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A Scalable Distributed Collision Avoidance Scheme for
Multi-agent UAV systems
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Abstract—1In this article we propose a distributed collision
avoidance scheme for multi-agent unmanned aerial vehicles
(UAVs) based on nonlinear model predictive control (NMPC),
where other agents in the system are considered as dynamic
obstacles with respect to the ego agent. Our control scheme
operates at a low level and commands roll, pitch and thrust
signals at a high frequency, each agent broadcasts its predicted
trajectory to the other ones, and we propose an obstacle
prioritization scheme based on the shared trajectories to allow
up-scaling of the system. The NMPC problem is solved using an
ad hoc solver where PANOC is combined with an augmented
Lagrangian method to compute collision-free trajectories. We
evaluate the proposed scheme in several challenging laboratory
experiments for up to ten aerial agents, in dense aerial swarms.

A. Introduction and Background

One of the most popular and exciting areas of robotics right
now is the area of collaborative robotics, meaning that a team
of robots are tasked with collaboratively performing a speci-
fied mission, which could include collaborative inspection[1],
mapping & exploration[2], search-and-rescue[3] and many
others. The co-operation and coordination of teams of
robots can be done in many different ways, but a common
nomenclature is the division into centralized, decentralized,
or distributed schemes. For centralized approaches all com-
putation and planning is done via a single computational
agent, which is fed all available system information. In the
decentralized approach, all agents act independently only
based on information available to that agent and as such
allow for much greater scalability. The distributed scheme
is the middle ground, where every agent computes its own
decisions, but specific information is transmitted between
agents that supplement the computed decisions, which allows
for both great co-operation and scalability.

When there are multiple robotic agents occupying a small
space to perform a task, the collision avoidance scheme
must not only avoid collisions with the environment, but
also collision among agents. In this article we propose a dis-
tributed nonlinear model predictive control (DNMPC), where
computed trajectories are shared among agents, and other
agents in the system are considered as obstacle constraints.

There are many different approaches to collision avoidance
schemes for multi-agent robotic systems. Rule-based schemes,
such as potential functions [4], [5] or optimal control schemes
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[6], work well in low-density swarms of agents but do
not include hard guarantees on safety distances or to do
so must include additional restrictive rules. A differential
game approach is proposed in [7] with impressive results,
but relies on many conditions, and the article only offers
simulation results. In [8] a mixed-integer quadratic program
is proposed for centralized trajectory generation, but does not
allow for real-time solutions meaning it is non-reactive. Other
modern solutions showing promise are the barrier functions
[9], or safety barrier certificates which were evaluated for
mini quad-copters in laboratory experiments, and [10] that
combined potential-like functions with adaptive control to
achieve collision avoidance robust to model uncertainty.

Model predictive control (MPC) schemes for multi-agent
collision avoidance are, due to their high performance,
flexibility, and ability to handle constraints, one of the most
popular approaches to multi-agent collision avoidance [11].
The ability to optimize over future predicted states allows
for a direct consideration of moving obstacles, and with
fast optimization algorithms allow for real-time reactive and
proactive avoidance. MPC schemes comes in many different
flavors: in terms of the system dynamics and constraints there
are linear [12] and nonlinear [13] solutions, and in terms of
architecture there are decentralized [14], centralized [15], and
distributed [16] schemes.

In [12], a linear UAV model is used where the decision
variable of the MPC is a position-trajectory e.g. it requires a
separate position-reference tracking controller to follow the
computed trajectory. All agents share predicted trajectories
in a distributed fashion, show great scalability, and was
experimentally evaluated for up to 20 agents.

In [14] a NMPC scheme is used for multi-agent decentral-
ized collision avoidance. No information is shared among
agents, and predicted future positions of the non-ego agents
are done with a constant velocity model from initial position
and velocity measurements. The motion intent of other agents
is simplified, but no information transfer among agents is
required. However, the experimental validation involves only
two UAVs.

In [17] a method proposing probabilistic collision avoid-
ance for multi-agent systems using NMPC is demonstrated,
and shows experimental results for low-density and low
numbers of robots, while up-scaling is only demonstrated in
simulation.

In our previous paper [15] we proposed a centralized
NMPC scheme, where a single computational agent optimized
the trajectories of all agents. While this scheme showed good
results in simulation, all centralized schemes will eventually



suffer from scalability issues.

A common limitation of existing MPC approaches is that
since the number of constraints (or potential-like terms) of the
underlying optimization problem must remain constant during
runtime, there can be situations where there are too many
agents in proximity to the ego vehicle. Moreover, selecting
the closest neighbors (as in [12]) may disregard those —
potentially more remote — agents that are on a direct collision
course with the ego agent.

B. Contributions

We propose a distributed NMPC solution where the
collision avoidance is solved for in the control layer, and as
such no additional position- or velocity-tracking controller
is needed. In our approach, each agent uses a nonlinear
dynamical model and shares its predicted trajectory with
all neighbouring agents at every sampling time. Since these
trajectories are produced by a nonlinear model, they are
sufficiently close to their actual trajectories to allow for
collision-free coordination. Furthermore, we propose an
obstacle prioritization algorithm that determines which agents
are on the most dangerous predicted potential collision
courses with the ego agent based on their shared predicted
motion. Additionally we propose an adaptive scheme for the
MPC weights that facilitates challenging collision avoidance
situations. This allows us to sacrifice the speed of reaching the
target for enforcing collision avoidance. This leads to a highly
scalable paradigm that can accommodate large numbers of
agents without compromising computational feasibility.

In our proposed scheme, we use a tailored method that
has been implemented in Optimization Engine (for short
OpEn),which is an open-source code generation software
for embedded nonlinear optimization [18], [19], that is fully
ROS-integrated. It generates Rust code, which is very fast
and provably memory safe. OpEn uses PANOC (proximal
averaged Newton-type method for optimal control) [20], [21]
combined with an augmented Lagrangian method [18], [22]
to account for general non-convex constraints such as the
ones that result from collision avoidance. To the best of our
knowledge, this is the first work that offers experimental re-
sults for collision avoidance using the augmented Lagrangian
method and we shall demonstrate that the proposed scheme
is suitable for a fast real-time implementation.

We present results from multiple experimental scenarios
for up to ten agents in tight formations, and with low
numbers of constraints to reduce computational complexity,
to demonstrate the collision avoidance capabilities of the
proposed control architecture.

I. METHODOLOGY
A. System Dynamics

The adopted system model is a nonlinear dynamic UAV
model, successfully used in previous applications of NMPC
for UAVs [15], [23], [24], and thus we will not go into
much detail in this article. Importantly, it considers eight
states namely: positions coordinates p = [pz, Py, p.] T, linear
velocities v = [v,, vy, v,] " as well as roll and pitch angles ¢

and 6 € [—m, 7. (;5 and 6 are modeled as first order systems to
approximate the closed loop behavior of an attitude controller
with inputs ¢pef, fref, and as such the control inputs of the
system are T, ¢ref, 0ot € R where T' > 0 is the total mass-
less thrust produced by the motors. Based on this model let
us define the state vector as z = [p,v, ¢,6] T and the control
actions as u = [T, ¢ref, Oref] | . The full dynamic model is as
follows:

p(t) = () (1a)
o= k@0 [3] +[ 3] - [T 4 8 oo, av)
O(t) = Yo (Koret (t) — 6(1)), (1c)
O(t) = g (KpOret (t) — 0(2)). (1d)

This model is then discretized by the forward Euler transfor-
mation to achieve the predictive form

Ty1 = C(@p, uk)- 2

This model is used as the prediction model for the receding
horizon NMPC-problem, where the number of predicted time
instants is denoted by the prediction horizon, N.

B. Control Objective

The main control objective of each agent is to track a
given set point, while avoiding collisions with other agents.
Additional objectives are not to have abruptly changing
control actions and to keep the control actions within certain
bounds. Here, we will translate these requirements into a cost
function and constraints for a nonlinear MPC formulation.

1) Objective Function: Let xp ), and ugy ;i denote the
predicted state and input at time k4 j, computed at the time k.
Let o, and uj be the vectors of all predicted states and inputs
along the prediction horizon. The deviation of the predicted
state from the set point, x.¢, can be penalized using a standard
quadratic function and, likewise, we introduce a quadratic
cost the input deviation. Additionally, we introduce a penalty
on successive changes in control inputs, wyyjjx — Ug4j—1|k
(note that uy_1);, = ug—1 which is the the previous control
action), and a standard quadratic terminal state cost. The
overall cost is given by

N—

J(@p, Uy up—1 k) = Z (eref - Ikﬂ‘lkH?Qw
j=0 '

=

State penalty
+ [[tbres — Uk-ﬁ-j\k”QQu + ([ gk — Uk+j—1|k||2QAu)
L J L J
Input penalty

Input change penalty
2
+ [|ret — Traniklly,, )
L I

Terminal state penalty

where Q.., Q; € R8*% ., Qa, € R3*3 are positive definite
weight matrices for the states, terminal state, inputs and input
change respectively.



2) Obstacle Definition: We require that the ego agent does
not approach any of the other agents at a distance closer
than a safety value 7op,s. Let p and p° = [poPs, pgbs, pSPs]
denote the positions of the ego agent and a non-ego agent

respectively. Then, define

— (Tobs)Q _ (px_pgbs)Z

= (=) = (=27, @)
with £°P5 = [p°Ps 7-°Ps], The obstacle avoidance requirement
is equivalent to hgpnere < 0, that ego agent position p is
required to lie completely outside of the sphere defined by
£°bs Additionally, we require that the constraint holds for
predicted positions of the ego vehicle, py. 5., and predicted
obstacle positions pzlfjl i along the prediction horizon.

3) Input bounds: For a UAV system based on (I)), an
attitude controller will only be able to stabilize the UAV
within a specific range of ¢ and 6, therefore the control
actions commanded by the NMPC and especially ¢,of and
Oref, should be constrained. Additionally, to further limit the
acceleration of the UAV, we also place such limits on 7T". For
this purpose we impose the bounds

hsphere (pa §Obs)

Umin < U5k < Umax- &)
C. Obstacle Prioritization

An important concept in multi-agent system is scalability.
Assuming a system composed of N, agents, ideally each
agent should be able to form obstacle constraints with all
other agents, such that the number of obstacles Nyps = N,—1.
Due to limitation in computation power and the speed of
optimization algorithms, this is not always possible for high
numbers of agents. Instead, we need to choose Nyps < N, —1
necessitating some kind of obstacle prioritization where the
ego agent takes into account a limited number of Nypg
other agents. Assuming access to the predicted trajectories,
uP" and measured states 2" of nearby agents, we
want the prioritization scheme to be fully based on the
motion intentions of each agent. For this purpose we propose
Algorithm [T] as the obstacle prioritization scheme, which can

be described as follows:

« Using the NMPC prediction model (Z) we can describe
any Tj_jyjx—1 from ug_1 and &y, and similarly using
the shared NMPC solutions uzlisll and i’zbs’i to describe
@”beiiﬂm fori=1...N, — 1.

o Calculate the predicted Euclidean distances between the
ego agent and all other agents at the current and future
time instants j = 0,..., N

o An agent is prioritized if the distance is below a threshold
specified by r°P%% + d, where d, is a positive safety
distance. This is done via the following weighted sum
as a gauge for the prioritization

N .
wi =Y aldi g, v 1) BG),
§j=0
where d; ; denotes the distance to the i-th agent at

obs,i

time instant j. Let a(d;;, vk71+j|k71) and B(j) be

decreasing functions in d; ; and j respectively, and as
such the scheme prioritizes agents that are at a closer
predicted distance, and at less distant predictions.

o We also add an extra safety protocol by adding a large
number M to w; if the agents are closer than the obstacle
radius 7°P%% at the current measured positions (j = 0) to
always prioritize agents that directly violate the obstacle
constraint at the current time instant.

o Obstacle trajectories (é?bs’z)i,j are then sorted by the
corresponding values in w in descending order, to

prioritize the N, s trajectories that produced the largest

sums w;.

For the weight functions we propose simple expressions
with the desired functionality, and in this article we are
using a(dv) = (1 — ﬁf”v” (velocity compensation
since faster moving obstacles spend fewer time instants in
roPsipd.) and B(j5) = (J%)a with a being a tuning constant
to describe the relative emphasis on closer versus more distant
time instants.

Algorithm 1: Obstacle Prioritization

Inputs: &y, w1, 257" uS™ ) Ny, Nops, 7%, dg

Result: From the shared trajectories and measured
states decide which N,ps agents should be
considered as obstacles

fori=1,N, — 1 do

for y =0,N do

Compute py_14jjp—1, prfﬁjlk,l and

obs,i
Uk —14jlk—1 -
d <+ ||pk—%)+j|k—1 —PZfﬂﬂk,lH
o I
if (d < r°"%) and (j = 0) then
| wi &~ w; + M
else if d < r°"% + d, then
‘ w; < w; + (1 - rob:l+ds )2Um (jf,vl)a
Sort in descending order: (g‘;b&z)i,j by corresponding
element in w;
bs, i bs,1 bs,2 bs, Nobs
(€5 )i (€575, (€57°2), ., (€50 Nown) )
Output: (&5 )i,

prio,j

D. Embedded Model Predictive Control

1) NMPC Problem: In light of the aforementioned objec-
tives and constraints, the obstacle avoidance problem for each
agent leads to the following constrained nonlinear optimal
control problem

Minimize J (2, Wy, Ug—1) (62)

Uk, Lk

subj. t0: Ty 11k =C(Thp|k> Uktj|k)s JEN, N1, (6b)

Umin < Uk+51k < umax7j € N[OA,N—I]; (6C)
W phere (Pl Eome) < 0,5 € Njowy,  (6d)
iEN[laNobs]’ (6e)
Tk, = Tk, (6f)



where j, is the current estimated system state. This problem
needs to be solved at every sampling time by each agent
taking into account the trajectories, ({?bs’l)iyj, that the other
agents have shared. The problem yields an optimal sequence
of control actions, the first one of which is applied to the
ego vehicle and the optimal predicted trajectory is broadcast
to all surrounding agents.

2) Embedded numerical optimization: The optimization
problem in Equation (6) can be written concisely in the
following form

P(ap) : Miniﬂll]ize J(ugs zpk) (7a)
(NS

subject to: F'(wuy; xpx) <0, (7b)

where f(-;xp) R3N — R is a Lipschitz-differentiable
function and F'( - ;apk) : R3N — RNNovs js a differen-
tiable mapping with Lipschitz-continuous Jacobian. Here
the optimization is carried out over sequences of control
actions, wy, while the sequence of states, xj, has been
eliminated following what is known as the sequential or
single shooting formulation [24]. The cost function in is
defined by (@), where the state sequence has been eliminated
and the constraints in Equation correspond to the
obstacle avoidance constraints discussed in Section [(B.2l
The sequence of control actions, uy, is constrained in a set
U C RN, which is the rectangle defined by the constraints
of Equation (3).

Problem P(zy;,) in (7) is solved by using the augmented
Lagrangian method. The associated augmented Lagrangian
function is

Le(up, v, Yrs Tjie) = f(ws Tpp)

+yn (F(wr; zgn) — vi) + SIF (s zpe) — vell?, (8)
defined for vy € U and v < 0 It has been shown in [18]
that

min

. — 1 2
w, €U,v, <0 Lc(uk7vk’ Yk xk‘k) - _ﬂHka

+ min ¢(’UJ}€;C, ykaxk|k)7 9
ureU

where 1) is defined as

Y(us ¢, Y, Trpk) = f(ur; orn)
c 2
+ £ || F(wrs mapn) + 2yn — [F(wrs ) + 2yel— ||

where [z]_ = max{0, —z}. Function 1) is continuously dif-
ferentiable and has a Lipschitz-continuous gradient, therefore
the “inner” optimization problem min,, ¢;y ¢ can be solved
very efficiently using PANOC. The gradient of v can be
determined by means of automatic differentiation. This leads
to Algorithm

The most important tuning parameter of the algorithm is
the penalty update parameter p > 1. Typical values that seem
to work well are between 1.1 and 5. A value close to 1 will
make increase the penalty parameter slowly, therefore, the
optimal solution u} at iteration v will be a good initial guess
for the inner optimization problems, which are expected to

Algorithm 2: Augmented Lagrangian method for
solving P(xy;,)

Inputs: u) € R*V (initial guess), zy; € R®
(parameter), y? € RVNevs (initial guess for the
Lagrange multipliers), €, > 0 (tolerances), p
(penalty update coefficient), ¢o (initial penalty), 6
(sufficient decrease coefficient), M > 1 (large

constant)
Result: (e, d)-approximate solution (u}, yj)
for v =0,...,Vpax do

gy = max{0, min{M, y;}}
Compute a solution

u’t! € argmin,, oy ¢(uk; ¢y, Yy, Tpr) With

tolerance € and initial guess u” using PANOC
Update y; ' by

Y = g el (Ful ™ o)
= [P ap) +¢,'97)] . (10)

Zy+1 = ||y;l;+1 - yZ”oo

if 2,41 <c¢,0 and €, < ¢ then

| return (u},y;) = (ui™, yy ™)

else if v > 0, z,41 > 0z, then
| Cu4+1 = PCy

_ 1-—

€41 = 561/

converge faster, but this will come at the expense of more
ALM iterations. On the other hand, a larger value of p will
lead to a lower number of ALM iterations, but the initial guess
for the inner problems will not be as good, this requiring a
higher computational effort.

Overall, the algorithm has low memory requirements,
involves only simple operations (no linear systems or fac-
torisations) and is very fast. Upon termination returns an
e-suboptimal and J-infeasible solution.

The algorithm is implemented in OpEn which generates
Rust code that solves the parametric problems P(zy;) for
each agent [18], [19].

E. Adaptive NMPC Weights

The optimal Lagrange multipliers, yz, can be thought as
indicators of how much the optimal trajectories need to “bend”
to avoid the obstacles. The idea is to use yj; to update
the reference tracking weights so that obstacle avoidance
is prioritized over set point tracking.

Let @, define the first three diagonal elements of positive-
definite weight matrix (),. We introduce a scaling factor
that adapts @), from Q) min t0 @p max based on Lagrange
multiplier ¥}, as follows:

Qp,max - Qp,min
Nops N
1=0 le/?,l +1

Qp = Qp,min + (11)

where W, is some weight that is decreasing with respect to
elements in y; , that represents constraints at more distant
future time instants, which in our formulation results in W; =



b(1 — L2od Ny where b is a tuning constant. This heuristic
seems to work well in practise. All elements in @), are scaled
by the same factor, but it is enough for reducing the general
emphasis on reference tracking. Note that the terminal state
penalty still promotes the UAV to be as close to its end goal
as possible but only at j = N.

II. RESULTS
A. Experiment Set-up and NMPC Tuning

The platform used for the experiments is the Crazyflie Nano

2.0 [25], using a ros-stack developed for the Crazyflie [26] for
communication with the agents and low-level attitude control.
These are small lightweight platforms that do not carry
their own computational devices (which does imply some
communicated delays), but are great for showing scalability.
As such, computation for all agents is done on a single
Lenovo ThinkPad T490, with a 1.8GHz Core i7 CPU, with
controllers for each UAV running as separate ROS-nodes
[27]. All state measurements & = [p, O, b, é]T are made by a
Vicon motion-capture system and a 3-point median filter with
outlier rejection to estimate velocities from Vicon position
measurements.
The proposed control structure has a large number of
model and tuning parameters; model parameters are A, =
01,A, = 01,4, =02, Kog,Ky = 1 and Ty, Ty = 0.5.
For the objective function weight matrices are chosen as
Qy = diag(Qp.1,Qp.2,Qp.3,6,6,6,8,8) with, according to
@v Qp,min = diag(la L, 15) and Qp,maz = diag(6,6,45),
Q. = diag(5,10,10), Qa, = diag(10,20,20) and lastly
Q: = diag(40, 40, 150, 20, 20, 30, 30). The NMPC prediction
horizon is set to N = 40 with a sampling time of 50ms,
which implies a prediction of two seconds. Adaptive weight
tuning constant b is set to 0.01, and j-scaling constant @ in
the prioritization scheme is set to 0.7, and d;, = 0.2 m.

The NMPC constraints described by @) are ., =
[5,—0.25,—0.25] and upmq, = [12.5,0.25,0.25], while ob-
stacle radii are 7°* = 0.4 m. Note that small inaccuracies in
localization, model mismatch, inherent delays in the system
and solver tolerances will always prevent this distance from
being perfectly maintained. This should be compensated by
increasing the obstacle radii above the safety-critical condition
which for our choice of platform is around 0.3 m.

Lastly, the number of parametric spherical obstacles in the
NMPC formulation is set to Nops = 3, while the penalty
update coefficient p = 1.5 and initial penalty ¢y = 1000.

B. Experimental Validation Results

To evaluate the proposed distributed collision avoidance
method, we present a series of challenging laboratory experi-
ments in which a team of UAVs performs individual position
reference tracking in tights formations and challenging
collision avoidance scenarios. We include up to ten agents
and in the final experiment we also present the addition
of a non-cooperative UAV agent to the system. Figure
shows the minimum agent-agent distances during all three
experiments, while Figure [3] includes histograms of solver
times of the NMPC module. For visualizing the experiments

and seeing the real-time behavior of the agents we strongly
suggest the reader to watch the experiment video found at
https://youtu.be/3kyiL6MZaag.

1) Position swapping in tight formations: Figure [I] shows
the experiment set-up. The task is for the agents to hold the
formation while every five seconds for one minute one agent
moves to fill the unoccupied spot. The obstacle prioritization
scheme allows the moving agent to quickly couple with the
relevant agents as to move through the formation without
collisions. Additionally, due to the sharing of the motion
intentions directly though the NMPC trajectory, the formation
can (mostly) be maintained as other agents see that no
collision is imminent.

The minimum agent-agent distance during the experiment
was 0.38 m. Due to the complexity and large horizon of the
NMPC problem, the optimizer rarely (0.03% of instances) did
not converge to the specified tolerance within the bounds for
solver time, set at 40 ms to never have run-time issues, and
the non-converged solution is instead applied to the system.
The average solver time of all agents through the experiment
was 1.46 ms.

2) Avoidance with multiple simultaneously moving agents:
A more challenging scenario in terms of collision avoidance
is when there are multiple moving agents on direct collision
courses. Figure [2] shows the set-up, where two teams of
five agents are tasked to swap positions with the opposing
team while maintaining collision-free paths, repeated two
times. This set-up challenges the obstacle prioritization, as
the closest agents are not the ones on a collision course.

The agents successfully swap positions with a minimum
distance of 0.37 m. Figure [5] shows a higher average solver
time due to the shorter but more intensive experiment. The
average solver time was 5.35ms, with around 0.7% of
instances reaching the maximum allowed solver time of 40 ms.

Figure [6] displays solver data for one of the agents during
the experiment: inner iterations, the suboptimality described
by the norm of the fixed-point residual seen as a measure
for the quality of the solution, the norm of the vector of
Lagrange multipliers .||y} ||, as well as the -infeasibility. The
suboptimalty is kept at the specified solver tolerance of 10~%.
As is expected the Lagrange Multipliers and d-infeasibility
see a spike as the avoidance maneuvers are initiated and then
rapidly drop back to zero.

3) Introducing a non-cooperative obstacle to the system:
While the distributed scheme works very well for maintaining
the desired agent-agent distance, let us investigate the addition
of a non-cooperative obstacle in the form of a manually
controlled UAV. We use the common [14], [28] constant
velocity model (p°P%"¢ = 2°PS1¢) for moving obstacles.
Discretizing the linear model we can predict obstacle positions
pzkfjrll,: from the measured state $°P$1¢ = [pobsne gobs.ne]
and add it to the list of predicted obstacle trajectories that
are evaluated in the obstacle prioritization scheme.

The task is to maintain a tight 8-agent formation, while a
manually controlled UAV is flown through and generally tries
to disrupt the formation, shown in Figure [3] All agents must
keep the required distance to other agents in the distributed


https://youtu.be/3kyiL6MZaag

scheme, while also avoiding the non-cooperative obstacle.
The minimum distances in this experiment had an absolute
minimum value of 0.33m and a slightly lower over-all
performance. Individual agents correctly select avoidance
maneuvers that avoid the non-cooperative obstacle while
minimally disrupting other agents. The simplified and non-
dynamic prediction model of the non-cooperative agent cannot
predict sudden turns or irregular movements, but despite this
the safety-critical distance is still maintained and there was
no collisions with any agent. The average solver time was
2.49 ms, with a 0.12% non-convergence rate.

Fig. 1: Experiment set-up for first experiment. Top view, side view and
visualization of predicted (position) trajectories in rviz. Agents are one-by-
one tasked to move positions while the formation is maintained.

Fig. 2: Experiment set-up for second experiment. Two teams of five agents
swap positions all at once.

Fig. 3: Experiment set-up for third experiment. The larger UAV (purple)
is manually controlled and act as the non-cooperative obstacle, here seen
disrupting multiple agents.

III. CONCLUSIONS

In this paper we have presented a novel distributed collision

avoidance scheme for Unmanned Aerial Vehicles (UAVs).
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Fig. 6: Solver data from one of the agents. The suboptimality described by
the norm of the fixed-point residual (top left), the norm of the Lagrange
Multipliers (top right), Inner iterations (bottom left) and the constraint
infeasibility (bottom right).

Through the presented results, we can conclude that the
NMPC scheme based on the Optimization Engine (OpEn) can



provide real-time collision-free trajectories for all agents using
a prediction horizon of two seconds. Also, the implemented
augmented Lagrangian method has been demonstrated to
be applicable to collision-avoidance constraints with tight
run-time requirements. The obstacle prioritization correctly
assigns which agents are to be considered as obstacles in time
to safely avoid collisions, and allows a NMPC formulation
with a low set number of constraints to fluidly deal with a
large number of dynamic obstacles. It has also been shown
that a constraint based obstacle avoidance scheme akin to the
one we propose is much improved by good obstacle-trajectory
information, as seen by the decreased performance when
introducing the non-cooperative obstacle with a simplified
predicted trajectory, a result similarly observed in [17]. NMPC
lends itself to a distributed formulation since the motion
intentions of all agents at every time instant is known based on
the NMPC trajectories, but the question of how to accurately
predict future obstacle positions of non-cooperative moving
obstacles (and how to compensate if their trajectories are
uncertain) is still a very interesting and open research question
that we are currently working on.
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