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Category-Level 6D Object Pose Estimation via
Cascaded Relation and Recurrent Reconstruction Networks

Jiaze Wang!*, Kai Chen'* and Qi Dou!2*

Abstract— Category-level 6D pose estimation, aiming to pre-
dict the location and orientation of unseen object instances, is
fundamental to many scenarios such as robotic manipulation
and augmented reality, yet still remains unsolved. Precisely
recovering instance 3D model in the canonical space and
accurately matching it with the observation is an essential
point when estimating 6D pose for unseen objects. In this
paper, we achieve accurate category-level 6D pose estimation
via cascaded relation and recurrent reconstruction networks.
Specifically, a novel cascaded relation network is dedicated
for advanced representation learning to explore the complex
and informative relations among instance RGB image, in-
stance point cloud and category shape prior. Furthermore,
we design a recurrent reconstruction network for iterative
residual refinement to progressively improve the reconstruction
and correspondence estimations from coarse to fine. Finally,
the instance 6D pose is obtained leveraging the estimated
dense correspondences between the instance point cloud and
the reconstructed 3D model in the canonical space. We have
conducted extensive experiments on two well-acknowledged
benchmarks of category-level 6D pose estimation, with sig-
nificant performance improvement over existing approaches.
On the representatively strict evaluation metrics of 3D75 and
5°2c¢m, our method exceeds the latest state-of-the-art SPD [1] by
4.9% and 17.7% on the CAMERA2S5 dataset, and by 2.7% and
8.5% on the REAL275 dataset. Codes are avaliable at https:
//wangjiaze.cn/projects/6DPoseEstimation.html.

I. INTRODUCTION

Accurate 6D pose estimation has increasingly been an
important yet challenging research topic in computer vision,
which aims to predict the location and orientation of 3D
objects [2], [3], [4]. It has extensive prospects in real-world
applications such as robotic manipulation, augmented reality,
navigation and 3D scene understanding. In recent years, al-
though pioneering work in instance-level 6D pose estimation
has made remarkable progress [5], [6], [7], [8], almost all
these methods require exact 3D CAD object models for the
instances. However, such an assumption is difficult, if not
impossible, to be satisfied in real practice, considering the
diversity of object instances as well as the cost for building a
CAD model for each instance. In addition, these methods can
not handle new instances with unknown CAD models, which
impedes the generalizability in environments with previously
object instances without CAD models.

In contrast, the aim of category-level 6D object pose
estimation is to generate 6D poses for novel object instances

1 Jiaze Wang, Kai Chen and Qi Dou are with the Department of Computer
Science and Engineering at The Chinese University of Hong Kong, Hong
Kong SAR, China. gidou@cuhk.edu.hk

2 Qi Dou is also with T Stone Robotics Institute, The Chinese University
of Hong Kong, Hong Kong SAR, China

* Authors contributed equally

Category prior
in NOCS

Reconstructed instance
NOCS model

Instance
point cloud

R ——
e A

Recurrent
Reconstruction

Instance

Category relation
relation gory

Instance
RGB image

6D pose and size
of the instance

Fig. 1. The proposed category-level 6D pose estimation via cascaded
relation and recurrent reconstruction networks.

of the same category, which is much more challenging. In
conventional instance-level methods, object pose is estimated
via correspondences between the observed instance RGB or
RGB-D image and its exact CAD model. Yet, in category-
level setting, such a correspondence can not be directly con-
structed without a specific CAD model. In order to explore
such correspondence information in category-level 6D pose
estimation, Wang et al. [9] innovate the Normalized Object
Coordinate Space (NOCS) which is a unified coordinate
system. In NOCS, the size of objects are normalized within
a defined coordinate space, and the instances belonging to
the same category share an identical orientation. Since the
object CAD model is unknown, they reconstruct a canonical
model representation in NOCS from instance observations,
and build dense correspondences between the reconstructed
NOCS model with instance image or point cloud for 6D
pose estimation. Recently, Tian et al [1] further improve
the accuracy of the reconstructed 3D model in NOCS by
introducing a shape prior to the reconstruction process. They
extract category features from the shape prior and concate-
nate instance features with the category ones, to address the
shape variations across instances within the same category.
The quality of reconstructed NOCS model is significantly
enhanced by harnessing the shape-based category features.

Though promising progress has been witnessed, it is still
extremely challenging to accurately reconstruct the 3D object
models in NOCS, which plays a crucial role to boost 6D
pose estimation performance. First, learning representative
features from RGB-D image is essential, given that the
color image and point cloud data provide complementary
texture and geometry information for the objects. Capturing
the inherent relations of them improves the representation
capability of the instance embeddings. The relevant category
feature is also valuable, which helps to model the instance
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shape variations during reconstruction. Exploiting the rela-
tion between such category features with the instance ones
helps to overcome intra-class shape variations as well as
provide global contextual clues for NOCS model reconstruc-
tion. However, such important yet complex relations have not
been well investigated in existing methods so far. Second,
reconstructing the object model in the canonical NOCS space
forms a dense regression task. In line with other dense
regression problems [10], [11], it is difficult for a network
to produce highly accurate regression results with a single
step, because the network may partially focus on some object
parts while overlooking the others. This hampers the 6D
pose estimation accuracy, as the optimization process may
be trapped into a local minimum when dealing with spatially
biased correspondences.

To address above challenges, we propose a novel method
of Cascaded Relation and Recurrent Reconstruction Net-
works for category-level 6D object pose estimation. As
illustrated in Figure 1, our framework presents cascaded
relation networks to capture the informative relations of
instance RGB images, instance point cloud, and category
priors, which is important for accurate canonical model
reconstruction. Specifically, an instance relation network
captures the relation of the input RGB image and point
cloud to extract representative feature embeddings for each
instance. A category relation network exploits the relation
of instance features and category features to address the
large shape variations. Moreover, with the relation-enhanced
features, a recurrent reconstruction network is then developed
to accurately reconstruct the instance model in NOCS space,
which progressively refines the reconstructed models from
coarse to fine. Finally, we leverage the reconstructed model
and the observed point clouds to estimate object 6D pose by
point matching. Our main contributions are summarized as:

« We propose a novel cascaded relation network to cap-
ture the underlying relations of multi-source inputs.
Our network leverages the complementary advantages
of these features for categorical object pose estimation.

e We design a recurrent reconstruction network to ac-
curately reconstruct the instance 3D model in NOCS
space. By iteratively estimating reconstruction residuals,
our network progressively refines the model and the
correspondence matrix.

e We conduct extensive experiments on two well-
acknowledged benchmarks with dramatic performance
improvement over existing methods. On the representa-
tive strict evaluation metrics of 3D75 and 5°2cm, our
method exceeds the latest state-of-the-art SPD [1] by
4.9% and 17.7% on the CAMERA25 dataset, and by
2.7% and 8.5% on the REAL275 dataset.

II. RELATED WORK

Instance-Level 6D Pose Estimation. Instance-level 6D
object pose estimation methods can be broadly categorized
into two categories of RGB-based and RGBD-based meth-
ods, according to the format of input data. Classical RGB-
based methods [12], [13], [14] focus on detecting and match-

ing keypoints with known models. Current deep learning
methods [15], [16], [6], [17], [8], [18], [19] improve the
performance by replacing the hand-crafted keypoint detection
and matching process with a data-driven learning scheme
that predicts 2D keypoints on RGB images and solves
object poses by PnP [20]. Instead of explicitly detecting
and matching object keypoints, some methods [8] take cor-
ner points of 3D object bounding boxes as keypoints, or
implicitly represent keypoints by a dense voting field [2].
These methods thus can effectively cope with low-texture
environments. Other methods [21], [22], [23] propose to
directly predict pose parameters from RGB observations.
They extract and group pose-relevant features by CNN and
regress translation and rotation with two separate multi-
layer perceptrons. Although impressive, these RGB-based
methods face problems in complex environments such as
cluttering or occlusion [24], [2]. Lacking depth information
increases the ambiguity of estimation and also hurts the
pose accuracy. For RGBD-based methods, once obtained the
intrinsic matrix of a RGB-D camera, we can recover the
object point cloud via inverse projection [5], [3]. How to
make full use of the appearance feature from the RGB image
and the complementary geometry feature from point cloud is
a major challenge in RGBD-based methods [25]. Algorithms
such as PoseCNN [4] uses them in totally separate steps, in
which RGB images are used to predict initial object poses
while point clouds are utilized for ICP-based pose refinement
[26]. [27] fuses the depth image as a new input channel to
conventional CNNs which lacks discriminative treatments for
point clouds. Recent methods [5], [7], [3] densely fuse the
color embedding with the geometry embedding in a pixel-
wise manner. Unfortunately, they still did not consider any
global feature relations [28], [29], [30], [31], [32] during
fusion.

Category-Level 6D Pose Estimation. Existing works on
category-level 6D pose estimation are still scarce to date.
Compared with instance-level object pose estimation, the
category-level task is more challenging due to the large
intra-class variations in aspects of texture and shape among
instances. Establishing an intermediate representation that
reduces such difference is a widely applied idea in existing
algorithms. Sahin et al. [33] divide an object into multiple
3D skeleton structures, from which they derive a shape-
invariant representation and develop a part-based random
forest architecture for categorical 6D pose estimation. By
integrating 3D shape estimates from a generative object
model, [34] produces a distribution over predicted poses with
only rotation information. Alternative methods [9] express
an object in canonical coordinate space. By inferring /
regressing the object canonical representation and associate
it with the specific instance observation, 6D object pose can
be determined without 3D CAD models. Wang et al. [9]
introduce the Normalized Object Coordinate Space to repre-
sent different object instances within a category in a unified
manner. Then a network is trained to predict correspondences
from object pixels to points in NOCS. Subsequently, these
correspondences are used with the depth map to estimate



6D pose and size by point matching. Inspired by NOCS,
the first category-level pose tracker is proposed by [35].
Recent methods [36], [1] propose to leverage the category-
related features to explicitly model the shape variation when
reconstructing the canonical representation. In this paper,
we explore the complex relations among the texture feature,
geometry feature and category feature, in addition to progres-
sively recover the object canonical model with the enhanced
feature representations.

III. METHOD

In this section, to make the contents self-contained and
easy to follow, we will first introduce the useful preliminary,
then briefly describe an overview of our proposed category-
level 6D pose estimation framework. Next, we will describe
the proposed novel cascaded relation network, recurrent
reconstruction network and pose generation method in detail.

A. Preliminary

Given a calibrated RGB-D image, we aim to estimate a
6D pose for an object of interest, which is a rigid trans-
formation [R|t] composed of a rotation R € SO(3) and a
translation ¢ € R3 components. To process scenes containing
multiple instances with different categories, we first employ
an off-the-shelf instance segmentation network (i.e., Mask-
RCNN [37]) to detect and segment each individual object
instance. The yielded detection bounding box is used to
crop the RGB image into object patches, and the segmen-
tation mask is leveraged to convert the depth image into
object point cloud (through camera intrinsic matrix). Inspired
by [1], [9], once we can reconstruct the exact instance
3D model in the NOCS canonical space, the problem of
pose estimation then is reduced to determining the similarity
transformation from instance point cloud to the reconstructed
3D model. In order to integrate the predicted object category
information into this scheme, we further build an initial 3D
canonical model for each category of objects and take it as
a category-level prior feature.

B. Framework Overview

As shown in Figure 2, our novel pose estimation frame-
work has three inputs: instance RGB image, instance point
cloud and the corresponding category prior in NOCS. Esti-
mating object 6D poses with the above multi-source inputs,
Wang et al. [9] separately process them with independent
network modules, while Tian et al. [1] integrating them
by concatenating their features in latent space. In contrast,
we aim to devise an effective strategy to fully leverage
complementary knowledge among the provided inputs for
pose estimation. Particularly, we propose a cascaded relation
network that constructs the relationship context for input
features in two cascaded stages. The first stage models
relations between instance image feature and point cloud
feature to obtain representative instance features. The second
stage further correlates the instance features with category
features. On top of these, a dense deformation field is
regressed for the use of adjusting the category prior for

NOCS model reconstruction. Meanwhile, a correspondence
matrix is also estimated to match the instance point cloud
with the reconstructed model. Furthermore, we develop a
recurrent reconstruction network for accurate reconstruction
and matching. The network iteratively updates the recon-
structed model and the category-level feature in each recur-
rent step. By exploiting multi-stage supervisions, it learns
residuals to progressively refine the deformation field and
the correspondence matrix. Finally, given the instance NOCS
model and the correspondence matrix, object 6D pose and
size can be generated by correspondence-based optimization.

C. Cascaded Relation Network

In the following, we describe the proposed cascaded re-
lation network. Formally, we denote an instance observation
by (I,V), with I € RT*W*3 peing the image patch, and
V € RN»*3 being the point cloud recovered from the depth
map. N, is the number of points in V. Let V, € RNe*3
be the corresponding category prior where N, denotes the
number of points in V.. We first resort to CNN and MLPs
to extract texture and geometry features from I, V and V,
respectively. After that, similar to [3], we align the texture
feature map to point clouds and associate each instance
point with a texture feature vector. Consequently, we get
the instance texture feature F; € RE*Nr  the instance
geometry feature I, € RCE>*Nv and the category feature
F, € RC*Ne where C, is the feature channels.

The relations among F;, F, and F, are important for
reconstructing the NOCS model towards accurate pose es-
timation for an instance. On the one hand, it is supposed
to capture the characteristics of the instance so that the
reconstructed model can well match the observed point
clouds. On the other hand, the reconstruction network should
also account for certain general attributes of the category,
so that the reconstruction process can overcome intra-class
variations thus enhancing generalizability to unseen instances
of the same category. In these regards, we propose a cascaded
relation network to harness these two kinds of relations for
accurate NOCS reconstruction and pose estimation.

Instance Relation. The instance relation network (IRN)
is designed to learn the complementary knowledge between
Fy and Fy, with F; encoding instance texture and semantic
features and F,; encoding its geometry information. These
two features complement each other in key aspects. For
example, due to absence of depth information, F} extracted
by CNN is susceptible to image background and cluttering
environments, which can be alleviated in Fj; from point
cloud. The MLP produces F,; from disordered point clouds
using a narrow receptive field, leading to less efficacy on
spatial-aware representations, which in turn can be mitigated
with F;. Given these properties, we propose to capture their
relations and deeply integrate them using a relation function
G. In this way, we reproduce the relation-injected texture
feature and geometry feature of the instance as follows:

Fi=F+G'(F,Fy), Fy=F,+G'(Fy,F). (1)

We add the original feature to the relation feature, in order



@ Matrix addition Relation between F; and F;

@ Matrix multiplication

Fc Input II: C_ategor)éprior
n

LWoa .
o | - Relation from
D: Deformation field @(’ =2 Fjto F¢
M: Correspondence matrix \ 1
o
Input I: RGB =
observation
Fy
\ Instance Category
Input II: Point Relation Relation
cloud observation —/ Network Network

I Cascaded Relation

- Output:
Update the 6D pose and size

_ NOCS model

Fe

_|— | MLP

Fy

B Pose

L E _> ®— Estimation

Reconstructed

Recurrent Reconstruction instance NOCS model

Fig. 2. Overview of our Cascaded Relation and Recurrent Reconstruction Networks. The networks are mainly composed of two networks: (1) A cascaded
relation network to exploit the relation of between RGB images and point clouds, and the relation between instance features and category features. (2) An
recurrent reconstruction network for canonical shape reconstruction from coarse to fine.

to drive the network to unearth as much complementary in-
formation as possible by relational learning. We concatenate
Ft and Fg as our relation-enhanced instance embedding F7,
which is expected to represent the instance’s characteristics
in the camera frame.

Category Relation. Next, the category relation network
(CRN) aims to capture relations between the F; and F.
that presents the category-level feature of an instance in
NOCS space. The interaction between these features helps
the network to accurately model the shape variation of
instances from the same category. We cascade CRN behind
IRN, with the careful consideration that the strong relation-
enhanced instance embedding F; should be yielded before-
hand. Directly associating those original F; and F, with
F, may cannot fully tap the potential of relational learning
in category-level. Similar to our IRN, we initiate a relation
function G°¢ to exploit relations between F; and F,:

Fr = Fi + G*(F1,F.), F.=F.+GF..,F1). (2

The relation-injected features FI and FC then will be used
in the subsequent model reconstruction and pose estimation.

Choice of Relation Function G. The formulation of
our cascaded relation network is flexible, which is not
restricted by the specific architecture design for G. Any
structure capable of capturing feature relations can be easily
adopted as G in our framework. In this paper, we employ
three representative and popular structures: MLP [38], Non-
local [39], and Transformer [40]. The experimental results
indicate that the cascaded relation network improves the
pose estimation performance significantly, no matter which
specific G is utilized. Please refer to Table III for comparison
results.

D. Recurrent Reconstruction Network

In this section, we describe the recurrent reconstruction
network. With the FI and Fc produced by CRN, as in [1],
we regress a deformation D € RM*3 from the initial
category model to the instance canonical model that we

aim to reconstruct. Meanwhile, we regress a correspondence
matrix M € RN»*Ne for associating the instance point cloud
with the reconstructed 3D model in NOCS. Each row of
M indicates a weighted correspondence between a point in
V' and all points in V.. Even with our relation-enhanced
features, accurately regressing all these values within one
single step is still infeasible. The points at different locations
may have diverse deformations. The network may have bias
towards some locations but neglect the remaining points,
which results in an inaccurate reconstruction model. Ac-
cordingly, the correspondence matrix will also be adversely
affected.

To address this problem, we propose a recurrent recon-
struction network to regress D and M from coarse to fine.
Our network first predicts an initial deformation field D°
and an initial correspondence matrix MY directly from the
relation-enhanced features Fc and FI. Then, taking D° and
MPO as initial values, we estimate the residuals to refine the
deformation field and correspondence matrix. Specifically,
we add D° to V, to update the NOCS model, and denote
its updated category features as F!. After that, we integrate
F! with Fy in the CRN to model the shape variation for
the recurrent step and make the current reconstruction focus
more on regions that are neglected in previous steps. For the
first recurrent step, our network would target on estimating
the deformation residual D' = Dg;— D° and correspondence
residual M! = (M%)~! x M. To further improve the
accuracy, we can repeat the recurrent optimization multiple
times. For the i-th recurrent step, its deformation and corre-
spondence matrix can be computed as:

D'=D"'+ D', M'=M"'x M. A3)
The outputs of the last recurrent step are the final estimation
results for the deformation field and correspondence matrix.

Notably, the loss functions to supervise the recurrent
reconstruction process are crucial. We impose supervisions
on D and M to drive the network learning to reconstruct



the instance NOCS model and associate it with the observed
point clouds accurately.

Reconstruction Loss. Applying the deformation field D
on V. yields the reconstructed NOCS model R. During
training, with the ground-truth NOCS model R, for each
instance, we employ the reconstruction loss to penalize
D. Specifically, we exploit the Chamfer distance (CD) to
measure the similarity between R and Ry as:

Ly=3 min Hl — il + Z min —ill;- @
ieRri’ JjER],
In addition, a regularlzation loss is further added to penalize
large deformations: Lger = Nip Y ien il
Correspondence Loss. We supervise M with a correspon-
dence loss function inspired by [1]. After applying M on the
reconstructed NOCS model, we can get the NOCS coordinate
prediction for each point in V. Again, since the ground-truth
NOCS coordinate for the point cloud observation is known
during training, we supervise M by constraining the distance
between the predicted NOCS coordinate value x and the
ground-truth one x4:. The correspondence loss L, can be
defined as:

Lo(#,700) = 2 {| o) Il < 0 )
. ||z — x4 —0.05 otherwise,
in which a soft L loss is used for robust optimization. In
addition, the same regularization loss Ly, as the one in [1]
is further adopted to constrain the sparsity of M.
Recurrent Loss. We combine the above two loss terms
in one recurrent step. Moreover, we exploit deep supervision
mechanism [41] that imposes supervision on every recurrent
step. The supervision on intermediate results impels the
network to learn the residuals from the ground truth, and
the accumulated loss function is as:
N
Loverall = Z >\k X (L],f + L‘Ifef + Lk + Lx{?:g) (6)
k=0
where LF, LE. L% Lfeg denotes the loss for the k-th re-
current step and )\k is the associated weighted factor. This
overall loss is used to train the recurrent reconstruction
network.

E. Correspondence based Pose Estimation

Feeding the instance RGB image I, instance point cloud
V, and the category prior V. into the framework, our network
would output a deformation field D and a correspondence
Matrix M. As in [1], [9], we can use D and M to estimate
the specific 6D object pose. First of all, we apply D on
V. to get the reconstructed NOCS model V,,.s for the
instance. Note that V,,,.s is in the canonical NOCS space,
and the point cloud observation V is in the camera coordinate
space. Once we recover Vs, estimating the 6D pose
for the instance in the camera frame would be equal to
finding a similarity transformation from V,,,.s to V up to a
scale factor. This similarity transformation can be estimated
based on dense correspondences between V,,,.; and V. To
obtain these correspondences, we apply M on Vioes and
compute a NOCS coordinate for each point in V. Finally, we

use the Umeyama algorithm [42] to estimate the similarity
transformation, in which the 3D rotation and translation
corresponds to the 6D object pose, and the scale factor
corresponds to the object size. The RANSAC [20] is also
adopted to remove outliers and achieve a robust estimation.

IV. EXPERIMENTS

We conduct extensive experiments on two state-of-the-art
benchmark datasets of category-level 6D pose estimation,
ie., CAMERA25 and REAL275. We have compared with
the existing methods on this task, and outperform them by a
significant margin on both datasets. We have also presented
the ablation studies to analyze the individual behavior of our
proposed cascaded relation network and recurrent reconstruc-
tion network.

A. Experimental Setup

Datasets. We conducted our experiments following the
settings in NOCS [9]. It consists of two datasets: the CAM-
ERAZ25 dataset and the REAL275 dataset, which corresponds
to virtual and real environments respectively. Specifically,
CAMERAZ2S5 contains 300K RGB-D images (with 25K for
evaluation) which are generated by rendering and composit-
ing synthetic objects into real scenes. REAL275 contains
4300 real-world RGB-D images from 7 scenes for training,
and 2750 real-world RGB-D images from 6 scenes for
evaluation (with 3 instances per category). Both datasets
contain the same six categories, i.e., bottle, bowl, camera,
can, laptop and mug.

Evaluation Metrics. Similar to [?], [1], [9], we quantita-
tively evaluate the estimated 6D object pose on the following
metrics: 3D IoU: It measures the accuracy of the predicted
3D object bounding box. The predicted pose and the ground
truth pose can determine two 3D bounding boxes. Only when
the overlapping of these two boxes is larger than a predefined
threshold, the predicted pose is judged to be correct. In
our experiment, we use 3Dso and 3D75, which take 50%
and 75% as the Intersection over Union (IoU) threshold
respectively. a®°b cm: It measures the error of predicted
poses. Only when the rotation error is less than a° and the
translation error is less than b cm, the pose is judged to
be correct. Similar to [1], we test four different settings:
5°2 c¢m, 5°5 c¢m, 10°2 cm, and 10°5 cm. The rotation error
of vertical axis is ignored for symmetrical object categories
(bottle, bowl and can). Similar to [1], for mug category, we
treat it as symmetrical object when the handle is not visible,
otherwise as asymmetric object. In addition, the Chamfer
Distance(CD) is used to evaluate the instance NOCS model
reconstruction accuracy.

Implementation Details. The texture embedding network
is PSPNet [44] with backbone of ResNet-18 [45], and the
model is initialized with pre-trained models from ImageNet
[46]. The image crop is resized to 192 x 192. The number
of points in the input point cloud and category prior is
downsampled to 1024. We develop our baseline based on
the structure of SPD [1]. We train our networks for 50
epochs in total, and there are 4K iterations in each epoch.



TABLE I. Comparison of our method with current state-of-the-art methods on both benchmarks.

Method CAMERA25 REAL275
3Ds0 3D7s5  5°2e¢m 5°5em 10°2em 10°6em | 3Dsg 3Dz 5°2em 5°5em 10°2em 10°5em
NOCS [9] 83.9 69.5 32.3 40.9 48.2 64.6 78 30.1 7.2 10.0 13.8 25.2
SPD [1] 93.2 83.1 54.3 59.0 73.3 81.5 71.3 53.2 19.3 21.4 43.2 54.1
CASS[43] - - - - - - 71.7 - - 23.5 - 58.0
SPD* 93.5 87.0 59.7 64.4 77.4 84.8 71.5 53.8 20.2 22.9 42.5 52.1
Ours 93.8 88.0 72.0 76.4 81.0 87.7 79.3 55.9 27.8 34.3 47.2 60.8

* SPD implemented by ourselves with the open source codes.

TABLE II. Evaluation of NOCS model reconstruction results regarding the shape quality using the Chamfer Distance (CD) metric (x1073).

Method CAMERA25 REAL275
Bottle Bowl Camera Can Laptop Mug Average | Bottle Bowl Camera Can Laptop Mug  Average
SPD [1] 1.81 1.63 4.02 0.97 1.98 1.42 3.44 1.21 8.89 1.56 291 1.02 3.17
Ours 1.30 0.95 2.58 0.82 0.87 1.05 1.18 2.99 0.96 7.57 1.31 1.25 1.19 2.53

SPD

Ours

Fig. 3.
CAMERA?2S, the remaining three images are from REAL275.

We use the ADAM[47] to train the network, where the initial
learning rate is set as le-4 and with weight decay of le-6.
The learning rate is decreased by a factor of 10 for every
10 epochs. Our framework is implemented with PyTorch
using 4 TITAN Xp GPUs. Section I'V-B reports our results
with a Transformer-based relation network and a recurrent
reconstruction network with fixed 2 recurrent stages. The
relevant ablation study is presented in Section IV-C. Table
IIT focuses on cascaded relation network configurations with-
out adding the recurrent reconstruction module. Similarly,
Table IV studies recurrent steps without involving cascaded
relations.

B. Comparison with State-of-the-Art Methods

We compare with three state-of-the-art methods: NOCS
[9], Shape Prior Deformation (SPD) [1] and Canonical Shape
Space (CASS) [36]. To our knowledge, these are all the
popular methods that address the challenging category-level
6D pose estimation task in current literature. Table I and
Figure 3 present the quantitative and qualitative results.

CAMERA25. On this benchmark dataset, our method
significantly outperforms all previous state-of-the-arts ap-
proaches across all metrics. Notably, on the two most strict
metrics, we achieve 88.0% on 3D75 and 72.0% on 5°2cm,
which are 18.5% and 39.7% higher than NOCS [9], and
4.9% and 17.7% higher than SPD [1]. Such large margins
exceeding the current methods are attributed to our relation-
enhanced representation learning and recurrent refinement
of NOCS reconstruction model. On those relatively flexible
metrics of 3D5¢ and 10°2¢m, our mean average precision

Visual comparison of 6D object pose and size estimation results by our method and SPD [1]. In each row, the first three images are from

(mAP) reaches a high value of 93.8% and 87.7%, indicating
the promising potential for practical use.

REALZ275. The dataset of REAL275 is much more chal-
lenging than CAMERAZ2S5 given the real-world complications
and the limited amount of training data. Only 3 object
instances of each category are given for training, and 3
new instances are given for testing. Thus, in consistency
with [1], [9], we randomly select data from CAMERA25
and REAL275 at a ratio of 3:1 and train the network using
this hybrid dataset. Under this setting, our method achieves
a mAP of 55.9% for 3D IoU at 75%, and a mAP of 27.8%
for pose error within 5°2 cm. These performances are 25.9%
and 20.6% higher than NOCS [9], and 2.7% and 8.5% higher
than SPD [1]. We also compare our results with the accuracy
value reported in CASS [36], and our method outperforms
it by 10.8% on 5°5cm, as well as by 1.6% and by 2.8 on
the less strict metrics of 3D5n and 10°5¢m.

NOCS Model Reconstruction. To evaluate the quality
of our reconstructed NOCS model regarding the shape of
instance point cloud, we report the Chamfer Distance(CD)
between our reconstructed result and the ground truth model.
Table II compares our performance on the CD metric with
SPD [1]. It is observed that our method can consistently
improve the accuracy of reconstructions over the state-of-
the-art SPD [1] across all categories on CAMERA25 and on
five out of the six categories on REAL275. These analysis
validate our superior quality of reconstructed NOCS model
particularly with a precise shape which is important for
accurate category-level pose estimation.



TABLE III. Evaluation of Cascaded Relation Network. The “-”, “M”, “N”, and “T” refer to “Without relation network”, “MLP based relation network”,
“Non-Local based relation network”, and “Transformer based relation network”, respectively. For example, “T / -” denotes the instance relation network

is Transformer and the category relation network is none. We report the mAP for the six different metrics.

g CAMERA25 REAL275
3Ds50 3D75  5°2em 5°5em 10°2em 10°5em | 3Dsg 3D75 5°2em 5°5em 10°2em 10°5em
-/ - 93.5 87.0 59.7 64.4 77.4 84.8 77.5 53.8 20.2 22.9 42.5 52.1
M/M 93.3 87.1 60.4 68.2 79.4 86.0 77.1 51.1 23.9 29.6 46.2 59.3
N/N 93.2 87.0 65.6 70.2 80.4 86.7 78.0 54.5 26.3 30.4 45.7 58.7
-/T 93.3 87 62.4 68.5 78.5 84.6 78.5 54.4 23.8 28.5 45.5 57.7
T/- 94.5 87.3 62.3 66.8 78.3 85.5 71.3 574 25.3 28.6 46.4 58.7
T/T 94.3 87.1 70.9 75.7 80.5 87.5 78.7 55.8 26.5 30.4 46.5 59.6
TABLE IV. Evaluation of Recurrent Reconstruction Network. We report the mAP for 6 different metrics on object pose estimation.
Step CAMERA25 REAL275
3Dsg 3D7s  5°2cm 5°6em 10°2ecm 10°5em | 3Ds9 3Drs 5°2em 5°5em 10°2em 10°5em
0 93.5 87.0 59.7 64.4 77.4 84.8 77.5 53.8 20.2 22.9 42.5 52.1
1 93.7 87.8 62.2 66.8 78.4 85.7 77.5 55.6 242 25.6 46.3 60.1
2 93.6 88.6 64.4 68.5 78.9 85.6 81.9 57.0 24.2 25.7 46.4 60.2
3 93.6 88.7 64.3 68.3 78.8 85.6 81.5 56.8 24.5 26.2 46.0 59.5

Fig. 4. Visualization of learned feature relations from instance point clouds to RGB images. The top-ranking relations (i.e., red lines) are computed from
the learned network parameters (i.e., transformers in IRN). In each 2 X 2 cell, red lines indicate the top-20 relations for a 3D point, and the heatmap at
the lower right corner illustrates the overall relation distribution of instance point clouds.

C. Ablation Studies

To investigate the properties of our method, we evaluate
its key model components on CAMEAR25 and REAL275.

Cascaded Relation. In Table III, we quantitatively eval-
uated our cascaded relation network with different settings.
Specifically, we test three well-known relational structures:
MLP [38], Non-Local [39], and Transformer [40]. According
to the results in Table III, we find that no matter which
structure is adopted, the pose estimation results get consis-
tent improvement over the baseline. Moreover, we observe
that the Transformer-based structure achieves the best pose
estimation results on both datasets, which indicates the
superiority of recent Transformer modules in modelling long-
range and/or cross-modal feature relations. In addition, we
further remove the IRN and CRN individually and observe
the change of pose estimation results (see the row of “- / T”
and “T / -” respectively). The obtained results demonstrate
that both IRN and CRN are important in our network with
balanced contribution to the performance. Cascading them
together can take full advantages of the inherent feature
relations for 6D object pose estimation.

Intuitive Visualizations of Learned Relations. We visu-
alize the relations from instance point clouds to RGB image
that are learnd by our relation network for interpretable
understandings of what have been captured in the networks.
As presented in Figure 4, the top-20 relations and heatmaps

would attend more to the boundary regions of the objects,
which are very informative for estimating object 6D pose.

Recurrent Reconstruction. In Table IV, we investigate
our recurrent reconstruction network on different numbers
of recurrent steps. “0” denotes the baseline network without
any recurrent refinement. From the mAP measurements, we
find that gradually increasing the number of recurrent step
progressively improves the pose estimation outcomes. The
pose accuracy consistently increases in the first two iterations
and gets relatively stable after that. With a 2-step recurrent,
for the most strict metric 5°2¢m, our recurrent network
improves the mAP from 59.7% to 64.4% on CAMERA25
data and from 20.2% to 24.2% on REAL275 data. These
results demonstrate that harnessing our proposed recurrent
reconstruction network is beneficial for boosting pose esti-
mation accuracy.

V. CONCLUSION

We have presented a novel cascaded relation and recurrent
reconstruction framework for category-level 6D object pose
and size estimation. Our approach models the relations of
RGB image, point cloud, and shape prior through a devised
cascaded relation network, which enables our network to
learn more representative instance features and overcome
shape variations of different instances. The NOCS canonical
object shape is reconstructed from a coarse-to-fine manner



via a designed recurrent reconstruction network. Extensive
experimental results present dramatic performance improve-
ment over existing methods, setting new state-the-the-art
results on both benchmarks. Our method has promising
potential to be applied for downstream applications such as
robotic manipulation of objects in real environments.
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