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Abstract

Forestry machines are heavy vehicles performing complex
manipulation tasks in unstructured production forest en-
vironments. Together with the complex dynamics of the
on-board hydraulically actuated cranes, the rough forest
terrains have posed a particular challenge in forestry au-
tomation. In this study, the feasibility of applying rein-
forcement learning control to forestry crane manipulators
is investigated in a simulated environment. Our results
show that it is possible to learn successful actuator-space
control policies for energy efficient log grasping by invok-
ing a simple curriculum in a deep reinforcement learning
setup. Given the pose of the selected logs, our best control
policy reaches a grasping success rate of 97%. Including
an energy-optimization goal in the reward function, the
energy consumption is significantly reduced compared to
control policies learned without incentive for energy op-
timization, while the increase in cycle time is marginal.
The energy-optimization effects can be observed in the
overall smoother motion and acceleration profiles during
crane manipulation.

1 INTRODUCTION

Recent advances in machine learning (ML) in general, and
reinforcement learning (RL) in particular, have inspired
progress in the development of intelligent systems in the
context of robotic manipulation [1, 2]. These tasks often
require multiple-skill acquisition in high-dimensional and
dynamically complex settings. RL has the advantage of
not requiring large static datasets and direct supervision,
while enabling end-to-end learning through environmen-
tal exploration and experience. Successful applications
of RL to robotic manipulation problems include robotic
grasping [3]. Though many challenges remain, synergies
between RL and robotics have the potential to accelerate
autonomous systems development in the automotive and
robotics industry. So far, most RL research in this area
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Figure 1: A forwarder grasping and loading logs in a forest using a
crane manipulator. Image courtesy of Holmen.

has been limited to learning individual skills or perform-
ing generic manipulation tasks. However, the avenue for
leveraging this technology is much broader. The current
work aims to extend the application area of RL control
to heavy equipment in unstructured environments, using
deep RL techniques to fully automate the log-grasping
motion of a forestry crane manipulator.

The forest environment is notably unstructured and
dynamically complex, see Fig. 1 for an example. This
has contributed to the comparatively slow automation
progress in the forest industry over the past decades, but
advances in machine learning has rekindled ambitions for
end-to-end automation to play a significant role in the
future of forestry. Forestry machines permeate the en-
tire logging process, from the felling of trees to the cut-
ting, sorting and transportation of timber out of the for-
est harvesting site. The key equipment carried by these
machines is hydraulic, kinematically redundant manipu-
lators used for monotonous manipulation tasks. The sys-
tem is underactuated, which increases control complex-
ity compared to most small-scale manipulators. Despite
widespread automation in industry today, forestry ma-
chines have remained primarily manually operated. For a
human operator, manual control of a forestry crane ma-
nipulator can be a both mentally and physically exhaust-
ing task, requiring counterintuitive coordination of sev-
eral actuators for many hours straight and exposing the
operator to harmful whole-body vibrations [4]. This can
have severe long-term health implications and the need
for increased automation in the forestry context is there-
fore substantial.

Semi-automation of forestry machines has been success-
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fully explored before, increasing productivity and reduc-
ing the immediate workload on the operator [6, 20]. In
contrast to methods previously adopted in forestry au-
tomation research, the RL framework has shown poten-
tial for intelligent and independent end-to-end learning
of complex tasks in simulated environments, completely
removing the need for analytic low-level controllers. If
these techniques can be used to achieve full automation
of essential parts of the boom cycle in simulation, this
may serve as a stepping stone towards full automation of
physical forestry machines, or at the very least accelerate
semi-automation efforts.

To the best of our knowledge, RL control of forestry
crane manipulators is a topic previously not touched upon
in machine learning or robotics research. Our work con-
stitutes an initial attempt at investigating the feasibility
of adopting this approach to learn successful actuator-
space control policies for single-log grasping using a 6
DoF, kinematically redundant forestry crane manipula-
tor. Given the Cartesian position and orientation of the
selected log, the learned control policies map task-space
goals directly to actuator-space commands. Training and
testing is conducted in a simulated environment, and cur-
riculum learning is used to deal with the longstanding
challenge of sparse environmental feedback characteristic
of robotic grasping problems. This approach removes the
need for conventional trajectory planning and extensive
reward shaping. Secondly, we investigate the policy re-
sponse following inclusion of an energy-optimization goal
in the reward function. In addition to effects on per-
formance, we analyse differences in crane behavior and
acceleration profiles compared to unoptimized policies.
Finally, to investigate simulation to reality transferabil-
ity, we analyse the sensitivity and robustness of success-
ful control policies exposed to environmental disturbances
and uncertainties in the observation and parameter space,
respectively.

2 BACKGROUND

2.1 Robotic Control in Forestry

Most forestry operations involve maneuvering heavy ve-
hicles over rough terrain, and manipulating the unstruc-
tured environment with the end-effector of a hydraulically
actuated crane, as elaborated on in [5]. In this study, we
focus on forwarding, but the automation challenges are
similar for harvesting and thinning. Forwarding is the
operation of loading and transporting logs from a felling
site to a nearby forest road, where the logs are unloaded
for further transportation by road vehicles. The respon-
sibility of the forwarder operator includes both low-level
control in terms of vehicle maneuver and crane manipula-
tion, and high-level navigation, planning, task coordina-
tion and execution optimization. The loading cycle con-
sists of extracting and slewing the crane, guiding an open
grapple to a selected log from above. The log is gripped

and loaded by closing the grapple, slewing back and re-
tracting the crane to bring the log to the forwarder’s load
bunk, while avoiding collisions of any kind. This requires
object detection and pose estimation, as well as strate-
gic selection of logs and grasping configuration. In ad-
dition, operation of the crane demands motion planning
and control answering to the physical limitations of the
crane depending on the vehicle position and inclination.
A typical crane reaches up to 10 metres, has four links
and hydraulic actuators delivering a lifting torque of 100
kNm. The grapple and rotator add two degrees of free-
dom to actuate closing and opening as well as the axial
rotation for aligning the grapple with a log or the load
bunk.

The crane dynamics is prone to oscillations. This com-
plicates the grasping process, and causes excessive wear
and discomfort to the operator. Operators undergo exten-
sive training, learning to operate the forwarder as time-
and energy efficiently as possible. Still, more than 80%
of the operator’s active time is devoted to controlling the
crane [7]. Thus, crane manipulation is a natural starting
point for research motivated by forestry automation.

It is found that, on average, machine operators are ca-
pable of using only 20% of the maximum velocity of the
crane during operation [4]. According to Morales et al. [9],
time-efficiency could increase by at least three-fold if done
by an autonomous control system. Crane-tip Cartesian
control and semi-autonomous functions improve the per-
formance of inexperienced operators and reduce the work-
load on experienced operators [5, 6, 20]. However, previ-
ous research on motion planning and crane control [8]
has disregarded grapple control and the task of log grasp-
ing. Moreover, there are only a few publications that deal
with machine vision for forestry robotics, e.g. detection
and pose estimation of logs [10] or tree stems [11]. This
is recognized as a difficult problem in the forestry envi-
ronment, which is characterized by high variability, object
occlusion, and presence of moisture and particles. On the
other hand, production forests are monitored using aerial
lidar mapping with steadily increasing resolution [12] and
the GPS position of felled logs are registered with a pre-
cision of a few meters [13]. Combining these data with
on-board sensors, it is conceivable that logs can be located
with a resolution comparable to the grapple.

2.2 RL Preliminaries

An RL problem can be formalized as a Markov decision
process; a mathematical framework for sequential deci-
sion making in stochastic state-transition systems. At a
given discrete time step t, the system is in state st ∈ S
and the agent makes an observation ot ∈ O of the en-
vironment. Performing an action at ∈ A according to
the policy distribution π(a|s), the agent receives an im-
mediate scalar reward rt(st, at) according to the specified
reward function R(s, a). The goal of RL algorithms is to
find the optimal policy π∗(a|s) such that the agent takes



the optimal action at any given state in order to maximize
the expected return.

Here, the deep RL approach involves parameterizing
the policy π as a neural network πθ with parameters θ ∈
Θ. The resulting policy approximator outputs a vector of
actuator-space motor control signals at each time step.

2.3 Curriculum Learning in RL

The concept of transfer learning (TL) [14] has shown
potential to solve high sample complexity issues symp-
tomatic of many RL applications. In TL, the agent learns
to master a simpler source task and uses the acquired
knowledge to bias learning on the original target task.
Ideally, the TL approach augments and speeds up learn-
ing on the target task, and is especially beneficial in con-
text where learning is inherently slow, often occurring in
settings exhibiting sparse rewards and feedback delay. In
the context of log grasping, the adverse effect of sparse
rewards on the learning process is imminent. Such re-
ward signals only require a definition of success in rela-
tion to the goal, allowing the agent to find the optimal
solution given the environmental constraints. The draw-
back is that a significant part of training is devoted to
endless exploration with rare to no feedback from which
the agent can learn. This motivates us to deploy a cur-
riculum learning-based [15] solution, in which a sequence
of source tasks is carefully combined to form a curriculum
of lessons, easing learning of the target task by repeated
use of TL.

3 SYSTEM OVERVIEW

3.1 Delimitations

The grasping subtask of the forwarder operator is very
complex in the real forest environment. To this end,
our initial work is limited to RL control of the single-log
grasping motion of a forestry crane manipulator mounted
on a static machine fixed on a horizontal surface. The task
of returning logs to the load bunk is omitted in the present
study. Moreover, the existence of an external perception
system is assumed, and the agent observes the Cartesian
position and orientation of the selected log directly.

3.2 Virtual Forwarder

Our agent controls a 3D simulation model of a six-wheel
forwarder equipped with a kinematically redundant hy-
draulic manipulator controlled by 6 actuated DoF. The
model, depicted in Fig. 2, is a slightly modified version
of the Xt28 concept forwarder [18], consisting of 52 rigid
bodies and 60 constraints. It has a total mass of 16.800
kg, whereof the crane stands for 16 bodies, 20 constraints,
and 2.000 kg. The smallest component weighs 6 kg, yield-
ing a mass ratio above 1000 to the vehicle. The crane
reach is 7 m.
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Figure 2: The forwarder and the selected log-position areas. At
initial lessons, the log is placed close to the initial position of the
grapple (red). As the agent progresses through the curriculum,
the log-position area changes (blue), incrementally increasing the
difficulty of the task as the artificial plane approaches the ground
plane.

The position of the boom tip at the end of the tele-
scope, where a rotator grapple is attached, depends on the
rotational angles of three revolute joints and one linear
displacement position. A revolute joint, q1, controls the
slewing motion of the crane pillar. The inner and outer
booms are controlled by two actuated prismatic joints,
q2 and q3, representing one hydraulic cylinder each. A
motorized prismatic joint, q4, controls translation of the
telescope along its axis. The orientation of the grapple
along the rotator axis is controlled by the actuated rev-
olute joint q5, and a final prismatic joint, q6, controls
the opening-closing motion of the grapple. This leaves
the rotator grapple with two degrees of freedom that are
not actuated. This is important for focusing the stress in
the direction of lifting, consequently allowing the grapple
to swing freely and denying direct control of the grapple
claws.

On conventionally operated forestry cranes, joystick
signals control the hydraulic flow rates of the cylinders
and rotator. A diesel engine powers a hydraulic pump
applying fluid pressure within the system. In our case,
the diesel engine is not modelled, and each actuated joint
is equipped with a linear or rotational motor internally
controlled to reach and hold a given target velocity, while
obeying current dynamics and constraints, such as max-
imum motor force, torque or speed. Each joint may also
have secondary constraints in terms of range limits or a
lock, enforcing a fixed joint position. Physical parameters
of the virtual forwarder are estimated to emulate the force
and speed limitations of a real crane, but have not been
validated by domain experts. This does not reduce the
generality of the problem. The initial crane configuration
centres the grapple above the load bunk and the initial
angle of each actuator are slightly perturbed to prevent
overfitting. Logs are modelled as uniform cylinders of
length 3 m (1.5 m during training, to encourage grasping
near the log C.o.M), radius 0.08 m and mass 50 kg. The
initial C.o.M position is drawn from a uniform probabil-



ity distribution within the selected area depicted on the
nearside of the vehicle in Fig. 2. The orientation in the
horizontal plane is drawn from a similar distribution.

3.3 Learning Environment

The Unity 3D simulation platform is used as a train-
ing environment, interfaced with the ML-Agents Toolkit
[16] and the physics engine AGX Dynamics [17]. Owing
to its block-sparse direct-iterative solver and symmetry-
preserving variational stepper, AGX Dynamics supports
nonsmooth multibody dynamics with frictional contacts
and large mass-ratio mechanisms with high numerical
precision and speed. This is demanded by the current
application. We use a fixed simulation time step of 20
ms and each training session is run for at least 35 million
time steps (∼ 200k episodes) using eight parallel environ-
ments. The observation space consists of the Cartesian
log position and orientation, as well as the current state
of each actuator in terms of angle, speed and applied mo-
tor torque. Each observation is normalized based on the
running mean and standard deviation of previous obser-
vations, and eight stacked observations are processed at
each time step. The agent is controlled by action signals
corresponding to the target speed of each motor, respect-
ing its specific velocity range. The instantaneous change
in target speed per time step is limited to 1/30 of the
maximum speed of the motor.

Our policies are parametrized by a feedforward neu-
ral network and optimized using the state-of-the-art on-
policy algorithm Proximal Policy Optimization (PPO)
[19]. We use a network with three fully-connected hidden
layers each comprised of 256 neurons, and a linearly de-
caying learning rate of α = 0.001. The maximum episode
length is 2000 time steps, and the agent makes a deci-
sion every other time step. For PPO, we use the clipping
parameter ε = 0.3, the entropy regularization coefficient
β = 0.01, the GAE parameter λ = 0.95 and the discount
factor γ = 0.995.

3.4 Reward Structure & Curriculum

Succeeding to secure the selected log in its grapple, the
agent receives a high sparse reward and the episode is
terminated. For our purposes, a successful grasp occurs
when the log is lifted from the ground, enclosed by both
grapple claws in a closed position. Incentive for energy
optimization is included by scaling the reward inversely
with the total energy consumed by the actuators q1 to
q4, excluding the energy consumed by the grapple actu-
ators. The energy consumption is defined as the work
exerted by the actuators up until the point of grasping
initiation, assuming no energy recuperation. This reward
structure enables optimal policy search, but does nothing
to prohibit unwanted behavior allowed for by the model.
Thus, episodes terminate with a zero-return if maximum
motor torque is applied at the range limit of q1, q2 or q3,
or if any part of the crane collides with the load bunk.

Table 1: Comparison of performance between Policy A-D in terms of
success rate, average cycle time, relative energy consumption and train-
ing time. Policy B, C and D are energy optimized.

Policy Success Rate Time (s) Energy Training Steps
A 0.97 3.6 1 35e6
B 0.81 4.6 0.39 80e6
C 0.84 4.9 0.22 80e6
D 0.93 4.0 0.32 80e6

This increases learning speed and avoids contact-heavy
computations.

An additional reward signal, increasing exponentially
with decreasing distance between the boom tip and the
log, is provided. This guides the agent at the start of
the learning process, but is negligible once any grasping
behavior has been learned. This reward signal increases
with decreasing q4 speed in close proximity to the log, and
vanishes if q4 hits its range limits or if there is significant
deviation between the orientation of the grapple and the
orientation of the log. This is effective when the goal is
to navigate the boom tip to, and remain at, a predefined
grasping position. Extending the goal to include grasp-
ing, however, the exploration space becomes too large for
this reward signal to suffice. When the agent finally learns
to navigate the grapple to the log, it has learnt to discard
the opening-closing motion of the grapple. Alleviating
this challenge, we deploy a straightforward curriculum in
which the distance between the log and the grapple in-
creases incrementally. This is accomplished by adjusting
the height of an artificial ground plane carrying the se-
lected log. This avoids the introduction of bias induced
from guiding the crane using analytic motion control.
Throughout the first four lessons, the artificial plane is
placed directly beneath the initial grapple position, with
the selected log-position area expanding according to Fig.
2. Between succeeding lessons, the artificial plane is low-
ered in intervals of 0.1 m. The grapple reach varies with
the target height, and the log-position area is adjusted ac-
cordingly throughout the curriculum. At the final lesson,
the artificial plane merges with the true ground plane and
the agent continues training on the target task.

A grasping success rate of 30% over the preceding 20
episodes is required to proceed to the next lesson, pre-
venting overfitting early in the curriculum. Our goal is
to quickly reach ground level to train on the target task,
motivating us to decrease the problem complexity of early
lessons by disabling collisions between the artificial plane
and the grapple claws.

4 RESULTS & ANALYSIS

4.1 Performance Evaluation

For each control policy, the grasping success rate over
1000 consecutive episodes is recorded. The best policy op-
timized without incentive for energy optimization reaches
a near perfect evaluation success rate of 97%. This pol-



icy is referred to as Policy A. Fig. 5 shows a grasping
sequence in the simulation environment using this policy.
Three independent policies (B, C and D) are learned us-
ing the reward function including an energy-optimization
goal. Table 1 compares the performance of these policies,
and the generated grasping behaviors are demonstrated
in the supplementary videos. In the given training time,
our best energy-optimized policy reaches a success rate
of 93%. The energy reduction including incentive for en-
ergy optimization is substantial compared to Policy A,
with the total energy consumption on average reducing
by 61% (Policy B), 78% (Policy C) and 68% (Policy D).
Fig. 3 compares distributions of the total energy con-
sumed during successful boom cycles using each policy.
The most prominent energy reduction effect can be ob-
served in the smoother trajectory profiles produced by the
energy-optimized policies. This is illustrated in Fig. 4a,
showing the boom tip speed profiles over five boom cy-
cles for Policy A and B. The boom tip acceleration profile
during one of these cycles is illustrated in Fig. 4b. We
observe a generally lower boom tip speed and a signifi-
cant jerk reduction using the energy-optimized policies.
As a result of these effects, the grapple oscillations are
significantly reduced and the average cycle time increases
by 11%-36% compared to Policy A, as seen in Table 1.
These cycle times are comparable to those obtained by
manual operators.

Overall, the training process is stable using our ap-
proach. The energy-optimized policies require longer
training time to reach comparable success rates, and may
converge to higher success rates if allowed more time to
train. Fig. 6a shows learning curves for policies opti-
mized without incentive for energy optimization. The
mean success rate of these models is 90%. Fig. 6b shows
the training process in terms of evolution through the
curriculum. The deviation in training time before the
initiation of learning on the target task can amount to
several million training steps. This may or may not im-
pact the success rate to which the policy converges in a
given number of training steps. In our case, the superior
policy in terms of success rate (Policy A) reaches the final
lesson significantly faster than all other policies.

Due to the redundant crane kinematics, successful
grasping poses can be reached from an infinite number
of crane configurations. Analysing the end-position of all
actuators upon grasping, two primary solutions can be
observed among our models. These can be distinguished
by the respective use of q4, where one primary solution
involves using the crane telescope to maximum or close
to maximum capacity, practically removing one of the re-
dundant degrees of freedom and adjusting q2 and q3 to
reach the grasping pose. The energy-optimized policies
exhibit similar primary solutions in terms of crane behav-
ior, and displays a distinct second solution positioning q2
with low variance across different boom cycles, adjusting
q3 and q4 to reach the grasping pose. The latter is true
for Policy B and C, whereas Policy D uses q4 heavily. In
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Figure 3: Total energy consumed by q1 to q4 up until the point
of grasping. Energy distributions over 1000 episodes are shown for
Policy A-D.
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Figure 4: Boom tip trajectory profiles produced by Policy A and
B over a) five boom cycles for logs selected in different parts of the
grasping area and b) a randomly selected boom cycle.

this context, using q2 can allow most of the crane mass
to fall with gravity to reduce energy consumption. Oper-
ators are instructed to use the maximum capacity of q4,
similar to one of the approaches favored by our policies.
This is considered optimal maneuver over the course of an
entire loading cycle, but is not necessarily the optimal be-
havior under our delimitation. A particularly interesting
indication is that our policies are able to take advantage
of grapple oscillations to perform grasping, and use the
grapple claws to nudge the log to align better with the
grapple orientation. This is typical of experienced opera-
tors.

No strong correlation between failed grasping attempts
and the log position can be observed. Instead, failed at-
tempts occur due to occasional miscoordination between
actuators, and depends on the link activation profile fa-
vored by the policy. For example, for policies not grasping
from above, i.e. favoring grasping under non-symmetric
motion of the grapple claws relative to the log, small devi-
ations in link activation may lead to the grapple pushing
the log out of reach. Another example is found in Policy
B, which relies on extensive use of q2 and runs a greater
risk of failing due to collisions between the grapple and
the load bunk.

It is worth noting that the redundant kinematics and
the complexity of the problem makes it difficult to pro-
duce theoretically optimized policies, and all energy-
optimized policies show significant differences in link ac-
tivation. Policy B achieves significant energy reduction
compared to Policy A, despite often exhibiting a slight
back-and-forth motion of q4 during the course of an
episode. Policy C manages the same while generating a
behavior in which the crane lowers the outer boom upon
grasping initiation, effectively moving the log towards the



Figure 5: Grasping sequence using Policy A showing snapshots taken 0, 1, 1.5, 2, 2.5, 3 and 4 s into the boom cycle.
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Figure 6: Learning curves averaged over five random seeds in terms
of a) mean episodic return corresponding to the grasping success
rates during training and b) evolution through the curriculum dur-
ing training as a function of artificial plane height. Training is
initialized from a policy trained on the first four lessons, and train-
ing starts at the final lesson with the initial artificial ground plane
height.

load bunk. This exemplifies non-optimal behavior gener-
ated by the energy-optimized policies using the current
sparse reward setup.

4.2 Sensitivity Analysis

Our policies are exclusively trained to grasp logs from a
static vehicle. To analyse the robustness in a more realis-
tic setting, we record the decrease in success rate perform-
ing the identical log-grasping task from a dynamic vehicle.
The added flexibility, for example between the tires and
terrain, induces additional crane oscillations unforeseen
by the agent. The sensitivity is highly dependent on the
specific link activation profiles. The highest success rate
is recorded for Policy A, which maintains 83% of its orig-
inal success rate. The energy-optimized models are less
robust, maintaining 33% (Policy B), 53% (Policy C) and
42% (Policy D). Failed grasping attempts following Pol-
icy B is a consequence of lowering q2 at an early stage
of the boom cycle, which frequently results in collisions
between the grapple and the load bunk when the crane
is exposed to increased oscillations. The reduced success
rates of Policy C and D are often tied to early closing of
the grapple claws. It should be noted that this robustness
can likely be increased if vehicle dynamics is included in
the training process.

Moreover, we analyse the policy robustness to inclined
terrains by recording success rates with the forwarder
and log placed on an uphill 17.6% slope. Policy A is
the most robust, maintaining 51% of the original success
rate. The energy-optimized models, which rely more on
gravity during operation, maintain between 25% and 45%
of the original success rates. This suggests some general-
izability, but clearly demonstrate the need for training in

more unstructured environments prior to deployment in
real production forests.

No strong correlation between the grapple orientation
and the orientation of the log can be observed in the re-
sulting behavior of our policies. This is reasonable, as
the grapple can be used to adjust the log orientation,
and the grasping range of the grapple is large compared
to the size of the log. High robustness to small obser-
vational uncertainties is therefore expected, and is im-
portant for prospects of future policy transfer between
simulation and reality with feasible sensor accuracy. To
investigate this, we analyse sensitivity to observational
uncertainty in the Cartesian position of the log. Con-
fining the observed position to the surface of a sphere
of one log-radius around the true position, Policy A-D
stays within 98% of the original success rates. For policy
A and B, the success rates do not decrease. Doubling
the radius, at least 90% of the original success rates are
maintained for the energy-optimized policies, with Policy
A remaining robust to 97% of the original success rate.
Uncertainty in log orientation yields similar robustness
for Policy A, C and D, with the maximum decrease in
success rate amounting to 3 percentage points (Policy D)
when the observation deviates from the true log orien-
tation by ±10 degrees in the horizontal plane. Policy B
is slightly less robust, maintaining only 85% of its origi-
nal success rate. These results are encouraging, however,
as robustness to this level of uncertainty is expected to
exceed that demanded by the accuracy of available sen-
sor technology. Similar robustness to mass uncertainty
is observed, with all policies maintaining at least 96% of
the original success rates under a 5% increase in mass of
each crane body. This shows potential for model deploy-
ment to physical machines with realistic uncertainty in
crane mass estimation, inferring a possibility to transfer
identical policies to multiple physical machines.

5 CONCLUSIONS

Using curriculum learning to solve the sparse reward log-
grasping problem, we show that RL control can generate
high success rates for single-log grasping using a forestry
crane manipulator. The best control policy reaches a
grasping success rate of 97%. Simply scaling the reward
signal, it is possible to achieve significant reduction in the
total energy consumed during crane manipulation, while
maintaining a high success rate. This leads to smoother
trajectory profiles compared to control policies learned



without incentive for energy optimization. These results
are important, as jerkiness poses a particular challenge
to robotic control and efficient automation. The best
energy-optimized policy reaches a grasping success rate
of 93%. Our policies are largely robust to observational
uncertainties, and the robustness to environmental dis-
turbances is encouraging for future research focusing on
RL control of forestry crane manipulators in more un-
structured environments.

6 SUPPLEMENTARY MATERIAL

Supplementary material, including videos, can be found
at http://umit.cs.umu.se/rlc_forestry_crane/.
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