
Model-free Vehicle Tracking and State Estimation
in Point Cloud Sequences

Ziqi Pang, Zhichao Li, Naiyan Wang
TuSimple

{ziqipang.z, leeisabug, winsty}@gmail.com

Abstract— Estimating the states of surrounding traffic par-
ticipants stays at the core of autonomous driving. In this paper,
we study a novel setting of this problem: model-free single-
object tracking (SOT), which takes the object state in the first
frame as input, and jointly solves state estimation and tracking
in subsequent frames. The main purpose for this new setting
is to break the strong limitation of the popular “detection
and tracking” scheme in multi-object tracking. Moreover, we
notice that shape completion by overlaying the point clouds,
which is a by-product of our proposed task, not only improves
the performance of state estimation but also has numerous
applications. As no benchmark for this task is available so
far, we construct a new dataset LiDAR-SOT and corresponding
evaluation protocols based on the Waymo Open dataset [29]. We
then propose an optimization-based algorithm called SOTracker
involving point cloud registration, vehicle shapes, correspon-
dence, and motion priors. Our quantitative and qualitative
results prove the effectiveness of our SOTracker and reveal the
challenging cases for SOT in point clouds, including the sparsity
of LiDAR data, abrupt motion variation, etc. Finally, we also
explore how the proposed task and algorithm may benefit
other autonomous driving applications, including simulating
LiDAR scans, generating motion data, and annotating optical
flow. The code and protocols for our benchmark and algorithm
are available at https://github.com/TuSimple/LiDAR_
SOT/. A video demonstration is at https://www.youtube.
com/watch?v=BpHixKs91i8.

I. INTRODUCTION

Autonomous driving calls for accurate state estimation of
surrounding objects, including their positions, orientations, etc.
Among all the sensors available for state estimation, LiDAR
is unique in providing accurate 3D sensing. Nevertheless, the
complexity of road scenarios and sparsity of point clouds pose
great difficulties for state estimation. Therefore, estimating
the states of objects using LiDAR data has long been valuable
yet challenging for autonomous driving research.

The mainstream method for object tracking is to utilize the
so-called “detection and tracking” paradigm. It mostly focuses
on the association of bounding boxes across frames. The
accuracy of tracking then heavily relies on the performance
of detection, since most tracking algorithms directly accept
the bounding boxes from detection with minor modifications.
Current state-of-the-art object detection algorithms are mostly
model-based: the algorithms carry out the detection task with
their recognition power gained from learning on large scale
training sets. The benchmarks nowadays [29][4][10][2] also
mainly focus on this model-based MOT setting. However,
we propose to pay attention to the model-free Single-Object
Tracking (SOT) setting, which targets on some overlooked

St
at

e

Es
ti

m
at

io
n

Sh
ap

e
C

o
m

p
le

ti
o

n

O
th

e
r

A
p

p
lic

at
io

n
s Optical

Flow

LiDARsim

Motion
Genration

Fig. 1: Our vehicle tracking system and its applications.
Top. Tracking results visualized at the interval of 2 seconds
(20 frames). Middle. Shape completion by overlaying point
clouds. Bottom. Applications using the estimated states and
shapes, such as optical flow annotation. More usages are
described in Sec. VI.

applications and challenges in MOT.
First, model-based detection is prone to fail on sparse point

clouds and unfamiliar objects (see Fig. 2). By being model-
free, the algorithms can generalize to such cases, since it is
not assumed that similar objects have been met before. The
task of model-free SOT is then useful for both online and
offline applications from two aspects: 1) For offline settings,
model-free SOT can augment the training set for model-
based methods by providing cheap annotations or simulated
data [21]. 2) For online settings, SOT serves as a back-up
system for model-based methods on their failures (see Fig. 2).
This feature is mandatory for a high-level autonomous system
which requires no single failure point.

Second, model-free SOT algorithms rely on richer informa-
tion for tracking, such as raw point clouds, compared to MOT
methods that mostly use bounding boxes only. Therefore,
the SOT algorithms specialize at providing more subtle
state information with even centimeter level accuracy. This
property is important for many applications in autonomous
driving, such as generating first order motion information. It

ar
X

iv
:2

10
3.

06
02

8v
2

 [
cs

.C
V

]
 5

 A
ug

 2
02

1

https://github.com/TuSimple/LiDAR_SOT/
https://github.com/TuSimple/LiDAR_SOT/
https://www.youtube.com/watch?v=BpHixKs91i8
https://www.youtube.com/watch?v=BpHixKs91i8

Sparse
Point
Cloud

Unfamiliar
Object
(Bus)

Detection Failures SOT Results

Frame 20 Frame 50

Frame 30 Frame 80

Fig. 2: Left: The detection algorithm (PointPillars [19]) fails
on certain cases, including false negatives and wrong size. But
our tracker still has high quality after a period of tracking, with
only requiring an initial bounding box as input. We sample
two frames from a continuous period of failed detection
for demonstration. Gray: Point Cloud; Red: The Ground
Truth Box; Dashed Blue: SOT Box; Black: Detection Boxes.
Right: We visualize the quality of SOT with the aggregated
point clouds, following [15][32]. Our algorithm can provide
accurate tracking and shape aggregation results.

is discussed in Sec. VI-A.

For a target object, the input to SOT algorithms is its
initial bounding box in the first frame, which may come from
either human annotations or highly confident detections. The
algorithms then estimate the object’s states in every subse-
quent frame, as is in the top of Fig. 1. During solving state
estimation, we notice the value of its by-product: aggregating
point clouds along the tracklets completes denser shapes of
objects (shown in the middle of Fig. 1). In our experiments,
leveraging these shapes improves the performance of tracking.
This utility of shape aggregation also benefits a series of other
applications in autonomous driving. For example, with the
generated shapes and motion information, we can create
vehicle bank for creating virtual LiDAR scenes [21], optical
flow annotations [22] (our result visualized in Fig. 1, bottom
row), etc. These tasks so far mostly require manual labeling
or artificial CAD models, so automating the process of
directly using raw point cloud data could greatly improve their
efficiency and scalability. The details of such downstream
applications are discussed in Sec. VI.

To summarize, our contributions are as follows:

• We propose a novel LiDAR-based object tracking task1.
To facilitate further study, we create a new benchmark
called LiDAR-SOT based on the WOD dataset [29].

• We propose a model-free SOT algorithm called SO-
Tracker. It involves optimizing for point cloud registra-
tion, object shapes and motions.

• We evaluate our SOTracker on LiDAR-SOT and discuss
the potential usages in autonomous driving, such as
motion data generation, LiDAR scan simulation [21],
and optical flow annotation [22].

1We focus on vehicle so far, and are working on extending to other types
of objects.

II. RELATED WORK

A. Datasets and Benchmarks
Many existing autonomous driving benchmarks, including

Waymo Open Dataset (WOD) [29], Argoverse [4], KITTI [10],
and nuScenes [2], have rich point clouds and tracklets for
object tracking. However, they mainly adopt the MOT setting
while our task demands the SOT setting, and not all the
tracklets for MOT evaluation suits the requirements for SOT.
So we design a test bed specially for SOT evaluation. Among
the mentioned benchmarks, WOD [29] is superior in scale and
comprehensiveness, so we build the benchmark LiDAR-SOT
based on the data of WOD.

To evaluate the SOT algorithms, we inherit the idea
from VOT [18] for the tracking performance on 2D images,
concerning both the accuracy and robustness. As for shape
completion, we consider it for evaluation because of its
usages on downstream applications. Specifically, we refer to
ShapeNet [3] and use Chamfer-Distance(CD) as the metric.

B. State Estimation and Tracking in Point Cloud
State estimation in raw point clouds is challenging because

it involves associating the LiDAR points with the target object
(a.k.a. tracking) and then accurately estimate the state.

Many methods adopt a model-based approach to discover
the object in LiDAR points. [25][8][35][17] fit the vehicles
with boxes and [30][6] utilizes occupancy grid for detection.
In the era of deep learning, the learned neural networks
replace the manually designed models. P2B [28] generates and
verifies bounding boxes guided by a learned PointNet++ [27],
Zou et al. [41] manages to fuse RGB information using
frustums, Zarzar et al. [39] refines the detection results
by association, while [37][20] apply convolutional neural
networks(CNN) on the Bird-Eye-View images of LiDAR,
and Giancola et al. [11] learns to complete the partial point
cloud, and then searches for it.

These model-based approaches heavily rely on detection
or shape completion in every single frame. So point cloud
sparsity and unfamiliar objects could easily lead to failures.
However, our model-free setting seeks to tackle this since it
does not need to fit a model and can consider multi-frame
information from LiDAR sequences.

Different from the aforementioned works involving search-
ing for the target object in raw LiDAR data, some assume
the point cloud could be well-segmented or the segmentation
information is available. Hence their focus is state estimation
in relatively clean point cloud data. Some representative
methods are as follows, Held et al. [15] minimizes an energy
function on the inconsistency between observed point cloud
and object states. Groß et al. [13] registers the motion between
point cloud snapshots. Goforth et al. [12] learns to complete
the shapes of vehicles and jointly decode the states. The
problem of these methods lies in the assumption of well-
segmented point cloud, which is rare in practice. Therefore, by
only providing the first frame annotation, our setting enforces
the algorithms to face the challenge of solving tracking and
state estimation simultaneously.

Many model-free works [23][36][9][26][1][31][33] mainly
focus on the problem of MOT. They first operate object de-
tection leveraging either the motion information or assuming
that LiDAR points draw the boundaries of objects. Then
they associate the detected bounding boxes according to the
estimated motion information or motion models. Therefore,
these methods differ from our objectives for using SOT.

The only work we found falls into our setting is Ushani
et al. [32]. Dating back to that period, there is no large-scale
dataset fits the evaluation needs, thus [32] only tests on a
private dataset, which makes the comparisons infeasible. This
is just the reason to propose our new LiDAR-SOT benchmark,
which aims to promote the studies in this area.

C. Point Cloud Completion
Following the paradigm of PCN [38], researchers can

complete point clouds with neural networks trained from
artificial CAD models in graphics datasets like ShapeNet [3].
[12][11] adopt the same idea for vehicles. However, these
methods could hardly scale up as CAD models are expensive
and limited to some categories. Recently, Gu et al. [14]
discards the need for CAD models by using multi-view
sensors. But multi-view sensor information are also not
universal for real-world scenarios.

Considering the mentioned drawbacks of supervised meth-
ods, completing point cloud by tracking interests us most.
[7][5][16] jointly use LiDAR and camera for this task.
[15][32] are closest to our objective in using LiDAR only:
Held et al. [15] aggregates the observed point clouds, while
Ushani et al. [32] directly optimizes a point cloud model.

III. LIDAR-SOT BENCHMARK

A. Problem Formulation
Suppose the dataset has N tracklets T 1:N =

{T 1, T 2, ...T N} with lengths L1:N = {L1, L2, ..., LN}. We
refer to the i-th frame in the j-th sequence T j as T j

i , which
contains the point cloud P j

i and a bounding box B̃j
i . The

box B̃j
i , {C̃j

i , S̃
j
i } describes the size and state of an object.

In our benchmark, C̃j
i are the length, width and height of a

3D cuboid, and the state S̃j
i , [x̃ji , ỹ

j
i , z̃

j
i , θ̃

j
i] represents the

3D coordinates of the object’s center and the heading. We
only consider 4DOF instead of 6DOF because roll and pitch
deviations are usually aligned to the road for autonomous
driving. For a tracklet T j , it also contains the shape ground-
truth of target object M̃ j .

For an arbitrary tracklet T j , the algorithms are fed with
point cloud {P j

1:Lj} and the ground-truth bounding box B̃j
1 in

the first frame. The outputs are the estimated states {Sj
2:Lj}

and completed object shape M j . Note that we assume the
size of an object remains unchanged, thus it keeps the value
as C̃j

1 in subsequent frames. This assumption is generally
held for rigid objects such as vehicles.

The algorithms can run under either online or offline
setting. The online setting restricts the algorithms to access
point cloud data {PL

1:Lj} by order, and output the estimation
results before getting the next frame input. The offline
setting, in comparison, poses no constraints. In this paper,

we concentrate on the online setting because it fits both
on-the-road autonomous driving and offline applications.

B. Discussion with Closely Related Tasks
In this section, we highlight the differences between our

proposed task and several relevant tasks.
Multiple-object Tracking: As mentioned above, MOT relies on
detections and mainly focuses on associating them. Moreover,
MOT usually does not modify or generate new bounding
boxes, while our SOT task creates bounding boxes according
to the point cloud and motion information.
Shape Completion: Generally speaking, shape completion
complements the partial point cloud in a single frame under
the supervised setting. It needs paired training data to learn
generative models, while ours could utilize temporal LiDAR
data to complete the shapes in an unsupervised manner.
Point Cloud Registration: Registration focuses on matching
the point clouds between two frames, while more previous
frames are accessible in our task. Consequently, rich priors
could be incorporated to improve the performance, as demon-
strated later in the experiments, the performance of our state
estimation is significantly higher than using ICP only.

C. Dataset Construction
To facilitate the study on the aforementioned task, we

propose a new dataset called LiDAR-SOT. It is largely based
on the most comprehensive and largest point cloud dataset:
Waymo Open Dataset (WOD) [29]. Considering that the
vehicles are the most abundant rigid objects for autonomous
driving, we only concern the type of vehicles for now. The
WOD dataset contains full annotations of 3D bounding boxes
and their associations across frames for the evaluation of MOT,
thus, enabling our evaluation for state estimation in point
cloud sequences. As for the evaluation for shape completion,
since WOD contains no ground truth, we create pseudo-
ground-truth shapes (PGTs) for each tracklet by selecting and
aggregating the LiDAR points from every frame guided by
the ground-truth bounding boxes.

Our algorithm in the paper requires no additional training
sets. However, we still include a training set for LiDAR-SOT
by inheriting all the sequences from WOD training set and
leaving users with freedom of training/validation split. As
for the test set, we select the suitable tracklets from WOD
validation set to ensure meaningful evaluation. In total, 1121
vehicle tracklets are included based on the following criteria:
Tracklet length. Short sequences may result in unstable
evaluation and they are also not challenging enough for SOT
tasks. We therefore filter out the tracklets less than 100 frames.
Initial number of points. The numbers of LiDAR points
in the beginning frames are crucial for the meaningful
initialization, where VOT [18] sets up a warm-up period of
10 frames. Enough number of LiDAR points is also necessary
for human annotators to provide a initial bounding box with
high quality for offline applications. We therefore take both
aspects into consideration, and only keep the tracklets whose
initial 10 frames all have more than 20 points.
Vehicle mobility. We exclude the tracklets in which the
vehicle stays static all the time, as these cases have trivial

Fig. 3: Statistics of LiDAR-SOT. Left. Average per-frame Li-
DAR point number in the first 10 frames. Right. Distribution
of tracklet lengths.

solutions and bring negative biases to the evaluation. Note
that we still keep the tracklets where the vehicles start or end
with static states.

As visualized in the left of Fig. 3, although we guarantee
the number of LiDAR points in the beginning, the long-
tail distribution still indicates the challenges in point cloud
sparsity. Moreover, the right of Fig. 3 illustrates the difficulty
of LiDAR-SOT in long tracklets (note that the original
WOD [29] has a maximum of 200 frames).

For future analyses, we follow the paradigm of KITTI [10]
and divide the test set into easy, medium and hard subsets.
Intending on the difficulty of point cloud sparsity, we compute
the average point number of each tracklet’s first 10 frames,
then equally split the tracklets into three sets according to
the average point number. The specific thresholds are 38.2
and 808.3 points per frame.

D. Evaluation Metrics

Regarding the output on tracklet T j : states {Sj
2:Lj} and

shape M j , we use multiple metrics for thorough evaluation.
Our focus is on the quality of estimated states in SOT and
shape completion.
State Estimation: For state estimation, we are interested in
how long the algorithm could track objects and its quality.
Consequently, inspired by Visual Object Tracking (VOT) [18]
work, we propose two metrics for single pass evaluation.
Accuracy: We denote IOU(Bj

i , B̃
j
i) as the IOU of the esti-

mated and ground-truth bounding boxes. We then propose a
metric reflecting the state estimation accuracy by averaging
the IOU on each frame as:

Acc =
1∑N

k=1 L
k

N∑
k=1

Lk∑
j=1

IOU(Bk
j , B̃

k
j) (1)

Robustness: Given a pre-defined failure threshold t, we let
the tracking length lj(t) be the first frame number before
IOU drops lower than t in tracklet T j . This can be served as
measurement for robustness. However, as a single threshold
t may not be comprehensive, we compute the area under t -
Rob(t) curve by Eq. 2. In implementation, we approximate
the integral by sampling t from 0 to 1 with intervals of 0.05.

Rob(t) =

∑N
k=1 l

k(t)∑N
k=1 L

k
, Rob =

∫ 1

0

Rob(t)dt (2)

Shape Completion As the PGTs comes from overlaying all
the point cloud from tracklets, their densities are non-uniform.

To avoid unstable evaluation, we downsample both the PGTs
{M̃1:N} and our completion {M1:N} to the resolution of 5cm
during evaluation. For shape M i, we use Chamfer Distance
(CD) to measure its distance to M̃ i as Eq. 3. Then the Shape

metric is the average of CD on all tracklets.

CD
i =

1

|M i|
∑

a∈Mi

min
b∈M̃i

||a− b||2 +
1

|M̃ i|

∑
b∈M̃i

min
a∈Mi

||a− b||2

(3)

IV. SOTRACKER

In this section, we elaborate our proposed SOTracker.
The SOT task is essentially a cross frame registration task,
but a series of priors could be explored for enhancement.
Briefly speaking, our method estimates the relative motions
between frames using registration and various motion priors,
and aggregate them. Along the process of tracking, we also
combine the shapes on the fly for further improvement.

A. Pipeline

We take an arbitrary tracklet T for example to ex-
plain the algorithm. The notation ∆Sk = Sk − Sk−1 is
the motion between Sk−1 and Sk. Its entries ∆Sk =
[∆xk,∆yk,∆zk,∆θk] are the 3D translation and rotation
of heading. In the following sections, we use Ok to denote
the estimated LiDAR points on the surface of the object in
frame Tk, in comparison with the raw point cloud Pk.

The pipeline of SOTracker is in Algo. 1, where it suc-
cessively estimates the state in each frame with function
FrameEstimate in Algo. 2. In frame Tk, SOTracker first
solves Sk with FrameEstimate; then forms shape Mk by
combining previous shape Mk−1 and object point cloud
Ok together; it eventually updates the motion information
∆Sprior, which is used for initializing the next frame’s state
estimation. In FrameEstimate, the function initializes the
state Ŝk from adding the ∆Sprior onto previous state Sk−1.
Then it iteratively selects the relevant LiDAR points Ôk and
optimizes the state Sk towards a loss function L.

Some other details are clarified as follows:
1) : We implement ∆Sprior as the moving average of

motions and use α = 0.5 for the update in Algo. 1.
2) : PointInBox(P, S,C, γ) selects LiDAR points from

P that locates in the cuboid with center S and size γC. We
set different γ values for different usages. γin = 1.5 is for
the selection inside an estimation loop, while γaft = 1.1 is
for updating shapes.

3) : The shape update happens in OverlayShape, where
we initialize it using all the points in S̃1. As taking LiDAR
points from every frame brings heavy burden for computation,
we only combine new point clouds at key frames (that is
every 5 frames in our implementation).

4) : The second frame is special for FrameEstimate as
previous motion information ∆Sprior is not available. During
estimating S2, we let ∆Sprior = 0 and use a larger search
region for PointInBox by setting γin = 3.0. After this, we
initialize the motion prior by ∆Sprior ←− ∆S2.

Algorithm 1 Algorithm for tracklet T

Input: Point cloud: P1:L, bounding box B̃1, Size Scaling:
γ, Motion Prior Update Factor: α

Output: vehicle states: S2:L, shape ML

1: Frame number k ←− 2
2: ∆Sprior ←− 0

3: O1 ←− PointInBox(P1, S̃1, C̃1, 1.0)
4: M1 ←− O1

5: for k <= L do
6: Sk ←− FrameEstimate(Pk, Ok−1,∆Sprior, Sk−1,

C̃1,M1,Mk−1, γin)
7: Ok ←− PointInBox(Pk, SK , C̃1, γaft)
8: Mk ←− OverlayShape(Ok, Sk,Mk, k)
9: ∆Sprior ←− α∆Sprior + (1− α)∆Sk

10: k ←− k + 1
11: end for

Algorithm 2 FrameEstimate on frame Tk
Input: Point Cloud Pk and Ok−1, Motion Prior: ∆Sprior,

State: Sk−1, Size C̃1, Shape M1,Mk−1, parameters γin
Output: State Estimation Sk

1: Ŝk ←− Sk−1 + ∆Sprior

2: for Iteration Number < MaxIter do
3: Ôk ←− PointInBox(Pk, Ŝk, C̃1, γin)
4: S∗

k ←− arg min
Sk

L(Sk, Ôk, Ok−1, Sk−1,Mk−1)

5: Ŝk ←− S∗
k

6: end for
7: Sk ←− Ŝk,

B. Objective Function
The objective function is in Eq. 4. It is the weighted

sum of the four terms: ICP Term, Shape Term, Motion
Consistency Term, and Motion Prior Term. We set their
weights by [1, 1, 0.1, 0.1]. Eventually, we use the BFGS solver
from scipy [34] to optimize L.

L = wILICP + wSLShape + wMCLMC + wMPLMP (4)

In the sequel, we use the notation ∆S ⊗ (P, S) to denote
apply transformation ∆S = [∆x,∆y,∆z,∆θ] to the point
cloud P , relative to the coordinate system centered at S =
[x, y, z, θ]. ∆S ⊗ (P, S) equals to the first 3 rows of Eq. 5.

cos ∆θ − sin ∆θ 0 x+ ∆x− x cos ∆θ + y sin ∆θ
sin ∆θ cos ∆θ 0 y + ∆y − x sin ∆θ − y cos ∆θ

0 0 1 ∆z
0 0 0 1

[P1
]

(5)
We explain each term in the following sections.
1) ICP Term: Registering the point cloud Ôk and Ok−1

indicates the motion between these two frames. Therefore, we
propose a registration term LICP as in Eq. 6. Note that pSk−1

indicates applying transformation to p relative to Sk−1, as
Eq. 5. The details for finding associated point pairs AOk−1,Ôk

I

are in Sec. IV-C.3.

LICP =
1

| A
Ok−1,Ôk

I |

∑
(p,q)∈A

Ok−1,Ôk
I

||∆Sk ⊗ (p, Sk−1)− q||22

(6)
2) Shape Term: Registering the point cloud in neighboring

frames could fail in long term tracking due to drifting or
shifting in point cloud distribution. We remedy this by adding
regularization between the shapes of objects and current
frame point clouds. Specifically, we penalize the inconsistency
between the current frame point cloud Ôk and the latest shape
Mk−1 by registering them. In the implementation, we first
use the first frame point cloud as initialization, since the
initial bounding box has high quality and the related point
clouds are accurate. Then we aggregate new LiDAR points
along the process of tracking, and use this updated shape
to compute the loss function. Formally, the Shape Term is
computed as Eq. 7. AMk−1,Ôk

S is the set of associate point
pairs, explained in Sec. IV-C.3.

LShape =
1

| A
Mk−1,Ôk

S |

∑
(p,q)∈A

Mk−1,Ôk
S

||(Sk − S̃1)⊗ (p, S̃1)− q||22

(7)
3) Motion Consistency Term: The objects cannot be treated

as point mass, so their movements have to follow certain
constraints. For simplicity, we enforce the most general
constraint: their directions should be consistent with their
own headings. The corresponding term is computed as Eq. 8,
where v = [∆xk,∆yk] represents the velocity.

LMC =

∥∥∥∥||v||2 cos(
θk−1 + θk

2
)−∆xk

∥∥∥∥2
2

(8)

4) Motion Prior Term: To combine the motion model into
the optimization framework, we design the “Motion Prior”
term. It penalizes the inconsistency between the optimization
results ∆Sk and the prediction from motion models ∆Sprior.
This term encourages the consensus between the latest
optimization and trajectory histories. The computation of
Motion Prior Term is as Eq. 9.

LMP = ‖∆S −∆Sprior‖22 (9)

C. Design Choices
We identify several key implementation factors that are

helpful for the performance of state estimation.
1) Ground Removal: The ground points are irrelevant with

the vehicle’s states and shapes, and they usually confuse the
algorithm. So we remove the ground points using [40] as a
pre-processing operation.

2) Subshape: Due to the sparsity of LiDAR point clouds,
it is challenging to only use single frame for registration. In
the ICP term, we can enhance the performance by overlaying
the LiDAR points in nearby frames. In the implementation,
we overlay additional 2 frames Ok−3:k−2 onto Ôk−1 in Eq. 6.

3) LiDAR Point Association: As a prerequisite of comput-
ing the ICP Term and Shape Term in Sec. IV-B, the LiDAR
points have to be associated according to the rules of nearest

Ground Truth Shape Shape Evolution

Ground Truth SOT Aggregation Ground Truth SOT Aggregation

Sh
ap

e
 E

vo
lu

ti
o

n
Sh

ap
e

 C
o

m
p

ar
is

o
n

Ground Truth Shape Shape Evolution

Fa
ilu

re
 C

as
e

Fig. 4: Visualization SOT results. 1. The evolution of shapes
during the tracking process. 2. Comparison between the results
from SOT and ground truth. 3. Visualization of failure cases.

neighbors. As for the ICP term described in Sec. IV-B.1, we
follow the common approach and construct the associated
point set AOk−1,Ôk

I as Eq. 10. In the equation, the function
NN(p,B) means finding the nearest neighbor for point p in
the point set B.{

(x, y) | y = NN(∆Sk ⊗ (x, Sk−1), Ôk),∀x ∈ Ok−1

}
(10)

However, as for the Shape Term in Sec. IV-B.2, the
point clouds Mk−1 and Ôk may differ significantly during
the process of tracking. The outliers of association lead to
deviated solutions and degrade the state estimation. Therefore,
we use RANSAC for Shape Term to exclude the outlier pairs.
The result AM ′,Ôk

S is computed as Eq. 11.

RANSAC(
{

(x, y) | y = NN((Sk − S̃1)⊗ (x, S̃1), Ôk), ∀x ∈Mk−1

}
)

(11)
D. Limitations and Future Work

For simplicity, our LiDAR-SOT is currently limited to the
rigid type of objects: vehicles. Extending it to more general
types of objects, such as cyclists and pedestrians, requires
the modeling for the periodically and continuously changing
shapes. Using multiple templates or implicit functions [24]
for their shapes could be the solution.

Combining SOT methods with the multiple detections in
different frames also poses great challenges, as the quality of
detection bounding boxes may vary across different frames.
Therefore, we have to model the quality of them and combine
our optimization-based algorithm into the MOT framework.
Also, the disappearance or occlusion of an object need to be
considered in the setting. We leave these two issues, and will
try to solve them in future work.

V. RESULTS AND ANALYSES

A. Quantitative Results
Table I evaluates the contributions of each individual

factor. We start from the baseline of using ICP and motion
model, then add the other terms one by one. When ablating

the optimization factors from Sec. IV-B, we remove them
separately from the strongest SOTracker to show their benefits.

Compared to the baseline of using ICP and motion
model only (ICP+MP), adding the Shape-Term (S(1), using
the first frame point cloud as shape in the Shape Term)
significantly improves the performance. During this process,
aggregating shapes along the process of tracking (S(All),
using aggregated shape in the Shape Term) assist the state
estimation even further. On top of the point cloud related
factors, the regularization on motion consistency (MC) is
helpful especially on medium and hard cases. As for the
design choices in Sec. IV-C, removing any of them greatly
affects both the accuracy and robustness, where Ground
Removal and RANSAC are the most critical ones.

B. Comparison with Model-based Methods

1) Compare with Model-based Baseline: To demonstrate
the effectiveness of our model-free approach, we compare
our method with one common model-based baseline: uti-
lizing Kalman filters to associate the detections, and then
directly output the associated bounding boxes. Specifically,
we use Point Pillars [19] for detection. Then we change the
detection bounding boxes’ sizes to ground-truth following
LiDARSim [21] for fair comparison with SOT methods, since
other SOT methods have ground-truth size in the first frame.

Contrasting Row 4 and “Det” in Tab. I, we observe that our
SOTracker can approach the performance of “Det” on the
easy set without external training data, even slightly better on
robustness, while has large disadvantages on the medium and
hard sets. The results are reasonable because model-based
methods could benefit from the large-scale training set, while
model-free methods simply don’t use it, but should be more
robust on the rare and unseen cases.

2) Combine Model-free and Model-based Methods:
Furthermore, we try to incorporate the detections into our
framework by Detection Term. Briefly speaking, it selects
the detection with the largest IOU with the motion model
prediction, while enforcing a minimum score of 0.5 and IOU
of 0.1. If no bounding box fulfills the requirement, this term
is discarded. The term is illustrated in Eq. 12, where SD is
the state for selected detection. This hybrid method is the
“Det+SOT” in Tab. I. Compared to the “Det” row, “Det+SOT”
consistently outperforms, proving our point.

LDet = ‖∆Sk − (SD − Sk−1)‖22 (12)

C. Analyses

1) Vehicle Shape Visualization: Following the approach
in [15], [32], we visualize the aggregated point clouds in
Fig. 4 to indicate the quality of tracking. Moreover, the vehicle
banks constructed during this process are also beneficial to a
series of tasks discussed in Sec. VI. In Fig. 4 and Fig. 1, the
evolution of point clouds and the quality of shapes prove that
our algorithm can produce high quality state information and
3D shapes. This further poses the necessity and effectiveness
of using LiDAR sequences for creating 3D shapes.

Type Method All Easy Medium Hard
Acc↑ Rob↑ Shape↓ Acc↑ Rob↑ Shape↓ Acc↑ Rob↑ Shape↓ Acc↑ Rob↑ Shape↓

Model-
free

ICP+MP 0.3927 0.3734 0.1836 0.5156 0.4997 0.1067 0.3578 0.3340 0.1792 0.2828 0.2638 0.2652
ICP+MP+S(1) 0.5931 0.5113 0.1226 0.7386 0.6801 0.0612 0.5380 0.4522 0.1218 0.4779 0.3721 0.1851
ICP+MP+S(All) 0.6027 0.5348 0.1239 0.7479 0.6992 0.0591 0.5613 0.4819 0.1261 0.4789 0.3946 0.1867
ICP+MP+S(All)+MC 0.6146 0.5467 0.1164 0.7496 0.7002 0.0589 0.5743 0.4910 0.1173 0.4959 0.4224 0.1727
w/o GM 0.5715 0.4994 0.1284 0.6924 0.6450 0.0676 0.5320 0.4512 0.1279 0.4662 0.3783 0.1889
w/o RANSAC 0.5707 0.5130 0.1276 0.7016 0.6615 0.0705 0.5185 0.4480 0.1239 0.4728 0.4049 0.1883
w/o SUB 0.6025 0.5367 0.1221 0.7436 0.6937 0.0595 0.5574 0.4813 0.1199 0.4814 0.4079 0.1871

Model-
based

Det 0.7574 0.6184 0.0714 0.7850 0.6918 0.0589 0.7409 0.5993 0.0780 0.7423 0.5508 0.0774
Det+SOT 0.7690 0.6329 0.0644 0.8017 0.7092 0.0544 0.7597 0.6169 0.0637 0.7398 0.5587 0.0753

TABLE I: Ablation studies. ↑(↓) means the performance is better with larger(smaller) values. Optimization terms: ICP –
ICP Term; S – Shape Term, S(1) – only using the first frame point cloud, S(all) – using the updated shape; MC – Motion
Consistency Term, MP – Motion Prior Term. Implementation details: GM – ground removal, RANSAC – using RANSAC,
SUB – subshape. Det and Det+SOT are covered in Sec. V-B.

2) Shape Completion 6= State Estimation: Although in
Table. I, better shapes generally come along with better state
estimation performance, we argue that these two are not
equivalent tasks. The LiDAR points are aggregated until the
last frame in the experiments of Table I, but this is not the
optimal approach and leads to worse shapes on the failures
of state estimation, just as the last row in Fig. 4. Therefore,
ideal shape completion needs to reason whether and how
to aggregate the point clouds, thus differs from mere state
estimation. We will investigate this direction in future study.

D. Challenging Scenarios
1) Point Cloud Sparsity: In Table I, the performance gaps

among the three difficulty levels reflect the challenge of sparse
point clouds. The hard set has less LiDAR points, which
causes inaccurate registration at the beginning and leads to
lower performance. In long-term tracking, the ubiquitous
cases of occlusion or distant objects indicate the needs for
handling this challenge.

2) Drifting: Accumulated error is well known in SLAM
and commonly exists in odometry based approaches. The
errors can accumulate and cause drifting over time if without
absolute observation or extra constraints like loop closure.
We alleviate this by adding the shape terms, which treats the
shape as “Map” and enforce its consistency with the observed
point cloud. Although the terms are effective in many cases
as in Table I, drifting still exists as in Fig. 1 and requires
future research on it.

3) Abrupt Motion Change: Accurate motion initialization
is crucial since it provides the initial point set correspondence.
Although current motion models are able to adapt to most
cases, they still struggle where the objects change the motions
greatly in short periods, as the incorrectly associated point
clouds can quickly lead to failures. We will explore more
advanced motion prediction methods, and close the loop of
state estimation and motion prediction in the future.

VI. EXPERIMENTS ON DOWNSTREAM APPLICATIONS

A. Motion Ground Truth Generation
SOTracker can estimate the motion of a designated vehicle

in wild point cloud sequences. Therefore, it is capable of
providing motion data for prediction and planning systems at
a low cost. As in Fig. 5, the deviation of generated motion

Fig. 5: Motion generation results. The average distance
(meters) between the motion from ground-truth and our
algorithm at frame k.

is less than 10cm within 30 frames, which is even smaller
than the size of a finger. With Argoverse [4] providing 30
data points for the motion prediction task, we believe that
our system meets the standard.

B. Optical Flow Annotation
With the estimated shapes M and states Sk:k+1, we can

annotate optical flows for the tracked objects in corresponding
images Ik:k+1. For each point m ∈ M , we compute its
location (qxk, qyk) on Ik by moving the shape according to
Sk, then project it onto the image plane. In the same way, we
compute (qxk+1, qyk+1) on image Ik+1, then the optical flow
for pixel (qxk, qyk) is (qxk+1−qxk, qyk+1−qyk). In Fig. 1,
our annotated optical flow can act as high quality pseudo-
ground-truth. Such an application is infeasible for the single
frame point cloud (the left image), as it contains neither
enough points nor the motion information for annotating
the optical flow. In KITTI [22], researchers require all
three of LiDAR data, CAD models and ground-truth 3D
bounding boxes to infer the optical flows of vehicles, while
our algorithm only requires an initial bounding box and raw
LiDAR scenes. Therefore, our method can reduce the cost
of optical flow annotation and scale it up.

C. Simulating LiDAR Scans Using Vehicle Bank
In LiDARsim [21] researchers propose to simulate single

LiDAR scans for autonomous driving by creating object
shapes with manually labeled 3D locations. As mentioned in
LiDARsim [21], augmenting the training data with the simu-
lation can improve the performance of perception systems. In

Shapes From
State Estimation

LiDAR Scan Simulations

20m 40m

Fig. 6: LiDAR scans created using our completed shapes and
physical simulation. The visualization includes two types of
vehicles: car and truck. The LiDAR simulation fits different
angles and different distances (20m and 40m).

Fig. 6 we visualize the results of our LiDAR scan simulation
on different types of vehicles, angles, and distances. For both
types of vehicles, we can build up high quality shapes and
simulated scans, which proves the effectiveness of our model-
free SOT approach. Moreover, unlike LiDARsim [21], which
requires exhausted annotation of objects, we only require an
initial bounding box and raw point clouds. Thus, we make
the process cheaper and more scalable, and produce unlimited
LiDAR data with minimum human annotation.

VII. CONCLUSION
In this paper, we calls for the attention on a new setting of

object tracking in point cloud sequences: model-free single-
object tracking. This new setting targets on the drawbacks of
model-based detection and MOT methods, and can benefit a
series of applications. To facilitate the research, we construct
the LiDAR-SOT from WOD and propose a strong algorithm
called SOTracker. According to the qualitative and quantitative
results, our method not only achieves strong baseline on state
estimation, but also generalizes its estimated states and 3D
shapes to the applications of simulating LiDAR scans, optical
flow annotation, and motion data generation.

REFERENCES

[1] A. Azim and O. Aycard. Detection, classification and tracking of
moving objects in a 3d environment. In IV, 2012.

[2] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. nuScenes: A
multimodal dataset for autonomous driving. In CVPR, 2020.

[3] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al. ShapeNet: An
information-rich 3D model repository. arXiv:1512.03012, 2015.

[4] M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays. Argoverse: 3D
tracking and forecasting with rich maps. In CVPR, 2019.

[5] D. Christie, C. Jiang, D. Paudel, and C. Demonceaux. 3D reconstruction
of dynamic vehicles using sparse 3D-laser-scanner and 2D image fusion.
In ICIC, 2016.

[6] R. Danescu, F. Oniga, and S. Nedevschi. Modeling and tracking
the driving environment with a particle-based occupancy grid. T-ITS,
12(4):1331–1342, 2011.

[7] M. H. Daraei, A. Vu, and R. Manduchi. Velocity and shape from
tightly-coupled LiDAR and camera. In IV, 2017.

[8] M. Darms, P. Rybski, and C. Urmson. Classification and tracking of
dynamic objects with multiple sensors for autonomous driving in urban
environments. In IV, 2008.

[9] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Motion-based
detection and tracking in 3d lidar scans. In ICRA, 2016.

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the KITTI vision benchmark suite. In CVPR, 2012.

[11] S. Giancola, J. Zarzar, and B. Ghanem. Leveraging shape completion
for 3D siamese tracking. In CVPR, 2019.

[12] H. Goforth, X. Hu, M. Happold, and S. Lucey. Joint pose and shape
estimation of vehicles from LiDAR data. arXiv:2009.03964, 2020.

[13] J. Groß, A. Osep, and B. Leibe. Alignnet-3D: Fast point cloud
registration of partially observed objects. In 3DV, 2019.

[14] J. Gu, W.-C. Ma, S. Manivasagam, W. Zeng, Z. Wang, Y. Xiong, H. Su,
and R. Urtasun. Weakly-supervised 3D shape completion in the wild.
arXiv:2008.09110, 2020.

[15] D. Held, J. Levinson, S. Thrun, and S. Savarese. Combining 3D shape,
color, and motion for robust anytime tracking. In RSS, 2014.

[16] C. Jiang, D. Christie, D. P. Paudel, and C. Demonceaux. High quality
reconstruction of dynamic objects using 2D-3D camera fusion. In
ICIP, 2017.

[17] R. Kaestner, J. Maye, Y. Pilat, and R. Siegwart. Generative object
detection and tracking in 3D range data. In ICRA, 2012.

[18] M. Kristan, J. Matas, A. Leonardis, T. Vojı́r, R. P. Pflugfelder,
G. Fernández, G. Nebehay, F. Porikli, and L. Cehovin. A novel
performance evaluation methodology for single-target trackers. TPAMI,
38(11):2137–2155, 2016.

[19] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom.
Pointpillars: Fast encoders for object detection from point clouds. In
CVPR, 2019.

[20] W. Luo, B. Yang, and R. Urtasun. Fast and Furious: Real time end-
to-end 3D detection, tracking and motion forecasting with a single
convolutional net. In CVPR, 2018.

[21] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan,
B. Yang, W. Ma, and R. Urtasun. LiDARsim: Realistic LiDAR
simulation by leveraging the real world. In CVPR, 2020.

[22] M. Menze and A. Geiger. Object scene flow for autonomous vehicles.
In CVPR, 2015.

[23] F. Moosmann and C. Stiller. Joint self-localization and tracking of
generic objects in 3d range data. In ICRA, 2013.

[24] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape
representation. In CVPR, 2019.

[25] A. Petrovskaya and S. Thrun. Model based vehicle tracking for
autonomous driving in urban environments. In RSS, 2008.

[26] F. Pomerleau, P. Krüsi, F. Colas, P. Furgale, and R. Siegwart. Long-term
3d map maintenance in dynamic environments. In ICRA, 2014.

[27] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep hierarchical
feature learning on point sets in a metric space. In NeurIPS, 2017.

[28] H. Qi, C. Feng, Z. Cao, F. Zhao, and Y. Xiao. P2B: Point-to-box
network for 3D object tracking in point clouds. In CVPR, 2020.

[29] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov. Scalability in perception
for autonomous driving: Waymo Open Dataset. arXiv:1912.04838,
2019.

[30] G. Tanzmeister, J. Thomas, D. Wollherr, and M. Buss. Grid-based
mapping and tracking in dynamic environments using a uniform
evidential environment representation. In ICRA, 2014.

[31] G. D. Tipaldi and F. Ramos. Motion clustering and estimation with
conditional random fields. In IROS, 2009.

[32] A. K. Ushani, N. Carlevaris-Bianco, A. G. Cunningham, E. Galceran,
and R. M. Eustice. Continuous-time estimation for dynamic obstacle
tracking. In IROS, 2015.

[33] J. Van De Ven, F. Ramos, and G. D. Tipaldi. An integrated
probabilistic model for scan-matching, moving object detection and
motion estimation. In ICRA, 2010.

[34] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al.
Scipy 1.0: fundamental algorithms for scientific computing in python.
Nature methods, 17(3):261–272, 2020.

[35] T. Vu and O. Aycard. Laser-based detection and tracking moving
objects using data-driven markov chain monte carlo. In ICRA, 2009.

[36] D. Z. Wang, I. Posner, and P. Newman. Model-free detection and
tracking of dynamic objects with 2d lidar. IJRR, 2015.

[37] B. Yang, W. Luo, and R. Urtasun. PIXOR: Real-time 3D object
detection from point clouds. In CVPR, 2018.

[38] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. PCN: Point
completion network. In 3DV, 2018.

[39] J. Zarzar, S. Giancola, and B. Ghanem. PointRGCN: Graph convolution
networks for 3D vehicles detection refinement. arXiv:1911.12236, 2019.

[40] D. Zermas, I. Izzat, and N. Papanikolopoulos. Fast segmentation of
3D point clouds: A paradigm on LiDar data for autonomous vehicle
applications. In ICRA, 2017.

[41] H. Zou, J. Cui, X. Kong, C. Zhang, Y. Liu, F. Wen, and W. Li. F-
siamese tracker: A frustum-based double siamese network for 3d single
object tracking. arXiv:2010.11510, 2020.

	I Introduction
	II Related Work
	II-A Datasets and Benchmarks
	II-B State Estimation and Tracking in Point Cloud
	II-C Point Cloud Completion

	III LiDAR-SOT Benchmark
	III-A Problem Formulation
	III-B Discussion with Closely Related Tasks
	III-C Dataset Construction
	III-D Evaluation Metrics

	IV SOTracker
	IV-A Pipeline
	IV-A.1
	IV-A.2
	IV-A.3
	IV-A.4

	IV-B Objective Function
	IV-B.1 ICP Term
	IV-B.2 Shape Term
	IV-B.3 Motion Consistency Term
	IV-B.4 Motion Prior Term

	IV-C Design Choices
	IV-C.1 Ground Removal
	IV-C.2 Subshape
	IV-C.3 LiDAR Point Association

	IV-D Limitations and Future Work

	V Results and Analyses
	V-A Quantitative Results
	V-B Comparison with Model-based Methods
	V-B.1 Compare with Model-based Baseline
	V-B.2 Combine Model-free and Model-based Methods

	V-C Analyses
	V-C.1 Vehicle Shape Visualization
	V-C.2 Shape Completion = State Estimation

	V-D Challenging Scenarios
	V-D.1 Point Cloud Sparsity
	V-D.2 Drifting
	V-D.3 Abrupt Motion Change

	VI Experiments on Downstream Applications
	VI-A Motion Ground Truth Generation
	VI-B Optical Flow Annotation
	VI-C Simulating LiDAR Scans Using Vehicle Bank

	VII Conclusion
	References

