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Abstract— Multi-agent path finding in formation has many
potential real-world applications like mobile warehouse robots.
However, previous multi-agent path finding (MAPF) methods
hardly take formation into consideration. Furthermore, they
are usually centralized planners and require the whole state
of the environment. Other decentralized partially observable
approaches to MAPF are reinforcement learning (RL) methods.
However, these RL methods encounter difficulties when learning
path finding and formation problem at the same time. In this
paper, we propose a novel decentralized partially observable
RL algorithm that uses a hierarchical structure to decompose
the multi-objective task into unrelated ones. It also calculates
a theoretical weight that makes every task’s reward has equal
influence on the final RL value function. Additionally, we intro-
duce a communication method that helps agents cooperate with
each other. Experiments in simulation show that our method
outperforms other end-to-end RL methods and our method can
naturally scale to large world sizes where centralized planner
struggles. We also deploy and validate our method in a real-
world scenario.

I. INTRODUCTION

Mobile robots have been deployed in many real-world
applications nowadays, including drone swarm, aircraft-
towing vehicles and warehouse robots [1] [2]. In many of
these scenarios, it is important for the agents to move in a
specific formation while avoiding obstacles [3]. For example,
the warehouse robots need to work together to transport
large cargo. However, most current multi-agent path finding
(MAPF) algorithms can not plan in such cases as they do
not take formation into consideration.

There are few works focused on solving the multi-agent
path finding in formation (MAiF) problem [4]. Most of them
are centralized algorithms. A centralized planner needs the
information and intentions of all agents to generate collision-
free paths [5]. It becomes infeasible when the number of
agents grows and the map size enlarges [6]. Besides, we
believe that considering a partially-observable world is an
essential step towards real-world deployment. Therefore, we
focus on decentralized methods that rely on a limited field
of view to solve MAiF problem.

Most of the former decentralized partially observable
methods to MAPF are reinforcement learning (RL) algo-
rithms [7], [8]. They have shown great potential to learn a
general policy using local observation [9]. However, learning
different tasks together can be challenging, especially when
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(a) WeTech Robot (b) Snapshot of the field test

Fig. 1: We test the proposed method on ackermann-steering robots
produced by WeTech. The experiment video is available in the
attachment of this paper.

optimizing conflicting objectives. The majority of multi-
objective reinforcement learning (MORL) approaches are
single-policy algorithms. They adopt a linear scalarization
function in order to learn Pareto optimal solutions [10]. The
linear scalarization function is a weighted sum of the param-
eters that the transform multi-objective rewards vector into
a single value. However, the weights used during learning
relies on manual design and fine-tuning [11].

In this paper, we propose a novel hierarchical reinforce-
ment learning algorithm to generalize previous MAPF meth-
ods. The major contributions of this paper are summarized
as follow:
• We propose a hierarchical reinforcement learning struc-

ture to divide the multi-objective task into unrelated
ones. We train each task’s policy separately by opti-
mizing its own reward.

• We propose a novel way to calculate the linear scalar-
ization function based on the well-trained policies. Our
method can calculate the theoretical weights that make
each task’s reward have equal influence on the final RL
value function.

• We introduce a communication method that takes up
little bandwidth to help agents cooperate with each
other.

• We perform extensive experiments in both simulation
and real-world scenarios, where our method outper-
forms other comparison methods and scales to large
world sizes where centralized planners struggle.

II. RELATED WORKS

1) Moving Agents in Formation (MAiF): MAiF, a variant
of Multi-Agent Path Finding (MAPF) problem, contains
two key sub-tasks: planning collision-free paths for multiple
agents while keeping the agents in formation. The former
subtask can be addressed by numerous MAPF planner, in-
cluding reduction-based methods [12], [13], A*-based meth-
ods [14]–[16], and dedicated search-based methods [5], [17],
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[18]. Formation-control algorithms can apply to the later sub-
tasks. A method of planning motion for formations of non-
holonomic robots is presented in [19], and a control method
for a team of mobile robots maintaining and changing the
desired formation using graph theory is presented in [20].
The MAiF problem is formally proposed in [4]. In this work,
the authors develop a two-phase search algorithm to solve
both sub-tasks simultaneously.

2) Multi-Agent Reinforcement Learning (MARL): The
most important problem encountered when training a multi-
agent policy is the curse of dimensionality. Most centralized
approaches fail as the combination of state-action spaces is
an exponential explosion, requiring impractical amounts of
training data to converge. Thus, many works have focused
on centralized training and decentralized executing(CTDE)
policy learning. VDN [21], QMIX [22] and Qtran [23]
represent Q learning based CTDE methods. We use VDN
to train our policy in this work. There are other methods
like MADDPG [24] and COMA [25] base on actor-critic
structure to train a CTDE policy.

3) Hierarchical Reinforcement Learning (HRL): There
are several RL approaches to learning hierarchical policies
[26]–[28]. However, these have many strict limits and are
not off-policy training methods. Recently popular works
like HIRO [29], Option-Critic [30] and FeUdal Networks
[31]have achieve quite good performance. Especially, HAC
[32] using hindsight [33] to overcome non-stationary that
came from continually changing sub-policy in HRL so it
can use off-policy method to have a better performance.
However, in our work, we can directly use off-policy method
as we already had a well-trained sub-policy.

4) Multi-Objective Reinforcement Learning (MORL):
MORL algorithms have two main categories [34], [35]:
single-policy methods and multiple-policy methods. Single-
policy approaches usually aim to find the optimal policy
for a given weight among the objectives [36], [37]. Multi-
policy methods aim to learn a set of policies to obtain the
approximate Pareto frontier. They usually perform multiple
runs of a single-policy method over different preferences
[38]–[40].

III. POLICY REPRESENTATION

A. Observation and Basic Action Definition

We consider a partially observable discrete grid graph,
where agents can only observe the state of the world in
a limited field of view around themselves (9x9 FOV in
practice). As shown in Fig. 2, our observation are divided
into four channels:i) Obstacle map: the obstacle grids equal
1, empty grids equal 0; ii) Position map: the grid contains
other agents equals the id of that agent, otherwise zero,
different color stands for different agents in figure; iii)
Cost map: the cost of the shortest path from each grid to
the agent’s goal, this observation is pre-computed before
training, different color stands for different cost in figure;
iv) Formation map: it contains the desired formation of all
agents.

Fig. 2: Observation space of simulation environment and our model
structure.

Agents take five discrete actions in the grid world: moving
to one of the four cardinal cells or staying still. At each time
step, some actions may be invalid, such as moving into a
wall.

B. Formation Loss Function

Inspired by Procrustes Analysis [41], we define our
loss function between two formations. We assume k
agents in Cartesian plane has two formations X1 =
((x1, y1), ...(xk, yk)) and X2 = ((w1, z1), ...(wk, zk)). We
define the formation loss Lf between X1 and X2 as:

Lf (X1, X2) =
∥∥X2 −X1Γ− 1kγ

T
∥∥2 (1)

where

Γ = M(θ), θ = tan−1
(∑k

i=1(wiyi−zixi)∑k
i=1(wixi+ziyi)

)
γ =

[∑
wi−

∑
xi

K ,
∑
zi−

∑
yi

K

]
The ‖X‖ =

{
trace

(
XTX

)}1/2
is the Euclidean norm, and

M(θ) denotes a 2D rotation matrix with angle θ. The loss
function we designed is more reasonable than the function
in [4] for they didn’t consider the rotation transformation
between agents’ formations.

C. Policy Definition

We have three policies used in this work: path finding
policy, formation policy and meta policy. Each policy has its
unique task, which will be introduced below. The overall hi-
erarchical reinforcement learning structure will be discussed
in IV-A.

1) Path Finding Policy: Path finding policy aims at solv-
ing the MAPF problem without considering the formation
loss. In order to reduce the training difficulty, we propose an
action clipping method to reduce the action dimensions. The
original MAPF problem usually contains swapping conflicts
defined as agents planning to swap locations in a single time
step. It only occurs when two agents have the opposite goal
directions, which is impossible in the MAiF scenario because
all agents in the formation ought to move toward the same
goal direction. As all other collisions can be solved by one



agent waiting when the other agent moves towards the goal
position, we can optimize path finding policy by clipping the
non-optimal actions. The non-optimal action is defined as the
action, which makes the value increase in the cost map. We
define a reward that encourages agents to find the path in
Table. I.

2) Formation Policy: The formation policy focus on keep-
ing agents in a specific formation. We design a training
environment, which randomly generates agents and keeps all
agents within at least one agent’s field of view. We also clip
the action space by forbidding invalid moves(run into walls).
The reward can be seen in Table. I. Lf in the table is the
formation loss.

3) Meta Policy: Meta policy is a high-level policy that
decides which low-level policy should be used at each step.
The reward is stated in Table. I. The wf is the basic weight
of Lf that uses to balance the reward of path finding and
keep formation. More details will be discussed in Section.
IV-B.

TABLE I: ALL REWARD STRUCTURES

Path finding Formation Meta policy
Agent Collision -50 -50 -50

Movement Towards Goal 1 0 1
No Movement -0.25 -0.25 0
Finish Episode 100 0 0
Formation Loss 0 Lf wf · Lf
Keep Formation 0 100 0

All rewards are valued in each time step.

IV. METHOD

In our paper, we propose a novel hierarchical reinforce-
ment learning method that can decompose the path finding
and formation problem into unrelated ones. Comparing to
end-to-end reinforcement learning methods, our method can
significantly reduce the learning difficulty and easily transfer
to new situations. Furthermore, we propose a novel approach
to calculate the theoretical linear scalarization function,
which can balance the path finding and formation policies.
Finally, we introduce a communication method that benefits
the training process of decentralized cooperative policy.

A. Hierarchical Learning

One of the key challenges in training a well-performed
policy of MAiF is that the overall task is complex. The
MAPF problem itself is hard to learn since it usually takes
hundreds of hours to train [7]. Nevertheless, the formation
policy needs to be learned simultaneously. These two goals
are conflicted with each other thus the learning process would
be unstable. Therefore, learning an end-to-end policy to solve
the MAiF problem is difficult. To solve this problem, we
propose a novel hierarchical reinforcement learning structure
that can decompose the path finding and formation problem
into unrelated ones. Then we can train path finding and
formation policy separately. By defining unique rewards for
each policy, they can learn their own task without being
interrupted by optimizing the other task.

However, we have not already solved MAiF problem even
if we have a well-trained path finding policy and formation
policy. We still need the policy to decide which policy should
be used at each time step. Moreover, we can train a meta
policy to do so. The meta policy’s task is to balance the
path finding task and keep formation task by optimizing its
own designed reward. As the low policy(path finding and
formation policy) is already well-trained, there is no worry
about the mutual interference in low policy learning process.
However, we still need to design a suitable reward for meta
policy to solve multi-objective learning tasks, which will
discuss in section IV-B. Nevertheless, as the meta policy has
lower dimensions of action and faces a simpler task to learn,
optimizing multi-objective tasks can be done much more
efficiently. The overall algorithm can be viewed as Algorithm
1.

Algorithm 1 Hierarchical learning
Initialize πmeta(am|ot; θm),πp(ap|ot; θp),πf (af |ot; θf )
Initialize three different environments Em,Ep,Ef
Pretrain πp and πf separately in Ep,Ef
Initialize replay buffer Rm
Initialize Q-Network Qθm and target Q-Network Qθ′m

1: for n episodes = 1 to N do
2: Agents take meta action am = πm(o)
3: if am is using path finding policy then
4: alow = πp(o)
5: else
6: alow = πm(o)

7: Store < o, am, r, o
′ > in Rm

8: Sample a mini-batch Bm from Rm
9: Perform a gradient decent step on

10: (y −Qθm(o, a))2Bm
,

11: where y = r + τQθ′m(o′, argmaxa′m(Qθm(o′, a′m)).
12: if n mod ITargetUpdate then
13: Update Qθ′m : θ′m ← θm

B. Multi-Objective Learning

In this work, we use a linear scalarization function to
define a utility over a vector-valued reward and thereby
reducing the dimensionality of the multi-objective reward
vector to a single, scalar value.

The linear scalarization function f is a function that
projects a vector v to a scalar: vw = f(v, w), where w is a
weight vector parameterizing f . In our situation, our meta
policy needs to balance the formation reward and path finding
reward, so our scalarization function f can be viewed as
vw = f((rp, rf ), w). rp and rf stands for the reward of path
finding and formation, in this case, w is a two dimensions
vector.

The values of w are usually decided manually in previous
works, which is infeasible in our situation as we do not know
the accurate upper limits of our rewards. Benefited from the
structure of hierarchical reinforcement learning, we introduce
a novel MORL algorithm. It calculates a theoretical weight
that balances path finding policy and formation policy by
making all rewards have equal influence on the final RL
value function. Then we choose other values around this



Fig. 3: Structure of our overall policy. Agent 1 is the chosen leader in every time step who acts first. Other agents select actions sequentially
based on its local observation and all the former agents’ actions. Each agent has the same hierarchical structure that uses a meta policy
to choose between the path finding policy and formation policy.

basic weight to get the Pareto fronts. Notably, the method can
not only use in MAiF problem but also solve other MORL
problems. Let wf be the basic w for rf , Lf be the formation
loss and R∗ be the range, we have

wf =
T

R∗(E[
∑T
t=0 ∆Lf (ot)])

(2)

Proof : Firstly, we can have the optimal value at a state
is given by the state-value function

V ∗ (ot) = max
π

E

[∑
t=0

γtf(R (ot))

]
(3)

where
R (ot) = max

π
R (ot, at)

Given a particular set of weights w, we substitute scalar-
ization function f into Eq. 3 to obtain

V ∗ (ot | w) = max
π

E

[
∞∑
t=0

∑
at∈A

γt (w1r1 (ot, at) + · · ·

+wnrn (ot, at))]

(4)

We substitute wp, wf , rp and rf into Eq. 4 to obtain

V ∗ (ot | w) = max
π

E

[
∞∑
t=0

∑
at∈A

γt (wprp (ot, at)

+wfrf (ot, at))]

(5)

Here, if we want to normalize the rp and rf , we can
let V ∗ (ot | w) stay the same value if we take optimum at
whether to max rp or rf , we note the optimum a∗t as a∗p and
a∗f separately.

∆V ∗ (ot | w) =

E

[
∞∑
t=0

γt
(
wprp

(
ot, a

∗
p

)
+ wfrf

(
ot, a

∗
p

))]
−

E

[
∞∑
t=0

γt
(
wprp

(
ot, a

∗
f

)
+ wfrf

(
ot, a

∗
f

))] (6)

Since we have already known rp(ot, at) is 1 only when
at is ap. Eq. 6 can be simplified as

∆V ∗ (ot | w) = E

[
∞∑
t=0

γt
(
1 + wfrf

(
ot, a

∗
p

)
− wfrf

(
ot, a

∗
f

))]
(7)

We can find here that if we want our ∆V ∗ (ot | w) equals
0, we can just make

E

[ ∞∑
t=0

γt
(
1 + wfrf

(
ot, a

∗
p

)
− wfrf

(
ot, a

∗
f

))]
= 0 (8)

Eq. 8 is only related with reward function rf . And we know
rf stands for formation loss Lf , we have

rf (ot, at) = Lf (ot+1) (9)

we substitute Eq. 9 into Eq. 8 and take γ equals 1 for simplify

E

[ ∞∑
t=0

(
1 + wf

(
Lf (o−t+1)− Lf (o∗t+1)

))]
= 0 (10)

in which Lf (o−t+1) means the worst formation
loss(comparing to last time step) for time step ot+1

and Lf (o∗t+1) is the best one. If we define

∆Lf (ot) = Lf (ot+1)− Lf (ot) (11)

We have

max(∆Lf (ot)) = Lf (o∗t+1)− Lf (ot)

min(∆Lf (ot)) = Lf (o−t+1)− Lf (ot) (12)

So,
max(∆Lf (ot))−min(∆Lf (ot)) =

Lf (o∗t+1)− Lf (o−t+1)
(13)

Then, we substitute Eq. 13 into Eq. 10 :

E

[
∞∑
t=0

(
1 + wf

(
Lf (o−t+1)− Lf (o∗t+1)

))]

= T + wf (minE[

T∑
t=0

∆Lf (ot)]−maxE[

T∑
t=0

∆Lf (ot)]) = 0

(14)



Here, we transfer the problem to estimate the expectation
of
∑T
t=0 ∆Lf (ot). This can be easily estimated by evaluating

a well-trained formation policy and a random policy, let R∗

stands for range here.

wf =
T

R∗(E[
∑T
t=0 ∆Lf (ot)])

(15)

C. Decentralized Cooperative Multi-Agent Learning

It is challenging to train a fully decentralized multi-
agent cooperative policy, especially when the task needs
highly cooperative agents. We use VDN [21] to train agents
in a centralized way but can act decentralized. However,
cooperative policies can not perform well when it relies
on a single agent’s observation. To solve this problem, we
propose a novel communication method based on theory of
mind. The theory of mind indicates that agents can interpret
others’ actions and act in a more informative way. Thus,
we use a combination of single agent observation and other
agents’ joint actions u−t as the input for all policies. Our
communication method only involves low-dimension action
information, which takes up little bandwidth and makes it
suitable to deploy in the real world.

However, if every agent’s action is based on other agents’
actions, we can not calculate all actions at the same time
step. In other words, one agent must move first without
inferring other agents’ actions. Then other agents can select
movements based on the performed actions of former ones.
In such a situation, the joint action is significantly influenced
by the first taken action because all other agents cooperate
with the former ones. So how to choose the first move agent,
called leader, is essential for improving policy performance.

In our work, we propose a dynamic leader chosen method.
When executing formation policy, we choose the leader as
the agent in the middle of the formation. The reason is that
the middle agent has the broadest view of all agents’ relative
positions. It can move to an optimum position in favor of
resuming or keeping formation. While executing the path
finding policy, we choose the agent in the front as the leader,
for that the leader can observe the future path and choose a
path with fewer obstacles to go.

V. EXPERIMENTS

A. Experiment Settings

For our experiments, we chose our three centralized plan-
ning methods for comparison: Joint-State A* [18], SWARM-
MAPF [4] and Conflict-Based Search (CBS) [17]. The joint-
state A* performs poorly on scalability, yet it finds the
optimal Pareto fronts. SWARM-MAPF is the state-of-the-art
centralized planner which gives a nearly optimal solution to
MAiF. CBS can give us a baseline as the pure MAPF method
that does not optimize formation loss. For all centralized
planning methods except CBS, we used a time limit of
300s. Note that all other centralized methods have access to
the whole state of the environment. In contrast, our method
assumes that each agent only has partial observability of the

Fig. 4: Left: rewards(top) and episode steps(bottom) of all RL
methods. Right: formation loss(top) of all RL method and Pareto
fronts(bottom) of our method. For fair comparing, we train both
VDN and CTCE three times longer than our method as we have
pre-trained path finding and formation policies. In order to facilitate
the display, we have scaled our method on the horizontal axis. We
also normalize the coordinate axis of the Pareto fronts.

environment and plans as an individual. As for other RL
methods, to the best of our knowledge, none of the previous
work in RL can directly apply to MAiF. So, we compare
with VDN [21] and a centralized training centralized exe-
cuting(CTCE) method as RL baseline methods. These two
methods also use action clipping and the basic wf to balance
rewards.

In our experiments, we compare makespan, formation loss,
runtime and success rate with centralized planning methods
and RL methods. For a fair comparison, our method is tested
in untrained maps. The test maps are randomly generated and
have various sizes and obstacle densities.

For all decentralized partially observable methods, we add
a few random steps in each testing episode to try different
paths that can find the nearly optimum solution as the final
performance. All experiments are carried out on the same
computer, equipped with an Intel i7-7700K, 16GB RAM and
an NVIDIA GTX1080Ti.

Our benchmark and code will be released in https://
github.com/zijinoier/mater.

B. Training Details

1) Environment: We apply a grid world simulation
environment, just as Fig. 2 shows. The map size is
{20, 32, 512, 1024}. The obstacle density is {0.05, 0.15}. We
make a limit length of walls as half of the length of the
agents’ view field. This can prevent the agent from being
completely separated in the field of view. For each map,
the top-left 5× 5 or 10× 10 cells (depends on map size) are
possible start locations, and the bottom-right 5×5 or 10×10
cells are possible goal locations. The formation is placed in
start locations. During the training process, the environment
maps are randomly selected at the beginning of each episode
in a map pool with 100 different maps. The map size is 32
and the obstacle density is 0.15. During the testing process,

https://github.com/zijinoier/mater
https://github.com/zijinoier/mater


TABLE II: RESULTS OVER DIFFERENT EXPERIMENT SETTINGS.

Environment Setting Makespan Formation Loss Success Rate Runtime(s)
map size agent d Ours CBS SW A* Ours CBS SW A* Ours CBS SW A* Ours CBS SW A*
20× 20 3 0.15 41.3 34 35.4 - 0.5 3.37 0.12 - 1.0 1.0 1.0 0.0 0.27 0.002 0.05 -
20× 20 3 0.05 34.2 34 34 34 0.01 0.2 0.0 0.0 1.0 1.0 1.0 1.0 0.24 0.0002 0.002 0.003
20× 20 5 0.05 30 30 30 30 0.0 1.05 0.0 0.0 0.8 1.0 1.0 1.0 0.39 0.0004 0.002 0.003

512× 512 3 0.15 1131.2 1018 - - 0.37 9.26 - - 1.0 1.0 0.0 0.0 8.47 171.58 - -
512× 512 4 0.05 1713.6 1014 1014 - 1.07 10.4 0.0 - 1.0 1.0 1.0 0.0 16.3 58.9 4.5 -

1024× 1024 3 0.05 2378.7 2042 - - 0.17 24.7 - - 1.0 1.0 0.0 0.0 18.1 >300 - -
1024× 1024 3 0.15 2215.5 - - - 0.38 - - - 1.0 0.0 0.0 0.0 17.2 - - -

the maps are generated randomly in each episode and tested
ten times.

2) Parameters: : We use a discount factor γ of 0.95, an
episode length of 3 times of map size(maximum), and a
batch size of 32. We use basic wf to balance the reward.
All policies use the same network consists of two LSTM
layers with 256 units. We use the Adam optimizer with a
learning rate 2 · 10−6.

C. Result

Table. II shows the results of our method comparing with
centralized methods. All experiments are evaluated in 10
different maps. The formation loss value is normalized by
map size. Based on our results, we show that our method
is transferable and can be adapted to any map size and
obstacle density. Furthermore, we notice that our approach
performs extremely well in the large scale world that other
centralized methods can not handle. The reason is that our
method acts only refer to local observation and the planning
time grows linearly as the map size or agent number grows.
Our method can handle different obstacle densities without
paying extra computing expenses. Meanwhile, the centralized
methods’ runtime grows exponentially as the map size, agent
number or obstacle density grows. Therefore, they cannot
cope with maps of large size or high obstacle density.
In small-sized maps, our method can achieve performance
similar to centralized methods, even if our method plans
separately based on a limited field of view.

We present our method’s result compared with end-to-end
RL methods and the Pareto fronts of our method in Fig. 4.
We notice that other end-to-end RL methods can hardly get
out of a ground performance. Both of them can not even
learn to reach the goal position, so we can not compare
formation loss with them. Even evaluated in episode steps,
we observe that CTCE methods are stuck in some kind of
local optimal policy while VDN does not learn anything. The
reason is that they want to learn both path finding task and
formation task together. Moreover, optimizing two conflict
objectives can cause learn in a dilemma. We also notice that
the CTCE policy has a better performance than VDN. This
is due to the fact that its agents can obtain information from
other agents while selecting actions. This information can
improve the performance of cooperative policy in the same
way as our communication method. Finally, we present our
Pareto fronts. We notice that our method reaches a policy that
can balance path finding and keeping in formation when the
weight of formation loss equals our base weight. This is in
line with our theoretical calculations. We can get the whole

Fig. 5: Snapshot of hardware experiment. Left: moving agents(top)
and agents’ start positions(bottom). Right: trajectories(top) and
RVIZ view(bottom) of all agents.

Pareto fronts by using n times base weight (e.g. 0,2,3 in the
figure).

D. Hardware Experiments

We also implement our method on a small fleet of Acker-
mann cars. Due to venue restrictions, we choose an indoor
room to simulate a three cars formation. Each car plans on
the host computer using our decentralized approach. And
we transform the discrete action into continual action so the
Ackermann cars can carry out. The result indicates that our
method has clear sim-to-real capabilities, as the planning
time per step is below 0.1s on a laptop computer. Fig. 5
shows our Ackermann cars and experiment environment.

VI. CONCLUSIONS

In this paper, we present a new decentralized partially
observable approach to multi-agent in formation. It utilizes
a novel hierarchical reinforcement learning structure that
can solve multi-objective reinforcement learning problems
effectively. Furthermore, we propose a theoretical weight
calculation method that makes every task’s reward has equal
influence on the final RL value function. Additionally, we
introduce a communication method that helps agents cooper-
ate with each other. Through an extensive set of experiments,
we show that our method outperforms several end-to-end RL
algorithms and can scale to various formations, world sizes
and obstacle densities. Our method performs well in large-
scale worlds where centralized methods struggle. Finally, we
present a demonstration where we deploy our method in
real-world robots, showing our method sim-to-real ability.
However, our method still needs to retrain the formation
policy when the formation changes. Our future work will
focus on finding a general formation policy that can deal
with multiple formations.



REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” AI magazine,
vol. 29, no. 1, pp. 9–9, 2008.

[2] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795–799, 2014.

[3] H. Ma, J. Yang, L. Cohen, T. Kumar, and S. Koenig, “Feasibility
study: Moving non-homogeneous teams in congested video game
environments,” arXiv preprint arXiv:1710.01447, 2017.

[4] J. Li, K. Sun, H. Ma, A. Felner, T. S. Kumar, and S. Koenig, “Moving
agents in formation in congested environments,” in Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent
Systems, 2020, pp. 726–734.

[5] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin,
and E. Shimony, “Icbs: The improved conflict-based search algorithm
for multi-agent pathfinding,” in Eighth annual symposium on combi-
natorial search. Citeseer, 2015.

[6] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,”
in 2012 IEEE international conference on robotics and automation.
IEEE, 2012, pp. 477–483.

[7] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. S. Kumar, S. Koenig,
and H. Choset, “Primal: Pathfinding via reinforcement and imitation
multi-agent learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378–2385, 2019.

[8] B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot path plan-
ning in dynamic environments through globally guided reinforcement
learning,” arXiv preprint arXiv:2005.05420, 2020.

[9] Z. Liu, B. Chen, H. Zhou, G. Koushik, M. Hebert, and D. Zhao,
“Mapper: Multi-agent path planning with evolutionary reinforce-
ment learning in mixed dynamic environments,” arXiv preprint
arXiv:2007.15724, 2020.

[10] H. Ching-Lai and S. M. M. Abu, Multiple objective decision making,
methods and applications: a state-of-the-art survey. Springer-Verlag,
1979.

[11] A. Kusari and J. P. How, “Predicting optimal value functions by inter-
polating reward functions in scalarized multi-objective reinforcement
learning,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 7484–7490.

[12] J. Yu and S. LaValle, “Planning optimal paths for multiple robots
on graphs,” in 2013 IEEE International Conference on Robotics and
Automation. IEEE, 2013, pp. 3612–3617.

[13] P. Surynek, “Reduced time-expansion graphs and goal decomposition
for solving cooperative path finding sub-optimally,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[14] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in 2011 IEEE/RSJ international
conference on intelligent robots and systems. IEEE, 2011, pp. 3260–
3267.

[15] T. S. Standley, “Finding optimal solutions to cooperative pathfinding
problems.” in AAAI, vol. 1. Atlanta, GA, 2010, pp. 28–29.

[16] C. Ferner, G. Wagner, and H. Choset, “Odrm* optimal multirobot
path planning in low dimensional search spaces,” in 2013 IEEE
International Conference on Robotics and Automation. IEEE, 2013,
pp. 3854–3859.

[17] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[18] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. Sturtevant, G. Wagner, and P. Surynek, “Search-based
optimal solvers for the multi-agent pathfinding problem: Summary and
challenges,” in Tenth Annual Symposium on Combinatorial Search,
2017.

[19] T. D. Barfoot and C. M. Clark, “Motion planning for formations of
mobile robots,” Robotics and Autonomous Systems, vol. 46, no. 2, pp.
65–78, 2004.

[21] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[20] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,” IEEE transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905–908, 2001.

[22] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” arXiv preprint arXiv:1803.11485,
2018.

[23] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” arXiv preprint arXiv:1905.05408, 2019.

[24] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in neural information processing systems, 2017,
pp. 6379–6390.

[25] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-
son, “Counterfactual multi-agent policy gradients,” arXiv preprint
arXiv:1705.08926, 2017.

[26] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[27] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Advances in neural information process-
ing systems, 2016, pp. 3675–3683.

[28] B. Bakker and J. Schmidhuber, “Hierarchical reinforcement learning
with subpolicies specializing for learned subgoals.” in Neural Net-
works and Computational Intelligence. Citeseer, 2004, pp. 125–130.

[29] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hier-
archical reinforcement learning,” in Advances in Neural Information
Processing Systems, 2018, pp. 3303–3313.

[30] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[31] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical
reinforcement learning,” arXiv preprint arXiv:1703.01161, 2017.

[32] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learning multi-level
hierarchies with hindsight,” arXiv preprint arXiv:1712.00948, 2017.

[33] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” in Advances in neural information processing
systems, 2017, pp. 5048–5058.

[34] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm
for multi-objective reinforcement learning and policy adaptation,”
in Advances in Neural Information Processing Systems, 2019, pp.
14 636–14 647.
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