rotation passes
through the contact point. During pivoting with line contact
(or tumbling), the constraint on the motion is same as that
imposed by a revolute joint with the axis of the joint being
the line of contact. Thus, in this case, the motion of the
object is restricted to SO(2), which is also a subgroup of
SE(3). This mathematical structure of pivoting motions is
key to our ScLERP approach as we discuss below.

Suppose an object can reach a goal pose from a start pose
using a single pivoting motion. This can happen when the
start and the goal poses are such that there is a common
vertex, say v, between the start and goal poses that lie on
the support surface (Fig. 4, Fig. 5-c). To plan the motion of
the object between the start and goal pose via interpolation
such that the contact at the vertex v is maintained and the
object does not penetrate the surface one should be careful
about the interpolation scheme.

Two popular choices for interpolation between two
given poses (Q1,p1) and (Q2,p2) (using unit quater-
nion parameterization of orientation) are (a) linear inter-
polation for both orientation and position, i.e., Q(τ) =
[Q1 + (Q2 −Q1)τ ]/‖Q1 + (Q2 −Q1)τ‖, p(τ) = p1 +
(p2 − p1)τ (Fig. 4-a), and (b) spherical linear interpolation
(SLERP) for orientation and linear interpolation for position,
i.e., Q(τ) = Q1(Q−1

1 Q2)τ , p(τ) = p1 + (p2 − p1)τ ,
τ ∈ [0, 1] (Fig. 4-b). If we use these linear interpolations
between the end poses in the space of parameters, the
object will penetrate the support surface, so the motion plan
will not be feasible. The motion obtained will also change



with the choice of the coordinate frames for the initial and
final pose. The advantage of using ScLERP is that it is
coordinate invariant. Furthermore, since the pivoting motions
also belongs to a subgroup of SE(3), ScLERP ensures that
all the intermediate poses will lie in the same subgroup that
contains the initial and goal pose (i.e., all intermediate poses
will have the vertex v fixed to the support surface). Thus,
for motion planning, it is not necessary to explicitly enforce
the pivoting constraint. Lemma 1 formalizes this discussion.
Furthermore, ScLERP results in a motion along the shortest
path, which in the pivoting scenario leads to a rotation about
the axis through the pivot point(s) by the smallest angle.
Thus, the non-penetration constraint of the object with the
ground is also satisfied without explicitly enforcing it.

C1

C2

v

(a)

C1

C2

v

(b)

Fig. 4. Interpolation between two given poses C1 and C2, (a) linear inter-
polation for both orientation and position, (b) spherical linear interpolation
(SLERP) for orientation and linear interpolation for position.

C1 C2

S
θ

(a)

C1
C2

θ S
(b)

v
C1

C2

S

θ

(c)

Fig. 5. Examples of the primitive motions for manipulating cuboid-shape
objects by exploiting the environment contact, (a) sliding or pushing on a
face, (b) pivoting about an edge (tumbling), (c) pivoting about a vertex.

Lemma 1: Let D1 = QR1 + ε
2Qp1QR1 and D2 = QR2 +

ε
2Qp2QR2 be two unit dual quaternions representing two
poses of a rigid body. If a point v ∈ R3 in the rigid body
has the same position in both poses, the position of this point
remains the same in all the poses provided by the ScLERP
D(τ) = D1(D−1

1 D2)τ where τ ∈ [0, 1].
Proof: Let Qv = (0,v) ∈ H be a pure quaternion

representing the point v. Since the point v has the same
position in both poses D1 and D2, therefore

D1(1 + εQv)D
†
1 = D2(1 + εQv)D

†
2, (2)

∴ Qp2 −Qp1 = QR1QvQ
∗
R1 −QR2QvQ

∗
R2. (3)

Therefore, the transformation from D1 to D2 is derived as

D12 = D∗1D2 = Q∗R1QR2 +
ε

2
Q∗R1(Qp2 −Qp1)QR2

= Q∗R1QR2 +
ε

2
(QvQ

∗
R1QR2 −Q∗R1QR2Qv).

(4)

By representing the rotation Q∗R1QR2 as (cos θ2 , l sin
θ
2 ) ∈ H

(where l is a unit vector along the screw axis and θ is rotation

about the screw axis), (4) can be simplified as

D12 = (cos
θ

2
, l sin

θ

2
) + ε(0,v × l sin θ

2
) = P + εQ. (5)

The translation d along the screw axis is determined by d =
p · l where p is derived from 2QP ∗ = (0,p). By using (5),

p = v × l sin θ
2

cos
θ

2
− (v × l)× l sin2 θ

2
, (6)

and d = p · l = 0. Therefore, the transformation D(τ) is a
pure rotation about the fixed point v on the screw axis.

Furthermore, when using multiple manipulators to pivot
an object and assuming that there is no relative motion
at the hand-object contact, the motion of each end-effector
can be obtained independently by ScLERP using a shared
interpolation parameter. This will ensure that the constraint
that the relative end-effector poses of the manipulators are
unchanged during motion is maintained without explicitly
encoding it (this follows from Lemma 3 of [23] and so we
do not repeat the formal statements and proofs here). In other
words, it is guaranteed that the manipulators and the object
always form a closed chain during the entire motion without
explicitly encoding the constraint. In the next section, we use
pivoting as a primitive motion for motion planning between
any two given poses in T-space.

VII. MOTION PLANNING IN TASK SPACE

To manipulate a polyhedral object between any two given
poses CO and CF while maintaining contact with the en-
vironment, multiple pivoting moves can be combined by
defining a set of appropriate intermediate poses. The set of
the intermediate poses CI = {C1

I , C2
I , · · · , ChI } are defined

in a way that the motion between any two successive poses
{CO, CI , CF } can be represented by a single constant screw
pivoting move. Thus, we can conveniently represent the
motion between any two given object poses CO and CF in
SE(3) by using ScLERP to ensure that the object maintains
its contact with the environment continuously. The object
manipulation strategies on a flat surface can be categorized
into 3 cases; (Case I) If CO and CF have a contact edge
or vertex in common, the final pose can be achieved by
pivoting the object about the common point or edge (Fig. 5-
b,c). (Case II) If CO and CF do not have any edge or vertex
in common but the same face of the object is in contact
with the environment in both poses, different strategies can
be considered. One of the strategies is using a sequence of
pivoting motions about the object edges (tumbling). In this
motion, the travel distance is discrete and depends on the
object size and it may not be suitable for manipulating some
objects like furniture. In this situation, we can manipulate
the object is object gaiting (Fig. 8-a) which is defined as a
sequence of pivoting motions on two adjacent object vertices
in contact (see VII-A and VII-B). (Case III) If the adjacent
or opposite faces of the object are in contact with the
environment in both poses, a combination of pivoting and
gaiting is required to achieve the final pose as shown in
Fig. 6. Depending on the manipulators’ physical limitations,
object gaiting is more efficient only when a specific face of



the object is in contact with the environment. For instance,
manipulation on the longer edge of the cuboid shown in
Fig. 8-a may be more difficult than two other edges.

(a) (b) (c)

Fig. 6. Examples of the object manipulation with primitive motions when
two adjacent (a,b) or opposite (c) object faces are in contact with the
environment in initial and final poses (P: Pivoting, G: Gaiting).

A. Intermediate Poses in Object Gaiting

Let us assume that the axes of the body frame {b} are
parallel to the cuboid edges and the inertia frame {s} is
attached to the supporting plane such that Z-axis is perpen-
dicular to the plane (Fig. 7). Three successive intermediate
poses while pivoting about the vertex a are shown in Fig. 7-
a,b. The object is initially in the pose C1

I = (R1, p1) (Fig. 7-
a) holding on the contact edge ab. The pose C2

I = (R2, p2)
(Fig. 7-a) is achieved by rotating the object by a small angle
β along the edge passing through the vertex a; therefore,
R2 = R1Rx(−β) and only the vertex a is in the contact.
Finally, the pose C3

I = (R3, p3) (Fig. 7-b) is determined by
rotating C1

I by an angle α along Z-axis about the vertex
a; therefore, R3 = RZ(α)R1 and the edge ab is again in
contact with the environment. This procedure can be also
repeated for the vertex b. By using ScLERP between these
intermediate poses, we can obtain a smooth motion for object
gaiting while maintaining contact with the environment. Note
that the angles γ and β can be chosen arbitrarily and we do
so in this paper. However, if there are secondary objectives
like avoiding small obstacles on the ground while pivoting,
γ and β can be chosen to satisfy those objectives.

B. Gait Planning

To manipulate the object from an initial pose CO to a final
pose CF by object gaiting, a sequence of the rotation angle
α between these two poses should be properly determined
(Fig. 8-a). Let k be the number of required edge contacts
and α = [α1, · · · , αk] ∈ Rk be the angles between the
contact edges as shown in Fig. 8-b. We can find α using
an optimization problem as

minimize
α

‖α‖

subject to x = ±w
k∑
i=1

(−1)
i

[
cos (αO ± ᾱ)
sin (αO ± ᾱ)

]
,

αF − αO = ±
k∑
i=1

(−1)
i
αi,

|αi| ≤ αmax, i = 1, ..., k,

(7)

where ᾱ =
∑i
j=1 (−1)

j
αj , αmax is the maximum allowed

rotation angle, w is the length of the edge contact, and αO
and αF represent the orientation of the contact edges aObO

and aF bF relative to X-axis, respectively. The negative sign
correspond to the case that the first gait begins from the
edge aO, where x = bF − aO if k is an odd number and
x = aF −aO if k is an even number, moreover, the positive
sign correspond to the case that the first gait begins from
the edge bO, where x = aF − bO if k is an odd number
and x = bF − bO if k is an even number. aO, bO, aF ,
bF ∈ R2 are the coordinates of the contact vertices in CO
and CF poses along X- and Y -axis of the frame {s}. In
the optimization problems (7), the first constraint represents
the distance of the last contact vertex (aF or bF ) relative to
the first contact vertex (aO or bO) in X and Y directions.
The second constraint represents the relative angle between
the contact edges aObO and aF bF , and the last constraint
considers the manipulators’ limitations to rotate the object. In
order to find the feasible minimum number of edge contacts,
k, required to manipulate the object between two poses CO
and CF , we need to repeat (7) for different values of k.

(a) (b)

Fig. 7. Intermediate poses in object gaiting while pivoting.

(a)
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CF

w

(b)

Fig. 8. A sequence of contact edges for object gaiting between two poses
CO and CF when the first gait begins from the edge aO .

VIII. MAPPING FROM T-SPACE TO J-SPACE

Since it is assumed that the transformation between the
end-effector frame {ei} and contact frame {ci} remains
constant, after planning a path in the T-space, we can com-
pute the end-effector poses Ei for each object intermediate
pose. Then, we use the ScLERP for each of these end-
effector poses individually with a shared screw parameter.
To find the joint angles of the manipulators in J-space,
we use the (weighted) pseudoinverse of the manipulators’
Jacobian [24]. Let Θt and χt be the vector of joint angles
and end-effector’s pose at the step t, respectively. For each
manipulator, given the current end effector pose χt and the
target end effector pose χt+1 (obtained from ScLERP) we



have the corresponding joint angles Θt+1 as

Θt+1 = Θt + λJ(Θt)(χt+1 − χt), (8)

where 0 < λ ≤ 1 is a step length parameter (see [23] for a
complete algorithm). Here J is the (weighted) pseudo-inverse
of the manipulator Jacobian. By using (8) between any two
successive poses in {CO, CI , CF }, Θi(j) (j = 1, · · · ,m) for
the i-th manipulator is computed. Note that we have just
presented the simplest way of converting from task space to
joint space. To avoid joint limits, we can augment Equation 8
with additional terms on the right hand side that belongs to
the null space of the manipulator Jacobian.

IX. IMPLEMENTATION AND RESULTS

In this section, we briefly present the simulation results
for manipulating a heavy cuboid object on a flat surface and
over a step. Videos of our simulations are presented in the
video attachment to the paper.
Manipulation on a Flat Surface: In this example, we plan
motion to reorient a heavy object from an initial pose CO to
a final pose CF , in its vicinity, by object gaiting as shown in
Fig. 9-a. Existing planning algorithms [20] cannot efficiently
solve this problem, because their motion plan is essentially
restricted to move on Reeds and Shepp curves. By using the
proposed optimization problem (7), we can find the minimum
number of contact edges required to manipulate the object
between these two poses. The simulation results for aO =
[0, 0], αO = 0◦, aF = [0.13, 0.13] m, αF = −80◦, w = 0.2
m, αmax = 35◦ are shown in Fig. 9-b. As shown, at least
3 contact edges α = [−10.55◦, 29.56◦,−12.63◦, 27.25◦] (in
total 10 intermediate poses) are required to reach the final
pose by starting pivoting from the edge a.

(a) (b)

Fig. 9. Object gaiting on a flat surface.

Manipulation over a Step: In this example, we plan motion
and force to manipulate a heavy object of uniform density
over a step (Fig. 10) by both 7-DoF arms of the Baxter
robot. The computed motion plan includes 3 stages: (1)
pivoting about the object edge (C1

I ), (2) pivoting about the
vertex v (C2

I ), where the object face and only the vertex
v are in contact with the environment, (3) changing the
location of the end-effectors’ contacts and pivoting about
the step edge (CF ). Thus, there are two intermediate poses
{C1
I , C2

I }. For all the 3 stages, we assume that the contact
locations are known beforehand. We implemented T-space
planning, conversion to J-space, and force planning to find

the minimum required normal forces fcn,1 and fcn,2 at
both object–end-effector contacts {c1} and {c2} in each
motion stage. The simulation parameters are given in Table I.
Moreover, the friction coefficients at the manipulator contact
is 0.3 and at the environment contact is 0.4. The optimization
formulation has been implemented in MATLAB and solved
using the CVX toolbox [25] with the default solver (SDPT3)
on a PC with 1.8GHz processor and 16GB RAM. In Fig. 11,
the variation of joint angles in the right and left arms of
the Baxter robot in the 3 stages of manipulating the object
is shown. Note that as mentioned above, in stage (3), we
change the end-effector contact locations before pivoting the
object about the step edge. This has been reflected in the
‘Stage 3’ of Fig. 11( a) and ( b), as the joint angle values,
for all the 7 joints of the Baxter robot, change abruptly as
compared to the first two stages. In Fig. 12, the variations
of the normal contact forces with respect to the number of
iterations to reach the goal pose in the 3 stages of object
manipulation over a step are shown. In stage 1, fcn,1 and
fcn,2

first decrease and become negligible at a particular
object tilting angle where the weight of the object passes
through its support edge, and then increases. In stage 2, since
the motion is not symmetric, there is a difference between
the right and left end-effector normal contact forces in order
to balance the the object weight. In stage 3, the object-
environment contact points are initially located closer to the
object center of mass; thus, less contact forces are initially
required and by pivoting the object, these forces increase.

TABLE I
SIMULATION PARAMETERS FOR MANIPULATION OVER A STEP.

Parameter Value

Weight 20 (N)
Object & Step Dimensions 0.15 m × 0.15 m × 0.1 m, Hs = 0.07 (m)

Fig. 10. Object manipulation over a step.

X. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach for
manipulating heavy objects while using a sequence of piv-
oting motions. We have implemented our proposed motion
and force planning on two different scenarios; reorienting
an object using gaiting and also manipulating a heavy object
over a step. Given the initial and final poses of the object, we
first compute the required intermediate poses. These poses
can be derived by an optimization problem which computes
the optimal values of the rotation angles between contact
edges while object gaiting. Then, by using ScLERP, we can
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Fig. 11. Joint angle changes of the two arms, (a) right arm, (b) left arm.
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Fig. 12. The normal contact forces at {c1} and {c2} where the object
weight is m = 2kg, maximum joint torque for shoulder and elbow joints is
τmax = 50Nm, and maximum joint torque for wrist joints is τmax = 15Nm.
The time taken for one iteration of force and motion planning is 1.5 seconds.

interpolate between these intermediate poses while satisfying
all the task-related constraints. Using RMRC we can map
the task-space based plan to the joint-space allowing us to
compute the contact forces and the joint torques required to
manipulate the object. Future work includes the relaxation
of the quasi-static assumption for the force planning and
experimental evaluation of the proposed approach.
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