
SemSegMap – 3D Segment-based Semantic Localization

Andrei Cramariuc1,∗, Florian Tschopp1,∗, Nikhilesh Alatur1, Stefan Benz2, Tillmann Falck2,
Marius Brühlmeier1, Benjamin Hahn1, Juan Nieto3, and Roland Siegwart1

Abstract— Localization is an essential task for mobile au-
tonomous robotic systems that want to use pre-existing maps
or create new ones in the context of SLAM. Today, many robotic
platforms are equipped with high-accuracy 3D LiDAR sensors,
which allow a geometric mapping, and cameras able to provide
semantic cues of the environment. Segment-based mapping and
localization have been applied with great success to 3D point-
cloud data, while semantic understanding has been shown to
improve localization performance in vision based systems. In
this paper we combine both modalities in SemSegMap, extend-
ing SegMap into a segment based mapping framework able to
also leverage color and semantic data from the environment
to improve localization accuracy and robustness. In particu-
lar, we present new segmentation and descriptor extraction
processes. The segmentation process benefits from additional
distance information from color and semantic class consistency
resulting in more repeatable segments and more overlap after
re-visiting a place. For the descriptor, a tight fusion approach
in a deep-learned descriptor extraction network is performed
leading to a higher descriptiveness for landmark matching. We
demonstrate the advantages of this fusion on multiple simulated
and real-world datasets and compare its performance to various
baselines. We show that we are able to find 50.9% more high-
accuracy prior-less global localizations compared to SegMap
on challenging datasets using very compact maps while also
providing accurate full 6 DoF pose estimates in real-time.

I. INTRODUCTION

Mobile robots are continuously increasing their impact on
our everyday life and becoming more and more viable not
only in structured factories but also unstructured environments
and in contact with humans [1]. One of the most crucial
capabilities of mobile robots is the ability to know their
position in the environment in order to navigate and fulfill
their task. Positioning can be framed either in the context
of localization in a known map or in the context of the
Simultaneous Localization and Mapping (SLAM) problem
where localizations and potential loop closures are needed
to maintain a consistent map. A multitude of solutions to
the positioning problem exist, mainly depending on the
available sensor data, specific challenges of the environment
and computational limitations of the robotic platform [1].

For standard indoor applications, visual localization based
on hand-crafted keypoint descriptors [2], [3] has been

∗Authors contributed equally to this work
1Authors are members of the Autonomous Systems Lab, ETH Zurich,

Switzerland; {firstname.lastname}@mavt.ethz.ch
2Authors are members of Robert Bosch GmbH, Germany;

{firstname.lastname}@de.bosch.com
3Author is with Microsoft, Switzerland but the work was done while the

author was a member of 1.
This work was supported by Robert Bosch GmbH, Germany. The code is

available at https://github.com/ethz-asl/segmap.

Fig. 1: This image shows the SemSegMap pipeline in action.
SemSegMap is able to perform segment-based semantic
localization on point cloud data enriched with semantic
and color information from a visual camera. The currently
observed local map around the robot is shown as the colored
point cloud on top of the global map depicted below, with each
segment having a unique color. Green lines show matched
segment correspondences leading to a localization while the
orange line shows the robot trajectory.

demonstrated to achieve high accuracy and recall. However,
outdoor applications typically pose challenges to those
methods, namely large-scale environments, self similarity
and vast appearance changes due to weather, daytime and
seasonal conditions [4]. Vision based learning methods
improve on viewpoint and appearance invariance [5]–[7]
by enabling a more context aware description. In contrast,
Light Detection and Ranging (LiDAR) based localization
achieves illumination invariance using geometry to describe
the environment [8], [9], however in turn missing rich
information available from vision.

As a combined solution, in this paper, we introduce
SemSegMap, a method that leverages the visual and seman-
tic information available from cameras and fuses it with
geometric information from a standard 3D LiDAR. As a
basis for our localization framework we use SegMap [8], a
LiDAR based SLAM pipeline that uses 3D segments of the
environment as landmarks and allows for 6D pose retrieval
from compact descriptors in large-scale maps. In contrast to
SegMap, in SemSegMap, as outlined in Figure 1, first the point
cloud (PC) gets enriched with color and semantic information
using back-projection of semantically segmented RGB images.

ar
X

iv
:2

10
7.

14
71

5v
1

 [
cs

.R
O

]
 3

0
Ju

l 2
02

1

https://github.com/ethz-asl/segmap

Further, the PC is segmented based on geometric, color and
semantic information to create consistent and meaningful
segments. We show in multiple experiments that as a result
of this fusion, the segmentation process and the generated
descriptors become more robust to viewpoint and appearance
changes, thus enabling a more consistent re-localization of
the robot.

Our contributions are as follow
• We show that integrating color and semantic information

from a cameras into PCs improves both the segmentation
and descriptor generation processes, leading to more
consistent 6D localizations in a SLAM pipeline.

• We introduce a simulation based learning pipeline
for training segment descriptors using ground truth
associations, and show their transferability to real-world
scenarios.

• We demonstrate the performance of SemSegMap in an
extensive evaluation on simulation and real-world data
outperforming various baselines.

• For the benefit of the community, we open-source the
whole framework under a permissive license available
at: https://github.com/ethz-asl/segmap.

II. RELATED WORK

The ability to localize is at the heart of the SLAM
problem [1]. Two distinct problems addressed in localization
are the localization of landmarks, which can then be used to
calculate a precise 6D location in a global map, and place
recognition, where only a rough neighborhood is estimated.

Vision-based place recognition methods such as
NetVLAD [7] or DELF [10] have the advantage that they
can incorporate a lot of contextual information and thus
gain high robustness to viewpoint and illumination changes.
Some recent techniques explicitly model the semantics
of the scene to obtain higher robustness towards seasonal
changes [11]–[13]. More precise visual keypoint-based place
recognition methods are well studied [14] and of significant
interest [15], but they present their own set of challenges with
regards to scalability, viewpoint, and illumination changes. A
compromise between precise keypoint localization and the
ability to incorporate contextual and semantic information
can be found in object-based localization frameworks [16],
[17].

LiDAR based localization methods rely mainly on matching
geometry and can be separated into various categories. Many
PC registration methods, out of which Iterative Closest Point
(ICP) [18] is the most well-known one, require a good
pose prior and are not suited for global localization. While
global registration methods exist that work beyond the local
context [19], [20], they still require storing at least parts of
the PC data. This can be partially mitigated by only extracting
compact descriptors during map building and localization.
Descriptors of single LiDAR scans [21]–[24] only allow rough
location estimates and not precise 6D poses that could be
integrated into a SLAM pipeline. Descriptors of local keypoint
neighborhoods [25]–[28] in turn can be noisy and lack
distinctiveness due to only having geometry data available.

A combination can be achieved by performing a refinement
step, e.g. using ICP, after the rough localization, but would
again require storing and working with PC data [29], [30].

PC segment description and mapping based approaches
were first proposed by Douillard et al. [31] and Nieto et
al. [32] and then further extended into a full SLAM pipeline
in SegMap by Dubé et al. [8]. SegMap leverages advantages
from both local and global descriptors by looking at features
in the environment that are large enough to be more robust
and meaningful, while also maintaining the ability to produce
accurate 6D poses. Extensions to the pipeline include different
training methods for the descriptor, as well as fine tuning to
different environments [33], [34].

Enriching PCs with semantic information, e.g. obtained by
fusing camera and LiDAR data, has proven beneficial [35]–
[39]. Ratz et al. [40] propose not only to use just one scan
instead of an accumulated PC but also to enrich the descriptor
with appearance information from a camera using NetVLAD
and a customized fusion layer in their network. This increases
accuracy at the cost of a significant decrease in computational
performance, due to the expensive NetVLAD backbone. Also,
the segmentation procedure is still purely based on geometry
and cannot incorporate any additional information from the
camera. Schönberger et al. [41] propose a localization scheme
based on semantically labeled 3D PCs able to localize in
the presence of severe viewpoint and appearance changes.
They extract a deep-learned descriptor for a subvolume of the
semantic map and compare it to similarly extracted ones from
a prior map. However, using such submaps only provides a
rough place-recognition like localization and require further
refinement steps to get 6D poses. Furthermore, by operating
on comparably larger subvolumes and the need to check
multiple hypothesis, the corresponding descriptor network is
computationally expensive.

In contrast, SemSegMap introduces a framework that is
both efficient enough to be run in real-time on a consumer
CPU (excluding the semantic segmentation running on the
GPU) and still able to leverage the rich information available
from geometry, appearance and semantics. We perform a very
early fusion of the two sensor modalities which allows also
the segmentation to be based on all available information.

III. SemSegMap

In this section we present the details of the proposed
SemSegMap pipeline, as shown in Figure 2. The approach
can be split into several key modules, out of which the
new segmentation and descriptor explained in Sections III-B
and III-C, represent the core contributions of this paper.

A. Semantic enrichment

The inputs to the pipeline consist of a stream of color
images and PCs. The color images are passed through a
semantic segmentation network to obtain a semantic class
for each pixel. Using the extrinsic calibration between the
camera and the LiDAR as well as the intrinsic calibration
parameters of the camera, the color and semantic class of
each pixel is projected onto the PC. The result is a set of

https://github.com/ethz-asl/segmap

Odometry

RGB image

3D point cloud

Semantics

Se
ns

or
 in

pu
t

Enriched PC

Centroids Descriptors

Descriptor extraction
(see Fig. 3)

Local map

Target map

Candidates

Matching

Loop closure / localization constraints

Geometric
verification

Poses
for

accumulation

Poses and map

Pose-graph mapping

Segmentation

64x1
III-A III-B III-C

Fig. 2: Overview of the SemSegMap pipeline. The whole pipeline can be run in localization mode with a target map loaded
from the disk or in loop closure mode where the target map is provided by the current pose-graph. Green: Main modules
changed from [8] with corresponding section numbers.

enriched points in the form p = {x, y, z, h, s, v, c}, where
x, y, and z are the spatial coordinates, featuring also color
values h, s, and v in HSV space (result visible in Figure 1),
and semantic class labels c (example depicted in Figure 2:
Enriched PC).

B. Semantic segmentation

To remove noise and achieve a more compact data
representation, we accumulate the enriched PC data in a
fixed size voxel grid. The voxel grid is a cylinder with a
radius of R that dynamically follows the robot and is centered
on it. For each voxel, the color information of multiple points
is fused by using a running average over the incoming values
to obtain the current value for the voxel. In contrast, the
semantic class labels can not be averaged, and therefore,
all values are stored and the semantic label of the voxel is
determined by majority voting. Further filtering can be done
by excluding points that belong to known dynamic classes
e.g. humans and cars.

We use an incremental Euclidean segmentation that does
not need to be rerun on the entire PC at each step, but is
computed incrementally only on the newly active voxels, as
detailed in [8]. A segment S is defined as a set of points,
where for each point p1 ∈ S there exists at least one other
point p2 ∈ S , so that the distance between these two points
is smaller than the segmentation distance dsegment.

To include the semantic and color information into the
segmentation process, we modify the standard Euclidean
distance function between two points p1 and p2 to be

d2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2+

f2h(|h1 − h2|) + f2c (c1, c2).
(1)

The function fh is used to compute the distance between
two colors by only comparing the difference in hue values in

order to mitigate the appearance variance and is defined as

fh(∆h) =

{
ph min (∆h, 1−∆h) > th

0 otherwise
, (2)

where ph is a fixed penalty for when the color difference
is above a certain chosen threshold th and where the hue
values h are normalized to [0, 1). In practice, there are two
cases because the hue color space is cyclical. Similarly, the
semantic class distance function is defined as

fc(c1, c2) =

{
pc c1 6= c2

0 otherwise
, (3)

where pc is a fixed penalty applied when the semantic classes
do not match. Fixed penalties are necessary because the color
space and semantic spaces are either not continuous or not
numerically comparable to physical distances in space. A soft
constraint on the segmentation can be imposed by choosing
ph and pc smaller than dsegment, which means that two points
that are sufficiently close in space can still be part of the
same segment, even if they have a very different color or
class.

During the segmentation process, at each step, the robot
extracts a set of segments in the local map around itself. Those
segments slowly accumulate points as more observations
are made from different viewpoints. Similarly to how a
keypoint is tracked, a segment will have multiple accumulated
observations. Therefore, the final observation, just before it
moves out of the local map neighborhood, will be the most
complete one.

C. Description

For each segment observation, a learned descriptor is
calculated and the local map is built by associating each
descriptor to the corresponding segment centroid point. For
efficiency reasons, we only keep the descriptor of the last

Colored PC

Po
in

tn
et

++

D
en

se

3D
 C

on
v

64x1

Class Grid

Reconstruction
loss

Triplet loss

Scale

Descriptor

3D
 C

on
v

Anchor Positive Negative

Fig. 3: The descriptor extraction of the colored PC is based
on a Pointnet++ [42] backbone while the semantics are fused
in a coarse voxel grid of semantic class histograms. The
network is trained using both a reconstruction loss and a
triplet loss.

and most complete observation of each segment to create the
target map for subsequent localizations or loop closures.

The new descriptor network, illustrated in Figure 3, uses the
Pointnet++ architecture [42] that is based on hierarchical point
set feature learning. The input to the Pointnet++ backbone is
the colored PC segment that has been randomly subsampled
to a fixed size of 2048 points. The class labels are instead
accumulated into a very coarse 3× 3× 3 spatial voxel grid,
where each cell contains a normalized histogram of the class
labels that fall inside that section of the PC segment. This
very coarse description is enough because due to the semantic
segmentation process the class labels inside most segments
are relatively homogeneous. For the sake of computational
efficiency this class representation is handled separately by
a small 3D convolutional network, whose output is later
concatenated with that of the Pointnet++ backbone. Finally,
we also input into the network the scaling factor by which the
point coordinates were normalized, which helps the network
better discriminate between segments that do not match but
are either visually or geometrically similar.

The descriptor is trained using both a triplet loss as well
as a reconstruction loss from a convolutional decoder. The
triplet loss is formulated as

Ltriplet = max(m+ σ(A,P) ·DA,P −DA,N , 0) (4)

where m = 0.4 is the margin, DA,P is the Euclidean distance
between an anchor segment A and a positive example P ,
DA,N is the Euclidean distance between the anchor and a
negative example N , and σ(A,P) = card(P)

card(A) is the ratio in
number of points between anchor and positive example. The
scaling σ(A,P) is a heuristic that prevents the loss function
from penalizing too much segment observations that should
match, but due to segment incompleteness only share a small
overlap and therefore in practice are hard to match. For the
reconstruction loss we use a binary cross entropy loss applied
to each voxel. This enables approximate reconstructions of
the PC map from only the descriptor space for visualization
and improves the descriptor quality of very similar looking
segments. During training we augment the PCs in multiple
ways, including both geometric variations such as random

rotations, jitter, scale shifts, missing points or sections, and
visual variations such as color shifts or erronous class labels.

D. Localization and loop closure

To perform localization or loop closure, candidate cor-
respondences are identified between the locally built map
of segments and the prior or global map, respectively. The
candidates are identified using the descriptors of each locally
visible segment and retrieving the k most similar descriptors
from the global map. Finally, a geometric verification step
is performed based on the centroids of the target and
query match candidates to identify the 6 degree of freedom
(DoF) transformation that leads to the largest set of inliers
using Random Sample Consensus (RANSAC). The resulting
transformation can either be used as a localization result when
localizing from a previously built map, or as a loop closure
constraint in a SLAM scenario. In the latter case, both the
loop closure constraint and robot odometry constraints are
placed into an online pose graph based on iSAM2 [43].

IV. EXPERIMENTS

In this section, we describe our training procedure and
present thorough evaluation of SemSegMap on both simulated
and public real-world datasets, demonstrating a superior
performance compared to different baselines on segmentation,
descriptor quality, and localization accuracy and robustness.

A. Datasets

Datasets including visual as well as PC data, spanning
large areas and covering different environmental conditions
that include semantic annotations are rare and hard to obtain.
Therefore, for the data intensive step of descriptor training, we
utilize simulated data to be able to quickly produce training
data for SemSegMap. Furthermore, simulated datasets provide
the opportunity to specifically evaluate our contribution in
isolation of sensor noise, state estimation and calibration
inaccuracies, and imperfect semantic segmentation. In addi-
tion, we demonstrate the transferablility of our approach to a
challenging real-world dataset.

1) Simulation: Photo-realistic simulation is a popular tool
for efficiently generating visually rich data with high quality
ground truth annotations. Some of the most popular simulation
tools in the robotics domain are Gazebo [44], CARLA
[45], LGVSL [46] and AirSim [47]. While CARLA and
LGVSL focus on autonomous driving scenarios, Gazebo
does not provide photorealistic visual output. The datasets
used in the following experiments were generated by AirSim
using the ”Modular Neighborhood Pack”1, a large residential
environment. Each dataset consists of RGB image data, a
semantic segmentation map for the image, LiDAR PCs as well
as odometry information. The image data consists of three
cameras, one on each side and a front facing one, spanning a
total horizontal Field of View (FoV) of 270 ◦. The simulated
LiDAR has a resolution of 1920 × 64 and the same 270 ◦

FoV. All sensors are synchronized and operated at 5 Hz. An

1https://www.unrealengine.com/marketplace/en-US/
product/modular-neighborhood-pack

https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack
https://www.unrealengine.com/marketplace/en-US/product/modular-neighborhood-pack

Fig. 4: Bird’s eye view of the simulation environment
including the simulated trajectories (blue: S0, green: S1,
red: S2, yellow: S3).

(a) RGB image: Sunny day (b) RGB image: Sunrise

(c) Semantic segmentation (d) 3D LiDAR PC

Fig. 5: Overview of simulated sensor modalities and environ-
mental conditions.

overview of the neighborhood, the simulated environmental
conditions, as well as the simulated trajectories, is given in
Figure 4 and 5, and Table I, respectively.

2) Real world data: For demonstrating the applicability of
our approach to real-world environments, we use the NCLT
dataset [48]. The dataset provides raw sensor data from a
LiDAR sensor, an omnidirectional camera, and ground truth
position data, among others. As the images lack ground-truth
semantic labelling, we used the author’s implementation2

from [49] to semantically segment the images from the five
horizontal color cameras. The camera-to-LiDAR extrinsics,
provided in the dataset, were used to enrich the PCs with
color and semantic information by projection onto the image
plane. As a last step, we removed the local ground plane from
the enriched PC in order to make the subsequent segmentation
process more robust. Because the dataset was recorded on a

2https://github.com/NVIDIA/semantic-segmentation,
accessed on 8th of November 2020

TABLE I: Overview of simulated trajectories. The referenced
trajectories as well as environmental conditions are shown in
Figures 4 and 5, respectively.

Length Conditions Comment

S0 2071m daytime, sunny, clear Covers whole map
S1 1462m daytime, sunny, clear Medium size with overlap
S2 377m daytime, sunny, clear Single small loop
S3 358m early sunrise, shadows Opposite direction to S2

TABLE II: Overview of the trajectories extracted from the
NCLT dataset. Please refer to [48] for a detailed description
of the dataset.

Date Time Conditions

N0 2012-04-29 4min− 30min morning, sunny, foliage
N1 2012-05-26 0min− 10min evening, sunny, foliage
N2 2012-11-04 0min− 25min morning, cloudy
N3 2013-04-05 54min− 69min afternoon, sunny, snow

SegWay, which experiences a lot of back and forth pitching
motion, the ground plane cannot simply be removed by setting
a height threshold on the raw PC. Instead, we estimated the
local ground plane based on the points in the enriched PC
whose class labels correspond to ground and subsequently
removed all points in close proximity to these points. A
subset of the dataset featuring large map overlap and different
environmental conditions was processed and used for our
experiments as listed in Table II.

B. Segmentation

To evaluate the segmentation method presented in Sec-
tion III-B we use the simulation dataset run S1 and the NCLT
run N0. For the classic Euclidean segmentation in SegMap
we use the default segmentation distance dsegment = 0.2. In
SemSegMap we adjust this to dsegment = 0.3 and set the
penalties and thresholds in the color and semantic distance
functions to th = 0.1, ph = 0.05 and pc = 0.15.

To measure the segmentation quality, we first calculate the
convex hull Vi of each segment Si in the local map, and then
compare it to the segment Sj with the convex hull Vj at the
same global location in the target map. The quality of the
segmentation is then given by the Intersection Over Union
(IoU) as

IoU(Vi, Vj) =
Vi ∩ Vj
Vi ∪ Vj

. (5)

In this way, we compare how repeatable and accurate the
segmentation is when visiting the same place multiple times.
Figure 6 shows the segmentation IoU results from run
S1 in the simulated environment which features multiple
intersecting loops in the same environment and N0 for the
NCLT dataset. A low IoU indicates that the segment was
not properly re-segmented when re-visiting the place, while
a high IoU corresponds to a consistent re-segmentation. In
the latter case the segments occupy the same volume in
space and are therefore more likely to be matched based on
their descriptors. We consider an IoU ≥ 0.33 to represent a

https://github.com/NVIDIA/semantic-segmentation

0
0 - 0

.33

0.33 - 0
.67

0.67 - 1

-25

0

+25

+50

0
0 - 0

.33

0.33 - 0
.67

0.67 - 1

-15

0

+15

+30

Fig. 6: Change of the segmentation IoU for the simulation
dataset S1 (left) and NCLT N0 (right) using SemSegMap with
respect to SegMap. The bins represent the change in number
of segments with a specific IoU range. The small numbers on
top of the bars depict the absolute numbers of segments in that
range produced by SemSegMap. While SemSegMap produces
less segments with low IoU, which represent inconsistent
segmentations, it is able to produce more consistent segments
with a high overlap and IoU compared to SegMap.

good overlap while an IoU < 0.33 represents an inconsistent
segmentation. SemSegMap produced −24.24 % and −8.38 %
less inconsistent segments with IoU < 0.33 while obtaining
30.97 % and 25.03 % more consistent segments with an
IoU ≥ 0.33 with respect to SegMap for the simulation and
NCLT dataset, respectively.

C. Descriptor quality

To evaluate the impact of our adapted descriptor extraction
network described in Section III-C, we performed a similar
experiment as described in [8, Section 5.4].

In order to use the segments as landmarks in a localization
and loop-closure scenario as described in Section III-D, we
obtain candidate matches using k nearest neighbours (k-NN).
For a more robust and efficient localization, the amount k of
candidates necessary to retrieve the correct match should be
as small as possible, even with partially observed segments
which occur during live operation or different directions of
travel. In Figure 7, we show a comparison of how high k needs
to be in order to retrieve the correct match using SemSegMap
and different state-of-the-art PC descriptors operating on
the simulation dataset S0 and the NCLT dataset N0. The
SemSegMap network is trained solely on ground truth data
obtained from S1 and not retrained on the NCLT data.

We compare the quality of our descriptor to a learned
segment descriptor [8] for the simulated data, and extended the
evaluation for the NCLT dataset to the hand-crafted descriptor
FPFH [25] and the learned local descriptor 3DSmoothNet [28].
For FPFH, a single segment descriptor was computed by
selecting the segment centroid as the keypoint and choosing
the descriptor radius to encompass all points of the respective
segment [50]. In the case of 3DSmoothNet, simply extending
the radius did not yield meaningful results. One reason could
be that the descriptor was specifically designed and trained as
a local descriptor. In order to deploy it within our segment-
based framework, we randomly select points from the segment
PC as keypoints, extract local descriptors for each keypoint

20 40 60 80 100
100

102

20 40 60 80 100
100

101

102

Fig. 7: Comparison of descriptor quality on the simulation
dataset S0 (left) and the NCLT dataset N0 (right).

and aggregate them to a global descriptor by following a
bag of words (BoW) approach using k-means clustering.
Specifically, we trained the k-means model on a subset of
segments extracted from N0, where k = 16 yielded the best
results.

Note from Figure 7 that SemSegMap outperforms all other
descriptors in both datasets except for FPFH with incomplete
segments with completeness < 30 %. This property of the
SemSegMap descriptor is controlled by the σ term in the
triplet loss formulation introduced in Equation 4 that biases
the network towards better matching more complete segments.
Removing the influence of this term causes better matching
performance for harder matches, i.e. at low completeness
thresholds, but at the same time reduces the matching
performance of more complete segments as the descriptor
attempts to perform more unlikely matches. However, in
a typical SLAM application, while an early localization,
e.g. with many incomplete segments is important, achieving
more accurate and robust localizations during operation with
complete segments is often of greater interest in a full
smoothing and mapping framework. The descriptor transfers
well to the more challenging real-world data from the NCLT
dataset, where the performance difference is even more
evident.

D. Localization accuracy and robustness

To assess the localization accuracy and robustness, we
tested SemSegMaps ability to localize in a previously built
target map. Therefore, we recorded the target map on
trajectories S0 and N0 for the simulation and NCLT dataset,
respectively. The map for S0 contains 2006 segments and has
a size of 0.51 MB while for N0 there are 2588 segments in
a 0.66 MB map. All other trajectories except for the training
set S1 are used for on-line localization against the target map
as described in Section III-D.

For the localization evaluation we retrieve a total of 16
neighbours using k-NN. For the geometric verification in our
experiments the RANSAC was set to require a minimum
of 6 and 7 inliers for the simulation and NCLT dataset,
respectively, and allow a centroid distance of at most 0.4 m.
For all the experiments for both SegMap and SemSegMap we
keep these parameters fixed and only change the segmentation
and description process as outlined in Sections III-A and III-
C, to provide the fairest comparison. With these settings

TABLE III: Localization accuracy results overview (n<•m
relative improvement of SemSegMap with respect to SegMap
with a certain accuracy).

Number of localizations n<1m n<5m

SegMap SemSegMap

S2 126 258 53.93 % 100.79 %
S3 10 108 4400 % 980 %

N1 1201 1395 60.00 % 14.96 %
N2 1060 1337 44.17 % 27.55 %
N3 774 1056 41.70 % 35.58 %

SemSegMap (excluding the semantic segmentation) runs on
an Intel i7-8700 CPU with an average frequency of 6.13 Hz
and 6.74 Hz on the simulation and NCLT dataset, respectively.

Table III and Figures 8 and 9 report the accuracy results
of the estimated 6-DoF pose for the simulation and NCLT
dataset, respectively. SemSegMap is able to consistently
find more localizations throughout all the tested datasets.
In simulation, less affected by odometry and sensor noise,
SemSegMap is able to find a total of 102 % more high
accuracy localizations (translation error of less than 1 m) with
respect to SegMap and 165 % more accurate localizations
(translation error of less than 5 m). Especially on trajectory
S3, SegMap suffers from different appearance and viewpoint
while SemSegMap is less affected and still able to produce
many accurate localizations. Those results also transfer to
the real-world dataset where more than 50.9 % high accuracy
localization and 24.7 % more accurate localizations are found
compared to SegMap.

V. CONCLUSIONS

In this paper, we introduced SemSegMap, an extension to
SegMap that fuses both color and semantic information from
an RGB camera with LiDAR data in real-time. In a real-world
robotic application, the addition of cameras to a platform
equipped with a LiDAR is typically easily possible due to
the comparably low price of cameras and their cross-purpose
use, especially when also performing semantic segmentation
to improve scene understanding. We include this additional
modality both to improve segmentation and descriptor quality,
which we showed in a stimulated dataset with accurate ground
truth and a challenging real-world dataset.

Using the described extensions, SemSegMap is able to
outperform a geometric segmentation approach by producing
less inconsistent segments and more highly overlapping
segments when re-visiting a place. The tight fusion of
the additional information in the descriptor also increases
descriptor quality where SemSegMap not only outperforms the
SegMap baseline but also other state-of-the-art PC descriptors
like FPFH and 3DSmoothNet in terms of k-NN required to
find the correct match. These improvements also propagate
to the localization accuracy and robustness resulting in
SemSegMap providing 102 % and 50.9 % more high accuracy
localizations than SegMap for the simulated and the real-world
dataset, respectively.

0 1 2 3 4 5
0

100

200

300

0 1 2 3 4 5
0

100

200

300

Fig. 8: Cumulative successful localizations with a certain
accuracy on the simulation datasets with a target map built
from S0.

0 1 2 3 4 5
0

500

1000

1500

0 1 2 3 4 5
0

500

1000

1500

Fig. 9: Cumulative successful localizations with a certain
accuracy on the real-world datasets with a target map built
from N0.

To further extend our framework, a combination of FPFH
and SemSegMap descriptor based on the expected complete-
ness of a segment could be used in order to benefit from
both advantages.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” IEEE
Transactions on Robotics, vol. 32, no. 6, Dec. 2016.

[2] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschen-
ski, and R. Siegwart, “maplab: An Open Framework for Research
in Visual-inertial Mapping and Localization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, 11 2018.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE Transactions
on Robotics, vol. 31, no. 5, 10 2015.

[4] M. J. Milford and G. F. Wyeth, “SeqSLAM: Visual route-based
navigation for sunny summer days and stormy winter nights,” in IEEE
International Conference on Robotics and Automation (ICRA), 2012.

[5] J. Revaud, P. Weinzaepfel, C. R. de Souza, and M. Humenberger,
“R2D2: repeatable and reliable detector and descriptor,” in Advances
in Neural Information Processing Systems, 2019.

[6] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From
Coarse to Fine: Robust Hierarchical Localization at Large Scale,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Dec. 2018.

[7] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “NetVLAD:
CNN Architecture for Weakly Supervised Place Recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 6, 2018.

[8] R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto,
R. Siegwart, and C. Cadena, “SegMap: Segment-based mapping and
localization using data-driven descriptors,” The International Journal
of Robotics Research, vol. 39, no. 2-3, 2019.

[9] M. Elhousni and X. Huang, “A Survey on 3D LiDAR Localization for
Autonomous Vehicles,” in 2020 IEEE Intelligent Vehicles Symposium
(IV2020), Las Vegas, US, May 2020.

[10] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-Scale
Image Retrieval with Attentive Deep Local Features,” in 2017 IEEE
International Conference on Computer Vision (ICCV), Oct. 2017.

[11] A. Gawel, C. Del Don, R. Siegwart, J. Nieto, and C. Cadena, “X-View:
Graph-Based Semantic Multi-View Localization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, 2017.

[12] A. Benbihi, S. Arravechia, M. Geist, and C. Pradalier, “Image-Based
Place Recognition on Bucolic Environment Across Seasons From
Semantic Edge Description,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020.

[13] H. Hu, Z. Qiao, M. Cheng, Z. Liu, and H. Wang, “Dasgil: Domain
adaptation for semantic and geometric-aware image-based localization,”
IEEE Transactions on Image Processing, vol. 30, 2020.

[14] S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual Place Recognition: A Survey,” IEEE
Transactions on Robotics, vol. 32, no. 1, Feb. 2016.

[15] L. Hammarstrand, F. Kahl, W. Maddern, T. Pajdla, M. Pollefeys,
T. Sattler, J. Sivic, E. Stenborg, C. Toft, and A. Torii, “Benchmarking
Long-term Visual Localization,” https://www.visuallocalization.net/.

[16] K. Ok, K. Liu, K. Frey, J. P. How, and N. Roy, “Robust Object-
based SLAM for High-speed Autonomous Navigation,” in International
Conference on Robotics and Automation, Montreal, Canada, May 2019.

[17] F. Taubner, F. Tschopp, T. Novkovic, R. Siegwart, and F. Furrer, “LCD –
Line Clustering and Description for Place Recognition,” in International
Virtual Conference on 3D Vision (3DV), Fukuoka, Japan, Nov. 2020.

[18] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611,
1992.

[19] L. Bernreiter, L. Ott, J. Nieto, R. Siegwart, and C. Cadena, “PHASER:
a Robust and Correspondence-free Global Pointcloud Registration,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, 2021.

[20] H. M. Le, T.-T. Do, T. Hoang, and N.-M. Cheung, “SDRSAC:
Semidefinite-Based Randomized Approach for Robust Point Cloud
Registration Without Correspondences,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[21] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag,
J. Behley, and C. Stachniss, “OverlapNet: Loop Closing for LiDAR-
based SLAM,” in Robotics: Science and Systems XVI, Jul. 2020.

[22] H. Yin, Y. Wang, X. Ding, L. Tang, S. Huang, and R. Xiong, “3D
LiDAR-Based Global Localization Using Siamese Neural Network,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 4,
2019.

[23] G. Kim, B. Park, and A. Kim, “1-Day Learning, 1-Year Localization:
Long-Term LiDAR Localization Using Scan Context Image,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, Apr. 2019.

[24] H. Yin, L. Tang, X. Ding, Y. Wang, and R. Xiong, “Locnet: Global
localization in 3d point clouds for mobile vehicles,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), 2018, pp. 728–733.

[25] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3D registration,” in 2009 IEEE International Conference
on Robotics and Automation, 2009.

[26] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards
learning based lidar localization for autonomous driving,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[27] F. Kallasi, D. L. Rizzini, and S. Caselli, “Fast keypoint features from
laser scanner for robot localization and mapping,” IEEE Robotics and
Automation Letters, 2016.

[28] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The perfect match:
3d point cloud matching with smoothed densities,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[29] L. Schaupp, M. Bürki, R. Dubé, R. Siegwart, and C. Cadena, “OREOS:
Oriented Recognition of 3D Point Clouds in Outdoor Scenarios,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov. 2019.

[30] A. Zaganidis, A. Zerntev, T. Duckett, and G. Cielniak, “Semantically
Assisted Loop Closure in SLAM Using NDT Histograms,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov. 2019.

[31] B. Douillard, A. Quadros, P. Morton, J. P. Underwood, M. De Deuge,
S. Hugosson, M. Hallström, and T. Bailey, “Scan segments matching
for pairwise 3D alignment,” in IEEE International Conference on
Robotics and Automation, 2012.

[32] J. Nieto, T. Bailey, and E. Nebot, “Scan-SLAM: Combining EKF-
SLAM and scan correlation,” in Field and service robotics, 2006.

[33] G. Tinchev, S. Nobili, and M. Fallon, “Seeing the Wood for the Trees:
Reliable Localization in Urban and Natural Environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct. 2018.

[34] G. Tinchev, A. Penate-Sanchez, and M. Fallon, “Learning to See the
Wood for the Trees: Deep Laser Localization in Urban and Natural
Environments on a CPU,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, Apr. 2019.

[35] L. Sun, Z. Yan, A. Zaganidis, C. Zhao, and T. Duckett, “Recurrent-
OctoMap: Learning State-Based Map Refinement for Long-Term Se-
mantic Mapping With 3-D-Lidar Data,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, Oct. 2018.

[36] A. Zaganidis, L. Sun, T. Duckett, and G. Cielniak, “Integrating Deep
Semantic Segmentation Into 3-D Point Cloud Registration,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, Oct. 2018.

[37] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and
C. Stachniss, “SuMa++: Efficient LiDAR-based Semantic SLAM,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov. 2019.

[38] S. A. Parkison, L. Gan, M. G. Jadidi, and R. Eustice, “Semantic
Iterative Closest Point through Expectation-Maximization,” in BMVC,
2018.

[39] L. Bernreiter, L. Ott, J. Nieto, R. Siegwart, and C. Cadena, “Spherical
Multi-Modal Place Recognition for Heterogeneous Sensor Systems,” in
International Conference on Robotics and Automation (ICRA), 2021.

[40] S. Ratz, M. Dymczyk, R. Siegwart, and R. Dubé, “OneShot Global
Localization: Instant LiDAR-Visual Pose Estimation,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2020.

[41] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler, “Semantic
Visual Localization,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017.

[43] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” The International Journal of Robotics Research, vol. 31,
no. 2, 2012.

[44] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, Sep
2004.

[45] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in 1st Annual Conference
on Robot Learning, 2017.

[46] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim,
E. Sterner, K. Ushiroda, M. Reyes, D. Zelenkovsky, and S. Kim,
“LGSVL simulator: A high fidelity simulator for autonomous driving,” in
2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), 2020.

[47] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
Service Robotics, 2017.

[48] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of Michigan North Campus long-term vision and lidar dataset,”
International Journal of Robotics Research, Aug. 2016.

[49] A. Tao, K. Sapra, and B. Catanzaro, “Hierarchical multi-scale attention
for semantic segmentation,” 2020, arxiv: 2005.10821.

[50] Anu, W. Nguatem, and Jan, “Computing a global descriptor with local
descriptors,” May 2015. [Online]. Available: http://www.pcl-users.
org/Computing-a-global-descriptor-with-local-descriptors-td4038260.
html

https://www.visuallocalization.net/
http://www.pcl-users.org/Computing-a-global-descriptor-with-local-descriptors-td4038260.html
http://www.pcl-users.org/Computing-a-global-descriptor-with-local-descriptors-td4038260.html
http://www.pcl-users.org/Computing-a-global-descriptor-with-local-descriptors-td4038260.html

	I Introduction
	II Related Work
	III SemSegMap
	III-A Semantic enrichment
	III-B Semantic segmentation
	III-C Description
	III-D Localization and loop closure

	IV Experiments
	IV-A Datasets
	IV-A.1 Simulation
	IV-A.2 Real world data

	IV-B Segmentation
	IV-C Descriptor quality
	IV-D Localization accuracy and robustness

	V Conclusions
	References

