
Risk Conditioned Neural Motion Planning

Xin Huang1, Meng Feng1, Ashkan Jasour1, Guy Rosman2, and Brian Williams1

Abstract— Risk-bounded motion planning is an important yet
difficult problem for safety-critical tasks. While existing math-
ematical programming methods offer theoretical guarantees in
the context of constrained Markov decision processes, they
either lack scalability in solving larger problems or produce
conservative plans. Recent advances in deep reinforcement
learning improve scalability by learning policy networks as
function approximators. In this paper, we propose an extension
of soft actor critic model to estimate the execution risk of a
plan through a risk critic and produce risk-bounded policies
efficiently by adding an extra risk term in the loss function of
the policy network. We define the execution risk in an accurate
form, as opposed to approximating it through a summation of
immediate risks at each time step that leads to conservative
plans. Our proposed model is conditioned on a continuous
spectrum of risk bounds, allowing the user to adjust the
risk-averse level of the agent on the fly. Through a set of
experiments, we show the advantage of our model in terms
of both computational time and plan quality, compared to a
state-of-the-art mathematical programming baseline, and vali-
date its performance in more complicated scenarios, including
nonlinear dynamics and larger state space.

I. INTRODUCTION

Motion planning is an important task in many robotics
applications, such as rescue robots and autonomous vehicles.
One of the most popular approaches for motion planning is
reinforcement learning, which learns an optimal policy that
minimizes the cost, through exploration and exploitation.
Recently, deep reinforcement learning has been proposed
to approximate the policy function or the cost function
by deep neural networks, and has achieved great success
in applications where the state and action space is high-
dimensional, such as robotics manipulation [1] and Go game
[2].

Despite the success of reinforcement learning in the con-
text of Markov decision processes (MDPs), its objective
of naively minimizing a cost function is not sufficient in
safety-critical tasks. For instance, in planning with obstacles
for rescue robots (see Fig. 1) or autonomous vehicles, the
objective is not only to minimize a certain cost function of
the policy, such as time to a designated goal or fuel consump-
tion, but also to satisfy the safety constraint of not colliding
with obstacles, which may sacrifice the cost performance.
Although in many cases, we can add the constraint as an
infinite term in the cost function, this may lead to infeasible
solutions, when the constraint is unavoidable (i.e. if we want

1Computer Science and Artificial Intelligence Laboratory (CSAIL),
Massachusetts Institute of Technology, Cambridge, MA 01239, USA
xhuang@csail.mit.edu

2Toyota Research Institute, Cambridge, MA 01239, USA
This article solely reflects the opinions and conclusions of its authors and

not TRI or any other Toyota entity.

Fig. 1: Overview of the proposed risk conditioned policy
network. Given the current state and risk bound, the network
generates an optimal action for the agent, subject to the risk
bound. The policy is conditioned on an arbitrary upper bound
on the probability of violating safety constraints, which
has important applications in safety-critical domains such
as rescue robots and autonomous vehicles. Top and bottom
depict planning scenarios with a small risk bound and a large
risk bound, respectively, using the same model.

to avoid an obstacle with unbounded uncertainties) and we
can never guarantee safety. Therefore, it is more desirable to
bound the probability of violating the constraint by a certain
level, which is defined as a chance constraint in [3].

The requirement of satisfying additional constraint moti-
vates the formulation of constrained Markov decision pro-
cess (CMDP) [4], in which the agent needs to satisfy the
constraint over an auxiliary cost while minimizing the cost
function. Although solving finite CMDP has been well
studied with methods such as linear programming [4] or
mixed integer linear programming (MILP) [5], it remains
a challenge to solve for high-dimensional or large CMDP
instances. In cases where the constraint is probabilistic and
the objective is to bound the probability of violating a
constraint, [6] introduces a special form of CMDP, named
chance constraint MDP (CC-MDP), and proposes a heuristic
forward search method in the discrete action space to find the
desired policy efficiently, yet the performance heavily relies
on the quality of heuristics.

Inspired by the recent success of deep reinforcement
learning, we leverage deep neural networks to learn function
approximators for the policy function and the risk (or chance
constraint) function, similar to [7]–[9]. The learned chance
constraint is used in the policy optimization step to produce
risk-bounded policies. While existing methods assume a
fixed upper bound on the chance constraint, our model
is trained to generate policies conditioned on a range of
continuous upper bound values. This allows us to control the

ar
X

iv
:2

10
8.

01
85

1v
1

 [
cs

.L
G

]
 4

 A
ug

 2
02

1

agent with different risk tolerance levels on the fly, without
the need to retrain the model. One motivating example is
that in rescue tasks, as illustrated in Fig. 1, we may want
to assign different risk bounds to the rescue robot based
on the hard time limit, so that it can rescue the target in
time. This requires the planner to generate policies in real-
time conditioned on different risk bounds. Although it is
possible to pre-generate a library of policies under different
bound levels, it is less time efficient and space efficient,
especially when the discretization of the bound requires a
high resolution. An overview of our approach is presented
in Fig. 1.

Our contributions are as follows: i) We learn a risk
estimator as a deep neural network to approximate the
execution risk of a given policy, which provides task-specific
information in addition to standard cost measures in MDP.
ii) We leverage the learned risk estimator to learn a risk-
bounded policy network, by adding the exceeded risk as
an additional penalty in the policy loss, which balances
performance and safety in the resulting plan. iii) Our policy
network is conditioned on a continuous spectrum of upper
risk bound, providing the flexibility to change the agent
behavior on the fly at test time. iv) We provide a detailed
comparison between a state-of-the-art MILP-based method
and our proposed method, and show our method achieves
better performances in terms of solution quality and compu-
tational time, without violating the risk bound.

II. RELATED WORK

A. Risk-Bounded Motion Planning

Risk-bounded motion planning problems have been stud-
ied in the forms of CMDPs and CC-MDPs in many works.
Early methods show that CMDPs can be solved with linear
programs (LPs) [4], [10] and MILPs [11]. Most of these
methods work with deterministic constraints. In [5], the
constraint is modeled as the probability of failure, and an
approach named Iterative Risk Allocation (IRA), is proposed
to generate constrained policies by iteratively assigning
the global probability constraint into individual probability
budgets at each time step through a union bound, and
solve for a MILP instance given the individual budgets.
Aside from MILP-based methods, [12] proposes a sampling-
based approach to generate constrained motion plans with
probabilistic guarantees. A common assumption of these
works is that the global constraint can be expressed as the
sum of sub-constraints over each time step, which may not
hold if we define the constraint as the probability of collision
over the entire path, since the joint disjunctive probability is
not equivalent to the summation of probabilities of individual
events. In fact, the summation is usually an upper bound
of the joint probability, and optimizing for the summed
constraints will likely lead to conservative policies.

The conservatism is resolved in [6], which defines the
risk as the probability of collisions in an exact form, and
proposes RAO* to find optimal policies through heuristic
forward search, which is demonstrated to work well in
vehicle planning [13], [14] and aircraft routing [15] domains.

However, RAO* is limited to discrete action space due to its
tree-based search approach.

Overall, due to the NP-hard nature of CMDP problems
[16], both (MI)LP and search-based approaches suffer from
scalability, especially in high-dimensional and continuous
state space and action space.

B. Safe Reinforcement Learning

Safety is a popular topic in reinforcement learning as many
algorithms have been applied to real world applications,
which requires the agent to explore the policy space while
being safe to a certain extent. In this paper, we focus on
RL methods that model risk as an explicit constraint in
the overall objective function. In [7], [17], the constrained
RL problem is converted to an unconstrained RL problem
using Lagrangian multiplier, and then solved by standard RL
algorithms such as actor critic. Instead of solving the dual
problem using the Lagrangian, [9] approximates the objec-
tive function and the constraint function through quadratic
surrogate functions, and solves for convex quadratically
constrained quadratic program directly. As an extension to
[7], [8] combines a constrained policy optimization algo-
rithm with imitation learning to bootstrap training time and
achieves comparable performance. These methods define
the constraint as a summed auxiliary cost from each time
step, which leads to conservative policies if we model the
constraint as the probability of collisions, as discussed in
Sec. II-A. Furthermore, the upper bound of the constraint
is usually predefined as a fixed value, which would require
the user to retrain the model if a different bound is needed.
In our paper, we extend the state-of-the-art deep RL models
to handle probabilistic constraints, in an accurate form, and
flexible risk bounds, in the task of risk-bounded motion
planning.

In addition to constrained MDP-based approaches, there
exist works that improve safety by generating more samples
in the risky region to bootstrap performance in critical
scenarios [18]; by using a safety layer at the end of a deep
neural network to verify the safety of the resulting policy
and replacing with a backup safe action if needed [19]; by
proposing a reachability-based trajectory safe guard to ensure
the safety of a policy [20], etc. In this paper, we focus on
generating risk-bounded policies directly by modeling the
risk as an explicit constraint in the objective function.

C. Conditioned Reinforcement Learning

Conditioned reinforcement learning provides great flexi-
bility and improves generalizability when applying RL algo-
rithms. A notable example is goal-conditioned RL [21]–[23],
which produces goal-conditioned policies without assuming
a fixed goal. This provides more capability to the agent as it
can navigate to any goal locations in the environment without
retraining. In our work, we are inspired by goal-conditioned
policy and propose risk conditioned policy that generates
policies conditioned on a continuous spectrum of upper risk
bound.

III. PROBLEM FORMULATION

In this work, we consider the risk-bounded motion plan-
ning problem in the absence of the agent models. More
precisely, we aim at solving the chance constrained Markov
decision process (CC-MDP) problem defined as follows:

Definition 1. Chance-Constrained Markov Decision
Process: A Chance-Constrained Markov Decision Process
(CC-MDP) is defined a tuple 〈S,A, T,R, s0, h, C,∆〉 as
follows [6]:
• S is a set of continuous states.
• A is a set of actions for the agent model.
• T : S×A×S → R is a state transition function between

the states.
• R : S ×A → R is a reward function.
• s0 is the initial state.
• h is the finite execution horizon.
• C is a set of safety constraints defined over S.
• ∆ is the upper risk bound.
Given a definition of CC-MDP, the objective is to find

a policy that maximizes the expected cumulative reward
function:

π∗ = arg max
π

E
(st,at)∼π

[h∑
t=0

R(st, at)

]
, (1)

while satisfying the chance constraint with respect to the
safety constraints C:

er(s0, C|π) ≤ ∆, (2)

where er is the execution risk defined as follows:

erπ(st) = er(st, C|π) = 1− Pr

(
h∧
i=t

Sai = 1

∣∣∣∣st, π
)
. (3)

where Sai is a Bernoulli random variable with value 1, when
the state has not violated any constraint in C, defined over
S, at time i.

The execution risk can be computed in a recursive way as
follows [6]:

erπ(st) = rb(st) + (1− rb(st))E[erπ(st+1)], (4)

where rb(st) is the immediate risk at time t. An example
of risk is the probability of collision between the agent and
the obstacles. An important distinction between our work
and existing CMDPs [5], [9] is that they approximate the
execution risk as a sum of step-wise immediate risks:

erπapprox(st) =

h∑
i=t

rb(si), (5)

which is an upper bound of erπ(st), and solving for a policy
following this definition leads to conservative results.

In this paper, we assume that the agent model and the
reward function are hidden. Hence, we aim at solving the
following planning problem:
Risk-Bounded Motion Planning Problem: Given a CC-
MDP, with unknown transition and reward functions, i.e.,
T,R, we look for a policy π to maximize the expected
cumulative reward function in (1) with respect to the risk
constraints in (2).

IV. APPROACH

In this section, we propose a deep neural network as a
function approximator to solve the motion planning problem
defined in Section III. We first review the soft actor critic
method, which is a popular reinforcement learning model
that improves the stability of training compared to standard
actor critic method. We then introduce our extended model,
risk conditioned soft actor critic that includes a risk critic to
estimate the probability of violating risk constraint, and show
how we leverage the learned risk in policy optimization to
learn risk-bounded policies. Finally, we present an algorithm
to train our model through gradient descent.

A. Soft Actor Critic

Soft Actor Critic (SAC) [24] is an off-policy actor critic
deep reinforcement learning algorithm based on max entropy
reinforcement learning. The objective is to find a policy that
maximizes the maximum entropy:

π∗ = arg max
π

h∑
t=0

E
(st,at)∼ρπ

[R(st, at) + αH(π(·|st))] (6)

where temperature parameter α determines the relative im-
portance of the entropy term versus the reward, and thus con-
trols the stochasticity of the optimal policy [24]; H(π(·|st) is
the entropy of the policy π at state st; ρπ(st, at) denotes the
state-action marginals of the trajectory distribution induced
by a policy π(at|st).

As an actor critic algorithm, SAC alternates between
policy evaluation, by estimating the value function for a
policy, and policy improvement, by using the estimated value
function to obtain a better policy. More specifically, SAC
leverages a state value function Vψ(st) parameterized by ψ,
a soft Q-function Qθ(st, at) parameterized by θ, and a policy
function πφ(at|st) parameterized by φ. These functions are
modeled as deep neural networks (i.e. Vψ(st), Qθ(st, at)),
or Gaussian parameters from a deep neural network (i.e.
πφ(at|st)).

1) Actor Model: According to [24], the policy parameters
can be learned by directly minimizing the following:

Jπ(φ) = Est∼D [log πφ(fφ(st)|st)−Qθ(st, fφ(st))] , (7)

where D is the replay buffer representing the distribution
of previously sampled states and actions, πφ is defined
implicitly in terms of fφ(st), which is a neural network
transformation that is used to reparameterize the policy, such
that

at = fφ(st). (8)

2) Critic Model: The soft Q-function parameters can be
trained to minimize the soft Bellman residual:

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)− Q̂(st, at)

)2]
, (9)

with

Q̂(st, at) = R(st, at) + γEst+1∼pVψ(st+1), (10)

where the soft value function Vψ is another deep neural
network that is trained to approximate the value function.
We refer to [24] for more details of Vψ .

B. Risk Conditioned Soft Actor Critic

In risk conditioned actor critic, we aim to learn an extra
risk critic model Qerζ , parameterized by ζ, that estimates the
expected execution risk starting at a given state and acting
according to the policy, defined in Eq. (4).

1) Risk Critic Model: We use a risk critic model to
estimate the execution risk, and it can be trained to minimize
the L2 loss to the actual execution risk computed from data:

JQer (ζ) = E(st,at)∼D

[
1

2

(
Qerζ (st, at)− Q̂er(st)

)2]
,

(11)
with

Q̂er(st) = rb(st)+(1−rb(st))Est+1∼D

[
Q̂er(st+1)

]
. (12)

The gradient is computed as follows:

∇̂ζJQer (ζ) = ∇ζQerζ (st, at)(Qerζ (st, at)− Q̂er(st)).
(13)

2) Risk-Bounded Actor Model: Given the risk critic
model, we can update the loss function for the actor model
as:

Jπ(φ) =Est∼D
[
log πφ(fφ(st,∆)|st)−Qφ(st, fφ(st,∆))

+ λerReLU
(
Qerζ

(
st, fφ(st,∆)

)
−∆

)]
,

(14)

where ReLU(x) returns x if x ≥ 0 and 0 otherwise. This
extra term in the policy loss adds an penalty if the estimated
execution risk is larger than the risk bound, with a coefficient
λer to balance performance and safety. Compared to standard
SAC, the transformation function fφ is updated to include
∆ as its input so that the policy is conditioned on the upper
risk bound:

at = fφ(st,∆). (15)

C. Algorithm

The algorithm to train a risk conditioned soft actor critic
is illustrated in Alg. 1. The key difference to the standard
soft actor critic algorithm [24] is that we need to train a
separate risk critic that estimates the execution risk. This
requires us to collect the immediate risk rb at each state,
so that we can use it as a supervisory cue to train the risk
critic network. In addition, we generate random upper risk
bound samples ∆ from a uniform distribution, so that our
policy network can learn to produce risk-bounded policies
conditioned on different bounds. This, in practice, allows the
online adjustment of the upper risk bound ∆, subsequently
changing the aggressiveness of the agent’s actions. In the
gradient descent step, we compute the gradient of each
network, and we refer to [24] for the detailed derivation
of the gradients for the policy network and soft Q-function
network.

Algorithm 1: Risk conditioned SAC algorithm.
Initialize parameter vectors φ, θ, ζ, ∆ ∼ U[0, 1].
for each iteration do

for each environment step do
at ∼ πφ(at|st,∆)
st+1 ∼ pT (st+1|st,at)
D ← D ∪ {(st,at, R(st,at), rb(st),∆, st+1)}

end for
for each gradient step do
θ ← θ − λQ∇̂θJQ(θ)
ζ ← ζ − λQer∇̂ζJQer (ζ)
φ← φ− λπ∇̂φJπ(φ)

end for
end for

V. RESULTS

In this section, we introduce two sets of experiments to
validate our proposed model. The first set of experiments
provide a detailed study comparing our method and a state-
of-the-art MILP-based baseline in a maze environment that
simulates robotics rescue tasks; the second set of experiments
showcase the performance of our method in more com-
plicated scenarios, including nonlinear dynamics and larger
state space, which usually pose great challenges for MILP-
based methods. In each experiment, we define the problem
setup and introduce model details, followed by results and
discussions.

A. Maze Environment

1) Problem Setup: In order to show that our model
provides risk conditioned policies efficiently, we introduce
a OneObstacle maze environment that includes an obstacle
between the start location and the goal location, as illustrated
in Fig. 3. The agent state space S ∈ R2 represents the
continuous position (x, y) bounded by the maze boundary
[0, 10]× [0, 10], and the action space A ∈ R2 represents the
linear velocity (vx, vy) with the magnitude bounded by 1.
The dynamics of the agent follows linear change of states:

ẋ = vx, ẏ = vy. (16)

We consider an additive Gaussian noise to the agent state
with 0 mean and standard deviation of 1 along each axis, to
model the uncertainty. The unbounded uncertainty prevents
us from finding a policy that is risk-free; instead, we can only
find a policy that bounds the probability of violating the risk
constraint, in which the risk is defined as the probability of
the agent colliding with any obstacles. While there exist a
number of efficient risk assessment methods [25], [26], we
use a naive Monte Carlo sampling method to compute the
collision risk for its simplicity.

2) Model Details: To find risk conditioned policies, we
learn a risk conditioned SAC model1 described in Sec. IV-
B. The model includes two Q function estimators as 3-layer

1The source code will be open sourced in the near future at https:
//github.com/cyrushx/risk_sac.

https://github.com/cyrushx/risk_sac
https://github.com/cyrushx/risk_sac

(a) Number of steps to goal. (b) Distance traveled to goal. (c) Execution risk.

Fig. 2: Evolution of evaluation metrics over runs from 5 randoms seeds, between standard SAC and our model, given a
fixed upper risk bound ∆ = 0.2 in OneObstacle maze environment. Shaded area represents one standard deviation. (a) Our
model converges to the same number of time steps as SAC. (b) Our model converges to a distance slightly larger than SAC,
due to additional risk constraints. (c) Our model converges to risk level below the risk bound, as visualized by the orange
line.

multilayer perceptrons (MLPs) with hidden dimensions of
256, and two target Q function estimators as 3-layer MLPs
with the same structure. The policy network is composed of
3-layer MLPs with hidden dimensions of 256 and outputs a
mean vector and a log standard deviation vector, which are
further applied with an invertible squashing function (tanh)
to generate the bounded distribution for the resulting action.
In addition, our model includes a risk estimator with the
same structure as the Q function estimators.

Our model is implemented in PyTorch, based on the open-
source rlkit library2. At training time, we train for 200 epochs
with a learning rate of 3e-4, a batch size of 256, and a
reward discount factor of 0.99. The coefficient of risk penalty
term λer is 10. At test time, we evaluate the path generated
from the learned policy and obtain the evaluation metrics,
including distance traveled to goal and execution risk. The
execution risk is computed using Monte Carlo sampling
methods with 500 samples. We train and test our model in
the same environment, as customary in many reinforcement
learning tasks despite being prune to overfitting [27].

3) Risk-Bounded Policy with a Fixed Upper Risk Bound:
We start by validating the performance of our model given
a fixed risk bound ∆ = 0.2 as input during training. This
bound is selected arbitrarily – in practice, it can be specified
based on risk-averse level or requirement for plan efficiency.
In addition, we train a standard soft actor critic (SAC)
method that naively minimizes the cost function without
reasoning about risk.

The comparisons between our model and standard SAC
over 5 random seeds are illustrated in Fig. 2. We note that
our model has been trained successfully to generate policies
subject to the risk bound, as visualized by the orange line
in Fig. 2(c). At the same time, it produces the policy with
the same number of time steps and slightly worse traveled

2Source code at https://github.com/vitchyr/rlkit.

distance, compared to the standard SAC model. The worse
traveled distance is due to the trade-off between performance
and safety.

4) Risk Conditioned Policy: Next, we train our model
by providing random risk bounds in the data so that it can
learn risk-bounded policies conditioned on different upper
risk bound levels. At test time, we visualize the planned
trajectories by varying values for ∆, as shown in Fig. 3.
In the same figure, we visualize the risk-bounded policies
generated by a state-of-the-art MILP-based solver, IRA,
given the same upper risk bound levels and environment con-
figurations. When the bounds become smaller, both models
generate paths that are further away from the obstacle to
improve safety. Both our model and IRA are run on the
same hardware without GPU to make a fair comparison.

In Table I, we compare the distance traveled to goal
and computational time between our method and IRA. The
results show that on average, our method is able to reduce
the computational time by 93.87%, demonstrating great time
efficiency by using deep neural networks. Furthermore, it
improves the plan quality, in terms of distance traveled
to goal, by approximately 3.56%, compared to IRA that
produces conservative plans by assigning the overall risk
constraint into each time step through a union bound. The
table also shows the actual execution risk for each plan,
which verifies that our plans are bounded by the desired
∆ values. Overall, our method successfully produces risk-
bounded policies efficiently without sacrificing the plan
quality.

B. Dubins Car Model

1) Problem Setup: In this experiment, we want to demon-
strate the performance of our model with nonlinear dynamics
that are usually difficult to be modeled by a MILP, which is
limited to linear systems. More specifically, we consider the

https://github.com/vitchyr/rlkit

Fig. 3: Visualization of paths generated by our model (cir-
cles) and IRA (squares), under 3 risk bounds represented in
different colors, in OneObstacle maze.

∆
IRA Ours

Distance[m] Time[s] Risk Distance[m] Time[s] Risk
0.1 8.20 0.16 0.024 8.04 0.0128 0.055
0.2 8.04 0.15 0.051 7.75 0.0085 0.125
0.3 7.93 0.16 0.071 7.52 0.0075 0.242

TABLE I: Comparison between our model and IRA in
OneObstacle maze. Our model achieves better plan quality
and computational time, subject to the risk bound.

Dubins car model [28] that is commonly used for real world
ground robotics platforms [29]:

ẋ = v cos(θ), ẏ = v sin(θ), (17)

θ̇ = uθ, v̇ = uv. (18)

The test environment is a standard TwoRooms maze [30]
that is composed of two rooms connected by two paths, as
visualized in Fig. 4.

2) Model Details: We train a model with the same
structure and parameters as in Sec. V-A.2, except the output
from the policy network changes from velocities to angular
velocities and accelerations for Dubins car model. The model
is trained for 500 epochs with a risk penalty term of 20, due
to the nonlinear dynamics. Despite the longer convergence
time, our system achieves similar run-time complexity, by
leveraging a model of the same size.

3) Risk Conditioned Policy: While it is usually infeasible
to handle nonlinear dynamics in linear programs, we show
that our model is capable of finding risk-bounded policies
when the dynamics are nonlinear, as visualized in Fig. 4.
The metrics are summarized in Table II. We notice that under
different risk bounds (i.e. 0.2 and 0.3), the risk-bounded plans
have similar distances, which can be explained by the fact
that the distance does not strictly decrease when the risk
bound increases, due to the nonlinearity of the dynamics
model.

C. FlyTrapBig Maze

1) Problem Setup: In this experiment, we validate our
model in a larger maze, named FlyTrapBig [30], which has

Fig. 4: Visualization of paths generated by our model with
Dubins car model, under different risk bounds, in TwoRooms.

Fig. 5: Visualization of paths generated by our model in
FlyTrapBig maze starting at different locations, under the
same risk bound of 0.2. Our model successfully generalizes
to random start locations in a large maze.

∆ Distance[m] Time[s] Risk
0.1 9.00 0.0094 0.076
0.2 8.00 0.0071 0.142
0.3 8.00 0.0072 0.214

TABLE II: Dubins car model results in TwoRooms. Our
model produces risk-bounded plans under different risk
bounds.

four times larger state size compared to the OneObstacle
maze. This requires more exploration in the space, and more
importantly, requires more time steps to get to the goal,
which poses great difficulty to the existing constrained MDP
methods [7], [9]. This is because these methods need to
allocate the global risk bound into many individual time
steps, which could end up returning infeasible solutions. On
the other hand, our model avoids conservatism by using an
accurate definition of risk and generates feasible solutions
even when the number of steps to the goal is large.

2) Model Details: We train a model with the same struc-
ture and parameters as in Sec. V-A.2, except with a larger
epoch size of 1200 and a larger risk penalty coefficient λer
of 20, due to the larger state space and increased magnitude

of plan rewards, respectively.
3) Risk Conditioned Policy: We show that our model can

generate risk-bounded policies starting at random positions
in a large maze, as visualized in Fig. 5. When there exist
obstacles between the start and the goal (i.e. when starting
at the lower left or upper right room), our model outputs
a risk-bounded path that balances between plan quality and
safety.

VI. CONCLUSIONS

In conclusion, we propose a risk conditioned soft actor
critic model that generates risk-bounded policies in the
context of chance-constrained MDPs. Our model leverages a
risk critic to estimate the execution risk at a given state and
acting according to the policy, and adds a penalty term to the
policy loss if the estimated risk is greater than the risk bound
to produce risk-bounded policies. By providing upper risk
bound as part of the input, our method is able to generate
plans with different risk-averse levels for the agent on the
fly. We demonstrate the advantage of our model in terms of
both time complexity and path quality compared to a MILP-
based baseline in a simple maze environment, and further
validate its performance with more complex agent dynamics
and larger state space, which are usually hard to handle
by MILP-based methods. Future work includes validating
our model in more complicated settings (i.e. a larger state
space, a variety of geometries, real-world experiments) and
extending our algorithm to handle dynamic obstacles.

VII. ACKNOWLEDGMENT

We thank Cheng Fang for the implementations of the
IRA algorithm and comments on related work. We gratefully
acknowledge funding support in part by the Toyota Research
Institute grant 6944668.

REFERENCES

[1] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” in Robotics:
Science and Systems, 2017.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[3] J. R. Birge and F. Louveaux, Introduction to stochastic programming.
Springer Science & Business Media, 2011.

[4] E. Altman, Constrained Markov decision processes. CRC Press, 1999,
vol. 7.

[5] M. Ono and B. C. Williams, “An efficient motion planning algorithm
for stochastic dynamic systems with constraints on probability of
failure.” in Association for the Advancement of Artificial Intelligence
(AAAI), 2008, pp. 1376–1382.

[6] P. Santana, S. Thiébaux, and B. Williams, “Rao*: An algorithm for
chance-constrained pomdp’s,” in Association for the Advancement of
Artificial Intelligence (AAAI), vol. 30, no. 1, 2016.

[7] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in International Conference on Machine Learning,
2017, pp. 22–31.

[8] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Sieg-
wart, and J. Nieto, “Reinforced imitation: Sample efficient deep
reinforcement learning for mapless navigation by leveraging prior
demonstrations,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 4423–4430, 2018.

[9] M. Yu, Z. Yang, M. Kolar, and Z. Wang, “Convergent policy opti-
mization for safe reinforcement learning,” in Conference on Neural
Information Processing Systems (Neurips), 2019.

[10] E. A. Feinberg and A. Shwartz, “Constrained discounted dynamic
programming,” Mathematics of Operations Research, vol. 21, no. 4,
pp. 922–945, 1996.

[11] D. A. Dolgov and E. H. Durfee, “Stationary deterministic policies for
constrained mdps with multiple rewards, costs, and discount factors,”
in IJCAI, 2005, pp. 1326–1331.

[12] B. Luders, M. Kothari, and J. How, “Chance constrained rrt for prob-
abilistic robustness to environmental uncertainty,” in AIAA guidance,
navigation, and control conference, 2010, p. 8160.

[13] X. Huang, A. Jasour, M. Deyo, A. Hofmann, and B. C. Williams, “Hy-
brid risk-aware conditional planning with applications in autonomous
vehicles,” in 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 3608–3614.

[14] X. Huang, S. Hong, A. Hofmann, and B. C. Williams, “Online
risk-bounded motion planning for autonomous vehicles in dynamic
environments,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 29, 2019, pp. 214–222.

[15] S. Hong, S. U. Lee, X. Huang, M. Khonji, R. Alyassi, and B. C.
Williams, “An anytime algorithm for chance constrained stochastic
shortest path problems and its application to aircraft routing,” in
International Conference on Robotics and Automation (ICRA), 2021.

[16] E. A. Feinberg, “Constrained discounted markov decision processes
and hamiltonian cycles,” Mathematics of Operations Research, vol. 25,
no. 1, pp. 130–140, 2000.

[17] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,” The
Journal of Machine Learning Research, vol. 18, no. 1, pp. 6070–6120,
2017.

[18] O. Andersson, M. Wzorek, and P. Doherty, “Deep learning quadcopter
control via risk-aware active learning,” in Association for the Advance-
ment of Artificial Intelligence (AAAI), vol. 31, no. 1, 2017.

[19] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in 2020
IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2020, pp. 1–7.

[20] Y. S. Shao, C. Chao, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (rts): A safe and fast reinforcement learning safety
layer for continuous control,” arXiv preprint arXiv:2011.08421, 2020.

[21] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learning multi-level
hierarchies with hindsight,” in International Conference on Learning
Representations, 2018.

[22] D. Ghosh, A. Gupta, and S. Levine, “Learning actionable representa-
tions with goal conditioned policies,” in International Conference on
Learning Representations, 2018.

[23] S. Nasiriany, V. H. Pong, S. Lin, and S. Levine, “Planning with goal-
conditioned policies,” in Conference on Neural Information Processing
Systems (Neurips), 2019.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning. PMLR,
2018, pp. 1861–1870.

[25] E. Schmerling and M. Pavone, “Evaluating trajectory collision proba-
bility through adaptive importance sampling for safe motion planning,”
in Robotics: Science and Systems, 2017.

[26] A. Wang, X. Huang, A. Jasour, and B. Williams, “Fast risk assessment
for autonomous vehicles using learned models of agent futures,” in
Robotics: Science and Systems, 2020.

[27] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quan-
tifying generalization in reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2019, pp. 1282–1289.

[28] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[29] P. R. Giordano and M. Vendittelli, “Shortest paths to obstacles for a
polygonal dubins car,” IEEE Transactions on Robotics, vol. 25, no. 5,
pp. 1184–1191, 2009.

[30] B. Eysenbach, R. Salakhutdinov, and S. Levine, “Search on the replay
buffer: Bridging planning and reinforcement learning,” in Conference
on Neural Information Processing Systems (Neurips), 2019.

	I Introduction
	II Related Work
	II-A Risk-Bounded Motion Planning
	II-B Safe Reinforcement Learning
	II-C Conditioned Reinforcement Learning

	III Problem Formulation
	IV Approach
	IV-A Soft Actor Critic
	IV-A.1 Actor Model
	IV-A.2 Critic Model

	IV-B Risk Conditioned Soft Actor Critic
	IV-B.1 Risk Critic Model
	IV-B.2 Risk-Bounded Actor Model

	IV-C Algorithm

	V Results
	V-A Maze Environment
	V-A.1 Problem Setup
	V-A.2 Model Details
	V-A.3 Risk-Bounded Policy with a Fixed Upper Risk Bound
	V-A.4 Risk Conditioned Policy

	V-B Dubins Car Model
	V-B.1 Problem Setup
	V-B.2 Model Details
	V-B.3 Risk Conditioned Policy

	V-C FlyTrapBig Maze
	V-C.1 Problem Setup
	V-C.2 Model Details
	V-C.3 Risk Conditioned Policy

	VI Conclusions
	VII Acknowledgment
	References

