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Abstract— Highly dynamic robotic tasks require high-speed
and reactive robots. These tasks are particularly challenging
due to the physical constraints, hardware limitations, and
the high uncertainty of dynamics and sensor measures. To
face these issues, it’s crucial to design robotics agents that
generate precise and fast trajectories and react immediately to
environmental changes. Air hockey is an example of this kind of
task. Due to the environment’s characteristics, it is possible to
formalize the problem and derive clean mathematical solutions.
For these reasons, this environment is perfect for pushing to
the limit the performance of currently available general-purpose
robotic manipulators. Using two Kuka Iiwa 14, we show how
to design a policy for general-purpose robotic manipulators for
the air hockey game. We demonstrate that a real robot arm
can perform fast-hitting movements and that the two robots
can play against each other on a medium-size air hockey table
in simulation.

I. INTRODUCTION

Recent hardware and software advances allow robots to
depart static industrial surroundings to novel real-world
dynamic environments with (potentially) fast-moving objects
interaction involved. In such contexts, real-world constraints,
estimation uncertainties, and dynamical interactions pose
many challenges. For instance, hardware restrictions limit
the design of high-speed trajectories, target tracking errors
can lead to complete task failures, and fast-moving objects
increase the likelihood of collisions with other obstacles or
humans. Therefore, the design of swift, precise, and reactive
movements is key to the success of such systems equipping
robots with the essential tools to cope with ever-changing
conditions.

Although designing task-specific robotic solution is always
a possibility to tackle the aforementioned challenges, em-
powering general-purpose robots to solve dynamic tasks is
desirable when the task is not well specified. Such a robot
could face dangerous tasks performed previously by a human
if equipped with appropriate end-effectors. However, the
progress towards effective general-purpose robotic systems
in dynamic environments has been limited due to a variety
of factors. A possible step towards better understanding
those limitations is to consider a more restricted dynamic
environment, such as air hockey.

The air hockey task is a 2D constrained environment char-
acterized by fast puck movements and high uncertainty. Two
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Fig. 1: Robot air hockey using two KUKA LBR IIWA 14.

factors cause this high uncertainty: firstly, air flows through
small holes on the table surface to reduce the friction between
the puck and the table, creating an uneven airflow distri-
bution, resulting in high uncertainty and fast movements.
Secondly, the collision behavior between the cylindrical puck
and mallet or the table’s borders produces highly variable
trajectories, as it is sensitive to small differences in the
system state. This environment shows all the fundamental
aspects of dynamic tasks: it requires robots to perform high-
speed trajectories that reach the robot capability with low
reaction time. However, it is relatively simple and controlled,
letting us formalize the problem rigorously and perform
appropriate scientific validation.

Although many previous works have tried to solve this
task [1], [2], [3], few have focused on general-purpose
manipulators [4] and they are not able to show a highly
dynamic behavior. Instead, our objective is to show how
a general-purpose arm can achieve performances close to
the task-specific 2DoF robots by employing advanced op-
timization techniques. To prove our claim, we consider a
real air hockey system with the table size 216cm × 122cm.
We mount two KUKA LBR IIWA 14 arms at each end
of an air hockey table. The robots play against each other
using a two-level policy. The high-level policy selects the
appropriate tactic i.e., hitting, defending, etc., while the low-
level one computes the required trajectory using planning
and optimization techniques.

The main contribution of this work is a novel trajectory
optimization technique. We employ a null space optimization
algorithm that leverages the robot redundancy to generate
high-speed motion while satisfying the joints’ position and
velocity constraints. We prove the effectiveness of this tech-
nique in real robot puck hitting. We also show the two
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robot arms playing reasonably fast against each other in a
simulator. Finally, we use Bayesian Optimization (BO) to
tune the physical parameters of the simulation. This approach
does not require gradients, enabling us to use standard
simulator platforms and easily consider non-differentiable
dynamics.

A. Problem Statement

Air Hockey is a two players game. We refer to the two
players as home and away. Let T ⊂ R2, be the planar surface
of a rectangular Air Hockey Table with dimension l×w, with
w < l. The table is divided symmetrically in two surfaces,
each of length l

2 , Thome and Taway. Let Ghome,Gaway ⊂ R2

be two players’ goal areas, placed at the two short sides of
the table. Let r ∈ (T ∪ Ghome ∪ Gaway) and φ ∈ (−π, π] be,
respectively, the position and orientation of a circular puck
of radius Rmallet. Let xhome, xaway be the position of players’
mallets, both of radius Rmallet. Each player p can modify
the puck trajectory, while the puck is in his own area Tp,
by causing a collision between the mallet and the puck i.e.,
‖r−xp‖2 = Rpuck +Rmallet. The puck can change direction
also by colliding with the boundaries of the table, excluding
the boundaries between T and the goal areas G. The objective
of each player p is to maximize their score

max

N∑
i

Ti∑
t

1(rt ∈ G¬p),

where N is the number of game rounds, Ti is the length of
round i, and ¬p is the opponent.

Given that the mallet’s position should stay on the table
surface to hit effectively, a robotic agent must be able to
execute fast trajectories on the planar manifold. As this task
is tremendously difficult at high speed, the objective is to
minimize the trajectory error w.r.t. the plane surface in the
z axis. We add a mechanical compliant end-effector to cope
with the error.

B. Related Work

Robotics researchers have a long-standing interest in Air
Hockey. Such interest lies in the fact that Air Hockey is
a very dynamic game that can exhibit interesting robot
dynamics and tactics.

One of the first examples of a robotic Air Hockey system
is presented in [5], where the authors designed a planar,
3-link, redundant manipulator that can play using cameras.
In a subsequent paper [1], the authors described in detail
the dynamics of the game, focusing specifically on collision
modeling. One of the most outstanding Air Hockey platforms
has been presented in [2], where a 4Dof Barrett Wam arm
has been used as a planar robot to play air hockey fast.
In the paper, the authors present a hierarchical architecture
that considers low-level control as well as short and long-
term strategies. It is possible to find another example of a
planar robot playing Air Hockey in [3], where the authors
implement a two-layer tactical system. The only known
general-purpose manipulator to solve this task can be found
in [4], where the authors use a Franka Emika Panda Arm. The

proposed tactical system is strongly inspired on [2] and [3].
However, the system’s performance is quite far from the task-
specific ones, which use robots in a planar configuration.
Up to our knowledge, our platform is the only general-
purpose manipulator able to play air hockey with reasonable
performances on a medium-size table.

Many works focus on simulated Air Hockey environ-
ments. In [6], the authors developed an automatic calibration
procedure that allows the system to automatically tune the
parameters that affect the puck’s motion e. g., the resti-
tution coefficients. In [7], the authors have studied how
to optimize the attack motion against a human opponent.
In [8], the authors developed a modified version of the DQN
algorithm [9], incorporating suboptimal demonstrations. The
authors show that the proposed approach outperforms other
deep learning baselines.

The air hockey task has also been used in the Robot
Learning community. An example is [10], where the authors
use a very simplified air hockey task as a benchmark.
In this work, the authors learn a latent representation of
the opponent’s tactics. However, the used environment is
extensively limited and not comparable to other works that
focus on the air hockey task. These limitations highlight
the need for a fully functional air hockey platform. Thus,
a more complex environment is also beneficial for the Robot
Learning community. This task can be used as a test bench
for many different Robot Learning areas: ranging from
learning dynamical movements to multiagent learning and
human-robot interaction.

II. PRELIMINARIES

A. Manipulator kinematics

We consider general-purpose, redundant, 7DoF manipu-
lators. A robot configuration is fully described by the joint
angles. The joint space is the space of all the possible joint
angles: q = {qi|i ∈ {1 . . . 7}, qmin

i ≤ qi ≤ qmax
i }. We can

compute the end-effector pose x in a given configuration
q by using the forward kinematics i.e., x = FK(q). The
space of all allowed end-effector poses is called the task
space. For any pose in the task space, we can compute one
(or multiple) configurations in terms of joint positions using
the inverse kinematics i.e., q = IK(x). For a redundant
7DoF manipulator, q ∈ R7 and x ∈ SE(3). In this setting,
the end-effector pose does not fully describe the system’s
configuration due to the extra degree of freedom originating
from the robot’s redundancy. From this fact, it follows that,
for most configurations, the end-effector pose does not fully
describe the system’s configuration. There is still a degree
of freedom due to the robot’s redundancy.

The relation between the joint velocities q̇ and task
space velocities ẋ is given through the Jacobian Matrix
ẋ = J(q)q̇. For a redundant manipulator, it is possible
to compute the desired joint velocities given a target end-
effector velocity by solving (II-A) as follows

q̇ = J#(q)ẋ+Nq̇, (1)



with the generalized inverse J# and the null space projection
matrix N = I−J#J . A common choice of the generalized
inverse is the pseudoinverse J† = JT(JJT)−1. Here, the
second component describes the joint velocities that change
the robot’s redundancy while fixing the end-effector pose.

Instead of using the null space projecting matrix, it is
possible to parameterize the null space velocities using the
coordinate system induced by the null space basis. We can
rewrite (1) as q̇ = J#(q)ẋ+ENα, where α is the velocity
in the null space coordinates, EN = Null(J) is the matrix of
basis vectors spanning the null space of J . When considering
the 7DoF robot and the end-effector x ∈ SE(3), the null
space matrix becomes a single basis vector, α becomes a
scalar. This formulation is particularly useful to perform non-
linear optimization.

An important metric that can be used to choose a given
configuration is the Measure of Manipulability (MOM) w =√
|J(q)JT(q)|. The MOM metric describes the distance to

the singularity, as it is non-negative and becomes zero only
at the singularities. MOM is also useful to understand in
which configuration the joint velocities produce the highest
end-effector velocity.

B. Bayesian Optimization

We use BO as a tool for portable and flexible system
identification. In BO, the objective is to efficiently maxi-
mize a (stochastic) black-box model based on function-value
information, i.e., maxθ∈Θ f(θ) with Θ ⊆ Rd being the
d-dimensional search domain. Algorithms of this type are
sequential in nature. At each round i, an input θi ∈ Θ is
selected and a black-box function value f(θi) is observed.
The goal is to rapidly (in terms of regret) approach θ? =
arg maxθ∈Θ f(θ). Since both f(·) and θ? are unknown,
solvers need to trade off exploitation and exploration during
the search process.

To achieve this goal, typical BO algorithms operate in two
steps. In the first, a Bayesian model is learned, while in the
second an acquisition function determining new queries is
maximized. Next, we briefly survey both those steps.

1) BO with Gaussian Processes (GPs): Gaussian process
regression [11] offers a flexible and sample efficient mod-
elling alternative to reason about f(·). In those forms, de-
signers impose a GP prior on latent functions, which are fully
specified by a mean function m(θ) and a covariance kernel
kλ(θ,θ′) with λ being kernel hyper-parameters. Assuming
Gaussian likelihood noise with variance σ and given a data-
set Di = {θl, yl ≡ f(θl)}ni

l=1 with ni denoting all gathered
data up to the ith round, one can compute output predictions
on novel input queries θ?1:q . This is achieved through the
predictive posterior which is given by f(θ?1:q)|Di,λ ∼
N
(
µi(θ

?
1:q;λ),Σi(θ

?
1:q;λ)

)
with

µi(θ
?
1:q;λ) =

A(i)︷ ︸︸ ︷
K

(i)
λ (θ?1:q,θ1:ni) K̃

(i)
λ y1:ni , (2)

Σi(θ
?
1:q;λ) = K

(i)
λ (θ?1:q,θ

?
1:q)−A(i)K̃

(i)
λ A

T,(i),

where we have used θ1:ni and θ?1:q to concatenate all ni in-
puts and q queries, and K̃(i)

λ = [Kλ(θ1:ni ,θ1:ni)+σI]−1. In
the latter Kλ(θ1:ni

,θ1:ni
) ∈ Rni×ni denotes the covariance

matrix that is computed such that [Kλ(θ1:ni
,θ1:ni

)]k,l =
kλ(θk,θl).

The remaining ingredient needed in a GP pipeline is a
process to determine the unknown hyper-parameters λ given
a set of observations. In standard GPs [11], λ are fit by
minimising the negative log likelihood leading us to the
following optimization problem

min
λ
J (λ) =

1

2
det
(
K̃

(i)
λ

)
+

1

2
yT

1:ni
K̃

(i)
λ y1:ni

+
ni
2

log 2π.

2) Acquisition Function Maximization: Acquisition func-
tions trade off exploration and exploitation for determining
new probes to evaluate by utilising statistics from the poste-
rior pλ(·) ≡ p(f(·)|Di,λ). Among various types, we focus
on three myopic acquisitions being Expected Improvement
(EI) [12], Probability of Improvement (PI) [13], and Upper
Confidence Bound (UCB) [14].
EI Acquisition: In EI, one determines new queries by maxi-
mizing expected gain relative to the function values observed
so far [12]. In a batch form, an EI acquisition is defined as

αEI(θ1:q|Di) = Epλ(·)

[
max
j∈1:q

{
ReLU(f(θj)− f(θ+

i ))
}]
,

where θj is the jth vector in the batch θ1:q , x+
i is the

best performing input so far and ReLU(a) = max{0, a}.
PI Acquisition: To assess a new batch of probes, PI mea-
sures the probability of acquiring gains in the function value
compared to f(θ+

i ). Such a probability is measure through an
expected left-continuous Heaviside function, 11(·), as follows

αPI(θ1:q|Di) = Epλ(·)

[
max
j∈1:q

{
11{f(θj)− f(θ+

i )}
}]
,

UCB Acquisition: In this type of acquisition, the learner
trades off the mean and variance of the predictive distribution
to gather new query points for function evaluation

αUCB(θ1:q,Di) = Epλ

[
max
j∈1:q

{µi(θj ;λ) +
√
βπ/2|γi(θj ;λ)|}

]
,

where µi(θj ;λ) is the posterior mean given in Equation 2
and γi(θj ;λ) = f(θj)− µi(θj ;λ).

With modeling and acquisition ingredients defined, BO
runs a loop that iteratively fits a GP model (Section II-B.1)
and then determines a batch of new probes to evaluate by
maximizing acquisitions from Section II-B.2.

III. OPTIMIZATION OF HITTING MOVEMENT

Hitting is the most challenging movement to perform in
the air hockey task. It is necessary to accelerate the puck to
high velocities, such that two robots can play autonomously
against each other. To obtain this result, we need to maximize
the mallet’s speed when the collision with the puck happens.

Unfortunately, it can be hard to achieve this objective
with a general-purpose, 7-DoF manipulator. While the max-
imum joint velocity can be sufficient for high-speed point-
to-point movements, the environment’s constraints, i.e., the



plane manifold of the air hockey game, introduce many
problematic issues. Specifically, these constraints are located
in two different spaces (the task space and the joint space).
The classical approach consists of planning and inverse
kinematics. This method solves the problem in the task space
and doesn’t consider the joint velocity constraints. Thus,
it is not suitable for high-speed movements. Conversely,
optimizing in the joint space leads to many high-dimensional
constrained non-linear optimization problems, which do not
fit the real-time requirements.

In our approach, we plan a collision-free Cartesian trajec-
tory based on the start, hitting, and stop points such that the
Cartesian constraints are satisfied. Then, we propose a linear
constrained Quadratic Programming (QP) to compute desired
joint velocities on each trajectory point. Unlike the simple
joint trajectory optimization method, where both objective
and constraints are nonlinear, we can compute the solution
of QP fast and easily. With our approach, we can find a
hitting trajectory in real-time satisfying both Cartesian and
joint constraints.

Moreover, we optimize the joint configuration at the hit-
ting point to maximize the robot’s performance. At the hitting
point, instead of constructing a non-linear, high-dimensional
(position + velocity) optimization problem, we decompose
the problem into two lower-dimensional problems. Firstly,
we perform a position-only Nonlinear Programming (NLP)
by maximizing the manipulability along the hitting direction.
Secondly, we propose two methods to find the maximum
end-effector velocity reachable in that configuration. Given
the desired hitting configuration, we present the Anchored
Quadratic Programming (AQP), a variant of the original QP,
which significantly improves the hitting performance.

A. Cartesian Trajectory Planning

Typical trajectory planning methods are not applicable
in the air-hockey task, for example, the cubic/quintic poly-
nomials could exceed the table’s boundaries, the Bezier
curve [15] does not provide a monotonic velocity profile
(the maximum velocity doesn’t occur at the hitting point).
Therefore, we design a trajectory planning method composed
of two segments: hitting, stop. As illustrated in Fig. 2,
each segments of the trajectory is composed of two parts:
linear part and arc part. Given the start and the stop point,
the tightened boundaries are firstly determined to prevent a
motion in an unnecessary direction. Then we find two cross-
points between the tightened boundaries and the line that
passes through the hit point along the hitting direction. The
arc part is tangent to the line segment of start/endpoint and
middle point as well as the line segment of middle point and
hit point with the maximum arc radius. The linear part links
the arc to the unconnected point.

The planed path is parameterized by the arc length x =
g(s). For each segment, we use a quartic polynomial to
define the profile of the arc length s(t) = a0 + a1t +
a2t

2 +a3t+3+a4t
4. We employ the positions and velocities

boundary conditions as the desired position and velocity of
each segment and set the acceleration boundary conditions

table boundary
tightened boundary
hitting trajectory
stop trajectory
start point
hit point
middle point
stop point
arc center

Fig. 2: Collision-free hitting path planning. We use two
auxiliary middle points to find the path. The arc radius is
maximized to reduce angular acceleration.

at two endpoints as s̈(0) = s̈(tf ) = 0, the arc length is thus
guaranteed to be monotonic in the time interval [0, tf ].The
total motion time is tf = 2sf/vhit, where vhit is the speed at
one of the two endpoints that is greater than 0.

B. Weighted Null Space Optimization (QP)
To achieve high-speed trajectories, we optimize the null

space velocity at every point of the trajectory. We attach a
universal joint to the end-effector (Section V-A) and focus
purely on the positions of the end-effector in task space,
the concerned Jacobian reduced to Jp ∈ R3×n. Let b =

J†p

(
x̄− x
∆T

+ v̄

)
be the joint velocities for the trajectory

tracking, x, x̄, v̄ are respectively actual, desired cartesian
position and desired cartesian velocity. The objective is to
minimize the weighted joint velocity as

min
α

1

2
‖b+ENα‖2W

s.t. q̇min ≤ b+ENα ≤ q̇max, (3)

where EN ∈ Rn×(n−3) is the null space matrix that each
column is one basis vector of the Null(Jp) and α ∈ Rn−3

are entries on each basis vector.
It should be pointed out that, when the W is set to be

an identity matrix, the optimal solution is α = 0 when
the constraints are not violated. In practice, we apply higher
weights on the shoulder and the elbow joints because these
joints afford more loads and have lower velocity limits.
Finally, we can obtain the next step velocity and position
by Euler integration

q̇next = b+ENα
∗,

qnext = qcurrent + q̇next∆t.

C. Hitting Configuration Optimization (NLP)
To find the best configuration for the hitting movement, we

consider the manipulability along a specific hitting direction
v, as presented in [16]. We maximize the following quantity
at the hitting point p

max
q

∥∥(vTJp(q))
∥∥

2
, s.t. FKp(q) = p, (4)

And FKp(q) is the forward kinematics w.r.t positions
(x, y, z).



D. Computing the Maximum Hitting Velocity

To compute the maximum hitting velocity at the selected
hitting configuration, we can use two different strategies: 1)
the least square solution, which can be computed easily in
closed form 2) the linear programming approach. The least-
square approach produces a feasible solution while the linear
programming method results in the maximum theoretical
velocity on that configuration.

a) Least square solution: We parameterize the hitting
velocity as a scalar speed value η and a hitting direction
v, such that vmax = ηv. The least square solution is q̇ =
J†p(q∗)vmax. Thus, the maximum possible joint velocity can
be determined by the minimum ratio of the absolute value
of i-th joint velocity q̇i and its maximum q̇max

i

η = min
i

(
q̇max
i

|q̇i|

)
, i ∈ {1, · · · , n}.

b) Linear Programming (LP): Instead of using least
squared solution, we can construct a linear program on the
null space as

max
α

vTJp(q∗) (Ev⊥(q∗)α) ,

s.t. q̇min ≤ Ev⊥(q∗)α ≤ q̇max, (5)

where v⊥ ∈ R3 is the orthogonal complement space of
v ∈ R3, which in our case is a plane orthogonal to the
hitting direction, Ev⊥(q∗) = Null

[
(v⊥)TJp(q∗)

]
is the

basis vectors spanning the null space of (v⊥)TJp(q∗).

E. Anchored Null Space Optimization (AQP)

The QP optimization mentioned in Section III-B is a local
optimizer that focuses only on the current step. It can lead to
the local optima with undesirable redundancy configuration,
e.g., lower elbow configurations can cause collisions with the
table. To avoid this problem, we can modify the optimization
problem to an AQP

min
α

1

2
‖(b+ENα)− q̇a‖2W ,

s.t. q̇min ≤ b+ENα ≤ q̇max, (6)

where q̇a = z (qa−q)
c is a reference velocity that leads to

the anchored configuration qa which is solved from hitting
configuration optimization and z is the phase variable, which
linearly increasing from 0 in the hitting segment and linearly
decreasing to 0 in the stop segment and c is a scale constant.
Instead of minimizing the weighted joint velocity in (3), we
minimize the distance to the reference velocity. When z = 0
at the hitting point, the objective is the same as (3) and when
z = 1 at the two ends of the trajectory, the objective tries to
find the closest configuration to the reference.

IV. SYSTEM IDENTIFICATION

For in-depth safe experimentation, we resort to building
an accurate simulator of the puck’s behavior in Gazebo. We
realize a set of 7 tunable parameters that are summarized
in Table I. Due to the difficulty associated with differen-
tiating through a Gazebo simulator, we follow a Bayesian

Air Hockey 
Referee

Baseline 
Agent

Real 
World

Simulation

Agent

Oppo
-nent

Game 
Status

Reset

Puck

Info

Joint Set Point

Joint Set Point

Fig. 3: Framework of the air hockey system. Real world and
simulation share the same structure.

optimization scheme (Section II-B) for allocating optimal
configurations of those parameters. Our black-box function
consists of two terms responsible for errors between the
puck’s position and orientation as generated by Gazebo
versus real data gathered using the Optitrack system, i.e.,
{〈r(i)

t , φ
(i)
t 〉t≥1}i∈[1:N ] with N being the total number of

collected trajectories. In short, we define the black box as an
average over real-world traces as follows:

f(θ) = Ei∼U [1:N ]

[
1

T

T∑
t=1

||∆r(i)
t (θ)||22 + 0.2‖∆φ(i)

t (θ)‖2∠

]
,

where ∆r
(i)
t = r

(i)
t − r̂

(i)
t (θ) and ∆φ

(i)
t = φ

(i)
t − φ̂

(i)
t (θ)

with {〈r̂(i)
t (θ), φ̂

(i)
t (θ)〉t≥1}i∈[1:N ] being positions and ori-

entations gathered from Gazebo under a specific setting of
the parameters θ from Table I. In the above equation we use
U(·) to denote a uniform distribution over the trajectories,
while ∠ represents the (shortest) angular distance between
φ

(i)
t and φ̂(i)

t (θ).
Unfortunately, BO as described in Section II-B faces

two significant challenges when attempting to optimize for
θ. First, nonlinearities and puck collisions induce a non-
Gaussian (heteroscedastic) likelihood noise violating Gaus-
sianity assumptions inherent to standard GPs, and second,
the choice of the acquisition to optimize is vague, whereby
different acquisitions can lead to conflicting minima [17].
To circumvent the aforesaid problems, we adapt techniques
from Heteroscedastic Evolutionary Bayesian Optimisation
(HEBO) [17] to tune the parameters in Table I. Precisely,
we utilize input and output warping [18], [19] to map data
distributions to ones that closely resemble Gaussian densities
and rather adopt a multi-objective acquisition to determine

parameter min max
restitution long-side rim 0.5 1
restitution short-side rim 0.5 1
friction coefficient rim 0 0.5

friction coefficient table-surface 0 0.5
puck spinning 0 0.5

puck linear velocity decay 0 0.01
puck angular velocity decay 0 0.01

TABLE I: Parameters for system identification



Pareto-optimal solution between αEI(·), αPI(·), and αUCB(·),
i.e., solving maxθ∈Θ(αEI(·), αPI(·),−αUCB(·)); see [17].

V. SYSTEM ARCHITECTURE

A. Hardware & Software

To demonstrate the effectiveness of general robotic sys-
tems in tackling dynamic tasks, we created an air hockey
game between two Kuka LBR IIWA 14 manipulators. We
mounted those arms at either end of an air hockey table and
equipped each with a custom-designed end-effector of length
515 mm. The end-effector was composed of an aluminum
rod, a 10 N gas spring, and a universal joint connected
to a mallet. Our choice of a gas spring reduced contact
forces to the table in case of vertical control error and as
such increased safety by diminishing exerted pressures from
the robotic arms. Additionally, the universal joint passively
adapts row and pitch angles of the end-effector to ensure that
the mallet’s surface is parallel to the table. The cylindrical
symmetry of the mallet warrants collisions which are invari-
ant to yaw angles. Additionally, we positioned six Optitrack
Flex 13 cameras with (1920 × 1680) pixel resolution and
frame rates of 120 Hz above the air hockey table. We enabled
effective object tracking by placing distinctive markers on
both the puck and the table allowing us to achieve a 1mm
tracking precision.

On the software side, we built our framework using ROS
in both real-world and simulation as illustrated in Fig. 3. In
the real system, the puck and table poses were determined
using the Optitrack system, while in simulation those poses
were directly provided by Gazebo. Finally, we introduced
a referee node that established the game’s status and score.
This node handles game logic by observing the state of the
robot and the puck, performed checks of faulty states, and
reset the puck’s position in case of a scored goal or when
the puck was unreachable.

B. State Estimation

With our hardware setting presented, we now focus on the
procedure by which we gather puck data (i.e., position and
velocity) that we later use for both fine-tuning the simulator
and for optimizing hitting movements (Section III). Given
that the puck’s position, rt, and orientation φt are attainable
from the Optitrack system, we adopt an Extended Kalman
filter to estimate linear and angular velocities ṙt and φ̇t.

To estimate these quantities, we use an Extended Kalman
Filter with the following transition model

rt+1 =rt + ṙt∆T + εr,

ṙt+1 =ṙt − (dṙt + c(ṙ))∆T + εṙ,

φt+1 =wrap angle(φt + φ̇t∆T + εφ),

φ̇t+1 =φ̇t + εφ̇,

where εk is the (Gaussian) noise specific to the state variable
k, c(·) is the friction term vector where we define every
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Fig. 4: State machine of the high-level policy

component i as

ci(ṙ) =

{
c, |ṙi| > 0

0 otherwise.

As the Optitrack system can also track rigid bodies’ ori-
entation, the observed variables are r and φ. After each
prediction step, we apply the collision model from [1]. Every
time a collision happens, we don’t update the covariance
matrix, as it is hard to model the bounce uncertainty.

We use an ellipsoidal gating procedure for the Optitrack
measure. To compute the gate, we use the innovation co-
variance matrix and a gate probability of 90% i.e., we reject
the 10% of the possible measurement which belongs to the
queue of our estimated distribution. As the Optitrack is very
unlikely to produce outliers, we interpret the outliers as an
unexpected collision. For this reason, instead of rejecting the
measurement, we reset the track using the new information
and reset the state covariance matrix to the initial one i.e.,
the identity matrix.

C. Agent Strategy

Following previous works [3], we use a two-layer hier-
archical architecture to control the robot. At a high level,
we leverage a classical finite state machine to implement the
tactics. The high-level strategies that we propose are very
similar to the one presented in the previous literature [3], [4].
We show the full state machine in Fig. 4. The Init state is a
safe state where the robot positions the mallet at a safe height
from the table. When we stop the game, the robot reverts to
this safe state, where no action can occur. Once we start
the game, the robot enters the Home state, where it moves
the mallet on the table. Once both robots have positioned
their mallets on the table, The system enters the Ready state,
which keeps the robot on the base position until an event
occurs. The Ready state is active while the game is paused.

All the other possible states are reachable from the Ready
state. The Smash state can be activated when the puck
velocity is not too high. It hits the puck strongly and aims at
the goal. The Repel state quickly responds to a fast incoming
puck that is not risky, by hitting back the puck in the
incoming direction. The Prepare state is used when the puck
is stationary and close to the table’s borders. It moves the
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Fig. 5: Hitting movement Optimization. (a) shows that the velocity limit gets violated on joint 2 for planning and inverse
kinematic approach. Our approach apportions the velocity of joint 2 into other joints. (b) shows that NLP signific antly
improves the hitting performance and eliminates the failures. LP tries to reach the theoretical maximum of the configuration.

puck in a better position to be able to hit it strongly. Finally,
the Cut state is responsible for defending the goal. It tries to
move the incoming puck at the sides to gain control of it.

VI. EXPERIMENTAL EVALUATION
In this section, we present the experimental results for the

hitting movement and the system identification procedure. In
the attached video, we demonstrate the result of the Kalman
filter, the system identification, the state machine, two robots
playing the game autonomously in simulation, and the hitting
performance on the real robot. Demonstrations can be found
in the video.

A. Hitting Performance

In Fig. 5a we compare the trajectories obtained using
only inverse kinematics on the planned path with the ones
optimized by LP + NLP + AQP. The proposed optimization
makes better use of the velocity range of each joint while ob-
taining similar joints paths. This technique exploits the null
space manifold such that we avoid exceeding the velocity
bounds. In the shown example, instead of overshooting the
velocity limit on joint 2, the optimized trajectory apportions
the velocity to other joints. We can also observe that multiple
joints are reaching the velocity limit at the same time, which
means robot capability gets exploited.

The violin plot in Fig. 5b shows the performance of each
component in the proposed optimization. We selected three
hitting types i.e., hitting directly towards the goal, make a
bounce towards the opposite side (reverse bounce), or the
same side of the puck (forward bounce). For each hitting
type, we evaluate the movement on a grid of 180 puck hitting
positions. The trajectories are planned with the time step size

Method Mean Min Max Median
QP 263.58 30.65 531.73 243.96

NLP + AQP 132.88 23.03 284.54 126.07
LP + NLP + AQP 234.26 43.26 498.84 222.01

TABLE II: Optimization time (ms) for different methods

of 0.01s. In Table II is reported the elapsed time statistics for
every algorithm. For every hitting point, we perform up to 10
trials of hitting optimization. For QP, the initial attempting
velocity is set to be 2m/s, other methods use the velocity
solved from Section III-D. If the optimization succeeds, we
stop the optimization and obtain the calculation time. If the
optimization fails, the velocities are scaled down by a factor
of 0.9 and retry. If all trials fail, we record the hitting velocity
as zero and the optimization time at termination.

From the violin plots, it is clear that the initial nonlinear
optimization (NL) (4) together with the anchored quadratic
programming (AQP) (6) drastically improves the chances of
successfully compute a hitting trajectory compared to the
pure quadratic programming (QP) approach using (3). We
record no hitting failure in the tested position with NL. The
linear programming step (LP) shown in (5) to compute the
maximum velocity allows us to find fast-hitting solutions at
the cost of double computation time. This higher computa-
tion time is mostly due to the failure of optimization, because
there is no feasible solution to reach the desired velocity
following the Cartesian path. By employing a reasonable
prediction time, e.g., 1.5 seconds, it is possible to use any of
the proposed algorithms to hit the puck, as the optimization,
except for the most extreme positions, is sufficiently fast to
allow the hitting movement of the robot. This issue is not
crucial in practical cases: when the optimization takes longer
it is not possible to obtain a high hitting velocity therefore
it may not be worth trying the hitting movement in the first
place. This fact allows us to play the game reactively with
the robot, as proved in simulation.

B. System Identification

We optimize the parameters for 200 iterations. At each
iteration, we sample 5 candidate parameter vectors from
the acquisition function and we evaluate the loss over the
whole dataset. In our experiments, HEBO significantly out-
performed all other BO algorithms, leading to trajectories
that are closer to the ones in the training dataset, as is shown

https://sites.google.com/view/robot-air-hockey


(a) Learning curve (b) Best results over 3 runs, with
95% confidence intervals

(c) Example trajectory in time (d) Example trajectory in x-y
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Fig. 6: Results for Bayesian optimization.

in Fig. 6c and 6d. From the learning curve in Fig. 6a, it
is clear that not only HEBO finds a better solution faster
than the other algorithms, but also the samples it selects
are on average better than the ones chosen by competing
algorithms. We also observe superior performances when
averaging among different independent runs, as presented in
Fig 6b. While the results are sufficiently good to be used
in a simulation, there is still some discrepancy between the
real trajectory and the simulated one. This discrepancy is
unavoidable since it’s impossible to have a perfect model of
the air hockey table. Indeed, irregularities of the plane and
air flow play a major role in the system, particularly at slow
velocities, as Fig. 6c shows.

VII. CONCLUSION

In this paper, we studied and presented a robotic system
that is able to play air hockey, a simple, but challeng-
ing dynamic task. We proved that commercially available
general-purpose industrial manipulators, such as the Kuka
Iiwa LBR 14, can perform strong hits. We proposed an
optimization method that exploits the redundancy of the ma-
nipulator coping with joint velocity limits. In the simulated
environment, we showed two robots playing against each
other successfully, while our optimization algorithm runs
in real-time on a desktop machine. We presented a simple
framework, based on BO, to tune the parameters of the
environment’s dynamic model. This framework only requires
black-box access to a simulator: it doesn’t require any further
knowledge of the system.

This work opens many interesting research lines. An
interesting research direction is to perform an in-depth study
of BO techniques applied to non-differentiable dynamics,
such as the collision, and compare with standard techniques.
Another research direction would be to improve the opti-
mization by considering dynamics properties, and not only
kinematics. Finally, we need to test the whole game on
the real system to demonstrate the capabilities of existing
systems and our approach.
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