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Event-based Motion Segmentation by Cascaded

Two-Level Multi-Model Fitting

Xiuyuan Lu, Yi Zhou*, and Shaojie Shen

Abstract— Among prerequisites for a synthetic agent to inter-
act with dynamic scenes, the ability to identify independently
moving objects is specifically important. From an application
perspective, nevertheless, standard cameras may deteriorate re-
markably under aggressive motion and challenging illumination
conditions. In contrast, event-based cameras, as a category of
novel biologically inspired sensors, deliver advantages to deal
with these challenges. Its rapid response and asynchronous
nature enables it to capture visual stimuli at exactly the
same rate of the scene dynamics. In this paper, we present
a cascaded two-level multi-model fitting method for identifying
independently moving objects (i.e., the motion segmentation
problem) with a monocular event camera. The first level
leverages tracking of event features and solves the feature
clustering problem under a progressive multi-model fitting
scheme. Initialized with the resulting motion model instances,
the second level further addresses the event clustering problem
using a spatio-temporal graph-cut method. This combination
leads to efficient and accurate event-wise motion segmentation
that cannot be achieved by any of them alone. Experiments
demonstrate the effectiveness and versatility of our method
in real-world scenes with different motion patterns and an
unknown number of independently moving objects.

I. INTRODUCTION

Modern robotic applications (e.g., autonomous driving,

AR/VR, UAVs, etc) require synthetic agents to perceive

dynamic scenes in order to interact with the environment

effectively. As one of the challenges cast by dynamic scenes,

the multi-motion segmentation problem aims at detecting

and further modeling the motions of independently moving

objects (IMOs) while estimating the camera’s ego-motion.

The problem’s complexity originates from its exploratory

nature: multiple hypotheses (models) are to be considered

and validated against the data to select the optimal fits.

Moreover, from a sensing perspective, challenging visual

effects (e.g., motion blur and over/under-exposure) make the

problem even harder for solutions using standard cameras.

Event-based cameras, for example, the DVS [1], are

biologically-inspired visual sensors that mimic the transient

pathway of the human visual system. They acquire visual in-

formation in a completely different way from standard cam-

eras, and consequently, produce a stream of asynchronous

per-pixel intensity changes (the so-called ”events”) instead

of intensity images. This novel principle of operation brings

advantages over standard frame-based cameras to address the
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(a) Raw intensity image from
the standard camera.

(b) Event feature extraction and
tracking.

(c) Event feature clustering. (d) Event clustering and align-
ment.

Fig. 1: The proposed cascaded two-level multi-model fitting

scheme for event clustering. The raw intensity image (a) is

for visualization only. Event features are extracted on the

uncompensated image of warped events and continuously

tracked on the image plane (b). At level one (c), event

features are clustered into groups that undergo different

rigid motions. At level two (d), events are clustered by

associating to the refined motion models and are aligned

along corresponding point trajectories.

challenging scenarios in robotic vision, such as high-speed

and/or high dynamic range (HDR) stereo depth estimation

[2, 3], camera tracking [4, 5] and Simultaneous Localization

and Mapping [6]–[8].

In this paper, we look into the problem of event-based

motion segmentation, which aims at clustering events oc-

curred within a short time interval into groups, such that each

of them complies with a unique rigid motion (background

motion or an IMO’s motion). A novel method is developed

that jointly clusters the events (data-model association) and

estimates the parameters of their coherent motion (model

fitting). The contribution of the work is summarized as:

• A cascaded two-level multi-model fitting scheme that

solves the event-based motion segmentation problem by

two steps: event feature clustering (level one) and event

clustering (level two).
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Fig. 2: Overview of the proposed system. The input to the system is a stream of events occurred within a short time interval.

The proposed system consists of two multi-model fitting modules cascaded sequentially. Using as input the event features’

tracking, level one clusters features (labeled by Lf) into groups that comply with different rigid motions M. Initialized by

level one, events are clustered (labeled by Le) at level two by associating with refined motion models M⋆.

• An efficient hypothesis proposing unit (level one) devel-

oped by integrating a robust model fitting method into

a progressive multi-model fitting pipeline. The result of

level one – a compact set of motion instances – is used

to initialize the process in level two, which leads to

efficient event-wise labeling.

• An extensive evaluation on available datasets showing

state-of-the-art performance.

In the rest of the paper, we first review related work (Sec-

tion II), and then explain our method (Section III and IV).

Finally, the proposed approach is evaluated in Section V.

II. RELATED WORK

The literature review focuses on works that do not require

prior knowledge, including the shape of IMOs, and the

correlation between the tracked geometric primitives and

the event camera’s motion. Early prior-free pipelines (e.g.,

[9, 10]) follow a greedy strategy, which first recover the

dominant background motion and deal with the remaining

events induced by the IMOs subsequently.

Using the result of [10] as initialization, [11] presented

the first method that solved the model estimation (fitting)

and event-motion association (labeling) sub-problems jointly.

The segmentation problem was formulated in an expectation-

maximization (EM) scheme, which iteratively switched be-

tween updating the event-motion association and refining the

motion models. Both the E-step and M-step leveraged the

idea of motion compensation [12]. The method, however,

required to know the number of IMOs as a prior knowledge.

More recently, a hierarchical clustering method was pre-

sented in [13] and further improved in [14]. The method first

clustered event features by applying the K-means method.

Then the resulting redundant clusters were passed to an

iterative method, which consisted of clusters merging and

motion parameters refinement. The method does not require

to know the number of IMOs in advance (by setting K to

a big number). However, the clusters merging criteria was

somehow designed under a hybrid metric of image contrast

and centroid distance. Thus, clusters undergoing identical

motions could not be merged if their centroids were far

away from each other. Finally, the event-motion association

(event-wise labeling) was made according to if an event was

within the convex hull of the features in a cluster. Inaccurate

event labeling was witnessed near the overlapping areas of

background and IMOs.

To address the flaws of [11] [13], the method in [15]

adapted motion compensation [12] to a graph-based en-

ergy formulation. The idea of negative representation [8]

is borrowed so that the original maximization problem is

converted to a minimization one. The number of clusters

could converge to the real number of IMOs because of the

applied constraint on the length of description. However, this

method failed to detect IMOs with a small size because of

the bad inlier-outlier ratio in the initialization. In addition to

the above methods, we have to mention a supervised end-to-

end learning-based pipeline in [16], which jointly estimated

optical flow, 3D motion and object segmentation. It provided

a state-of-the-art dataset for evaluation of IMOs segmenta-

tion, though it was not close to any other approaches in the

literature review.

Our method draws on the advantages of existing meth-

ods and overcomes their shortcomings with a new design.

Inspired by [15], we also formulate the event-based segmen-

tation as a geometric multi-model fitting problem. Unlike

[15], we propose a cascaded two-level multi-model fitting

scheme. In the first level, we bring in event feature tracking

[13, 14, 17] for efficient hypothesis proposal. Instead of using

K-means [13, 14], we cluster the features with a progressive

multi-model fitting method. The model fitting and feature-

motion association sub-problems are solved jointly, thus not

requiring incremental cluster merging locally [13, 14]. In

the second level, we leverage the spatio-temporal graph cut

method [15] to solve the event clustering problem.

III. PROBLEM STATEMENT AND PRELIMINARIES

The goal is to cluster events occurred within a short time

interval into several groups such that each complies with a

unique rigid motion. Each motion model parametrizes the 2D

point trajectories of events on the image plane induced by

an IMO. Once the events are clustered, they can be warped

according to the estimated motions, thus producing an image

of warped events with the highest contrast (Fig. 1 (d)).

In this section, we first review the principles of event

cameras and clarify the input of our algorithm. Second, we

discuss the motion model fitting methods using as input the

feature correspondences and the raw events, respectively.

Finally, the event-based motion segmentation problem is

identified as a geometric multi-model fitting one, followed by

an overview of the proposed cascaded two-level multi-model

fitting scheme.



A. Event Stream and Features

Unlike standard cameras which capture full frames at a

fixed frame rate, event cameras have independent pixels

that sense brightness changes asynchronously. An event is

triggered if the variation of the sensed intensity (in log scale)

I(x, t), at a pixel location x = (u, v)T and time instance t,
exceeds a nominal threshold Cth:

| log I(x, t)− log I(x, t−∆t)| > Cth, (1)

where ∆t is the time since the last event was triggered at

this pixel. Each event e, denoted by a tuple < u, v, t, p >,

records spatio-temporal information that includes u, v the

pixel coordinate of the event, t the timestamp at which the

event occurs, and p ∈ {−1,+1} the polarity indicating the

sign of the brightness change.

We denote the input of our algorithm, a stream of events

occurred within a short time interval [t−δt, t], as E[t−δt,t] =

{ek}
Ne

k=1. Besides, we also use the event feature correspon-

dences as input. We extract event features at time instance t−
δt and t, respectively, and establish feature correspondences

by tracking the 2D motion of these features (detailed in

Section IV-A). The set of feature correspondences is denoted

by F = {fi}
Nf

i=1, where fi = {x
t−δt
i ↔ x

t
i} refers to a pair

of feature correspondence.

B. Motion Model Fitting

Here we clarify the ways to fit a motion model with feature

correspondences and raw events, respectively. At level one of

our method, motion models can be estimated in a closed form

given feature correspondences. Using the four-parameter

model m := {mu,mv,ms,mθ}
T [9] as an example, the

point trajectory on the image plane is parametrized as:

x
′
1 = x1 +

[(

mu

mv

)

+ (ms + 1)Rmθ
x1 − x1

]

δt, (2)

where x1 ↔ x
′
1 denotes a pair of corresponding features,

Rmθ
:=

(

cosmθ − sinmθ

sinmθ cosmθ

)

the in-plane rotation, and

δt the time interval during which the features are tracked.

The minimal case of Eq. 2 requires two pairs of feature

correspondences, which can be solved by the direct linear

transform (DLT) method. Other models, such as 2D-flow

model [18], and 3D-Rotation model [19], can be worked out

similarly. For a single-instance case in presence of outliers,

a robust solution typically uses a minimal-set solver inside

a RANSAC framework [20] and subsequently refines the

estimate via a nonlinear optimization with all inliers.

In the second level, the resulting motion instances by

the first level will be refined with all associated events.

We apply the motion compensation [12] method for model

fitting with raw events. The idea of motion compensation

refers to the process of warping all involved events with an

associated motion model to a reference time instance. During

the process, events are aligned incrementally along the point

trajectories on the image plane, and the best fit is found when

the contour strength (contrast) of the image of warped events

(IWE) is maximized. The contour strength can be assessed by

a variety of dispersion metrics. Here, we utilize the variance

loss because of its advantages in terms of accuracy and

computation complexity over other alternatives [21]. The

motion compensation method can be summarized as follows.

First, all involved events E are geometrically transformed

according to a warping function W,

ek
.
= (xk, tk) 7→ e′k

.
= (x′

k, tref), (3)

resulting in a number of warped events E ′ = {e′k}
Ne

k=1 at a

reference time tref. The warping function W is parametrized

by the motion model m. It determines the image-plane

trajectories along which the events are aligned. Second, the

warped events E ′ are aggregated into an IWE,

I(x;m)
.
=

Ne
∑

k=1

δ(x− x
′
k(m)), (4)

where each pixel x counts the number of warped events that

fall within it. To establish a differentiable objective in the

contrast maximization, the Dirac function δ(·) is typically

replaced by a Gaussian N (x;0, ǫ2Id) of ǫ = 1 pixel width.

Finally, the variance of the IWE quantifies the goodness

of fitting: m
∗ = argmaxm σ2(I(x;m)). Our formulation

supports any type of parametric motion model.

C. Segmentation via Geometric Multi-Model Fitting

Segmentation refers to the problem of clustering data

according to some proximity in data, such as identical color

and texture pattern (photometric proximity) or being consis-

tent with a common geometric model (geometric proximity).

Event-based motion segmentation lies in the latter case be-

cause the absolute intensity is not available in raw data. The

problem can be posed as an energy-based multi-model fitting

problem, which jointly solves data-model association and

model fitting sub-problems. The data-model association sub-

problem, also known as labeling, is a discrete optimization

problem. To solve this sub-problem, a graph structure is

typically established on the data, which introduces additional

consideration on spatial regularity, and more importantly, en-

ables to apply modern graph-cut solvers. The overall energy

has a unified form E(L,M) = Edata(L,M) + Ereg(L,M),
which is a function of two sets of variables: L the labeling

function that associates a model to a data, andM the models

that represent the commonality shared within each cluster.

We follow this formulation in the sense of energy-based

multi-model fitting with a graph structure. Furthermore, we

propose a cascaded two-level multi-model fitting scheme. In

each level, the motion segmentation problem is formulated as

a joint optimization problem over the data-model (features-

motion in the first level, and events-motion in the second

level) association and the motion models’ parameters. The

data-model association is represented by the labeling func-

tion L(d1) : D → L = {1, ..., N}, which associates a data

d to a label l ∈ L indicating which IMO the data belongs

to. The motion patterns of IMOs are represented by a set

1d refers to a data which could be either an pair of corresponding features
f ∈ Ω× Ω or an event e ∈ Ω× T .



of motion models M = {m1, ...,mN}. Each motion model

encodes the coherent motion that a cluster of data complies

with. The overall system is illustrated in Fig. 2. We detail

the multi-model fitting method at each level in Section. IV.

IV. METHODOLOGY

In this section, we detail the proposed multi-model fitting

method at each level. First, we discuss the approach for

feature clustering at level one, which incorporates robust

motion estimation into a progressive multi-model fitting

scheme. Using the resulting motion instances as an initial

model pool, we show in the second level that the event

clustering problem can be efficiently addressed with a spatio-

temporal graph cut method.

A. Feature Clustering by Progressive Multi-Model Fitting

The multi-model fitting method, at level one, jointly

solves the motion parameters estimation and feature-motion

association sub-problems, using the feature correspondences

as input. We extract Shi-Tomasi corners [22] on raw

IWEs (without motion compensation2) at time t − δt and

t, respectively, and obtain feature correspondences using

Lucas-Kanade optical flow method [23] (Fig. 1(b)). To

cluster event features into groups that comply with different

motion patterns (Fig. 1(c)), we perform motion model

fitting using feature correspondences with RANSAC and

integrate it into the Progressive-X scheme [24]. In this

scheme, motion model hypotheses are proposed one-by-one

and added to a set of active instances maintained by the

PEARL optimization [25], which looks for the optimal

configuration over all instances and feature correspondences.

The result of this level consists of the labeling of features

Lf and associated motion instances M. We detail the key

components in this scheme as follows.

Hypothesis Proposal. To propose sufficient motion model

hypotheses, a proposal engine is needed to increasingly

generate yet unseen hypotheses. A variant of RANSAC

algorithm – Graph-Cut (GC) RANSAC [26] is applied for

this purpose. The GC-RANSAC method consists of two key

steps: sampling and inliers/outliers clustering.

1) Sampling. A minimal set S is sampled, with which

a motion model hypothesis is fitted using the linear solver

(III-B). Applicable sampler choices include NAPSAC [27]

and PROSAC [28]. We utilize NAPSAC because of its local

sampling characteristics.

2) Inliers/outliers clustering. Inliers are separated from

outliers through a binary classification process. To this end,

a neighbourhood graph is established, with each node rep-

resenting a feature correspondence. Actually, the topology

of the neighbourhood graph is simply determined by the

feature locations (nodes) on one IWE and a naive neighbour

searching scheme determining the neighbourhood (edges),

and thus, leading to a 2D graph (see zoom-in area of

Fig. 1(c)). The binary classification task is formulated as a

2We observed no apparent difference in performance whether or not a
global motion compensation is performed as pre-processing [13, 14].

standard Markov Random Field (MRF) problem, consisting

of a data term and a smoothness term. The data term is

designed in a way that rewards a data point close to a model

if it is labeled as an inlier, while a modified Potts model is

applied as the smoothness term to deal with extreme cases

in which the data contain significantly more outliers close to

the desired model than inliers [26]. The model hypothesis is

then refitted with all inliers using a nonlinear optimizer.

In addition to these two steps, we need a quality function

to verify a hypothesis. The quality function’s return reflects

the support from data. The design of the qualifying criteria

is different from ordinary RANSAC algorithms specified for

a single-instance fitting problem. In a single-instance case,

the quality function measures the goodness of fit w.r.t a

unique hypothesis. The simplest way is to count inliers. On

the contrary, in a multi-instance fitting problem, the quality

function is supposed to count data that are inliers only

to the hypothesis h, while being outliers to other existing

instances h∪ (called compound model instance in [24]). In

our problem, a data point f (a pair of corresponding features)

is regarded as an inlier to a motion model hypothesis if the

geometric error efi,mh
= ‖xt

i − W (xt−δt
i ;mh)‖ is smaller

than ζ (a predefined threshold), and the minimal geometric

error from other model instances efi,mh∪
= minj∈{h∪} ‖x

t
i−

W (xt−δt
i ;mj)‖ is greater than ζ. In practice, the truncated

quality function of MSAC [29] has shown its superiority

to inlier counting of RANSAC in terms of accuracy and

sensitivity to a predefined threshold. Thus, we define our

quality function Q as

Q(mh) = |F| −
∑

f∈F

min
(

1,max
( e2

f ,mh

γ(ζ)2
, 1−

e2
f ,mh∪

γ(ζ)2

))

,

(5)

where | · | denotes the cardinality of a set, and γ(ζ) = 3
2ζ.

As a consequence, a data point leads to a small score if it is

consistent with both the newly proposed hypothesis and the

existing compound instances or if it is inconsistent with the

newly proposed hypothesis.

The above two steps are carried out iteratively until

the probability of finding a hypothesis with better

support is lower than a confidence threshold µ. As a

consequence, the required number of iteration is calculated

as K = log (1−µ)
log (1−η|S|)

, where η = |I|/|F| denotes the inlier

ratio. The resulting hypothesis returned by the GC-RANSAC

loop is added to the pool of active model instances, which

participates in the following multi-instance optimization.

Multi-Instance Optimization. The goal of this step,

on one hand, is to find some of the data a better fit

through iterative relabeling and re-fitting. On the other

hand, the newly added hypothesis is further validated to

see if it is redundant under the joint concern over model

consistency and spatial coherence. If not redundant, it will

be maintained as an active instance in the model pool. The

formulation of this task is similar to the inliers/outliers

classification mentioned above. However, a more complex

multi-instance fitting problem is to be solved. To this



Algorithm 1: Feature Clustering with Progressive

Multi-Model Fitting

input : Feature correspondence set F , threshold µ
output: Feature labeling Lf, model instance M
Initialize Lf = ∅, M = ∅, ω⋆ = 0, Ī = |S|+ 2
G ← Neighbourhood graph (F)
while Ī > |S|+ 1 do ⊲ Prog-X Loop [24]

for k = 1 to K do ⊲ GC-RANSAC Loop [26]

S ← Sampled by NAPSAC [27]

mh ← Linear model fitting (S)
ω ← Compute support of mh (Eq. 5)

while ω > ω⋆ do
ω⋆ ← ω, m⋆

h ←mh, I⋆ ← I
I ← Graph-Cut (mh,G)
mh ← Nonlinear model fitting (I)

ω ← Compute support of mh (Eq. 5)
end

end

M←M⊕m
⋆
h

{Lf,M} ← PEARL(M,F) [25]

Ī ← Compute the upper limit of |I⋆| (Eq. 6)
end

end, the aforementioned neighbourhood graph is re-used.

The PEARL [25] optimization method is used to solve

this problem. Since the newly proposed hypotheses come

one-by-one, the pool of instances is kept small, and thus,

the computational complexity is not high. Consequently,

the pool of model instances is augmented, and the data are

relabeled by refined model instances.

Termination Criterion The progressive multi-model fitting

pipeline, summarized in Alg. 1, runs iteratively until the

termination criterion is met. According to [24], the overall

progress is terminated when Ī < |S| + 1, where Ī denotes

the upper bound of the number of inliers to a not yet found

instance. The inliers in this context refer to data that are

independent on the compound model. The upper bound Ī
with confidence µ in the nth iteration is defined as

Ī(F , h∪, |S|, n, µ) = (|F| − |h∪|)
|S|

√

1− n

√

1− µ, (6)

where, with a slight abuse of notation, |h∪| denotes the

number of inliers to the compound model. This criterion

guarantees that, upon termination, the probability of an

existing unseen instance with at least |S|+1 inliers is smaller

than 1− µ.

B. Event Clustering via Spatio-Temporal Graph Cut

The goal of this step is to achieve event-wise labeling such

that each event is associated with a specific motion model.

We borrow the idea of event-based motion segmentation

in [15], which also formulates the segmentation problem

as an energy-based multi-model fitting problem. In contrast

to the 2D neighbourhood graph applied in IV-A, a 3-D

fully connected graph is established by exploiting the spatio-

temporal characteristics of events. The proposed objective

is a hybrid function of discrete labeling L and continuous

model parameters M, defined as

E(L,M)
.
= ED(L,M) + EP(L) + EM(L), (7)

which simultaneously considers the data-model consistency

(data term ED) and spatio-temporal coherence across the data

(Potts model EP). The data term considers the goodness

of fit by adapting the idea of motion compensation, while

the smoothness term enhances spatially coherent labeling.

Additionally, an Minimum Description Length (MDL) term

(EM) is added in order to make the model pool as compact

as possible. This constraint would reduce model redundancy

and thus prompt the remaining models to correspond exactly

to IMOs in the scene. Due to space limitations, the definition

on each term is omitted. Readers can refer to [15] for more

details. A block-coordinate descent strategy is used to solve

Eq. 7, optimizing L and M in an alternating manner. The

original initialization method of [15] proposes hypotheses

by fitting models to events within a number of hierarchi-

cally divided spatio-temporal volumes. This strategy, though

free of optical flow computation, generates many similar

(redundant) hypotheses together with false-positive ones,

and thus, is relatively slow. Besides, it typically fails to

detect small IMOs because of the bad inlier ratio. Thanks

to the feature clustering in the first level, the resulting

model instances can be used as the initial pool of models.

With this compact and reasonably accurate pool of motion

instances, the inference of event-model association can be

done efficiently. We evaluate our algorithm in the following

section.

V. EXPERIMENTS

In this section, we evaluate the proposed algorithm. First,

we introduce the datasets and evaluation metrics used (Sec-

tion V-A). Second, we provide quantitative and qualitative

evaluation results on these datasets (Section V-B and V-C).

Then we discuss the parameters used and the computational

performance (Section V-D). Finally, we conclude with the

limitations of the proposed method (Section V-E).

A. Datasets and Evaluation Metrics

To extensively evaluate the algorithm, we use almost

all publicly available datasets [9, 11, 16, 30]. Except for

DistSurf [30] using a static event camera, all the others were

captured with a hand-held moving camera, in either indoor

or outdoor environments. The number of IMOs was up to

TABLE I: Summary of datasets’ characteristics

Dataset Camera Camera status #IMO Env. HDR Non-rigid

EED [9] DAVIS240 Moving 1-3 Indoor Yes No
EV-IMO [16] DAVIS346 Moving 1-3 Indoor No No
DistSurf [30] DAVIS240 Static 1-3 In/Outdoor No No
EMSMC [11] DAVIS346 Moving 1-3 In/Outdoor Yes Yes

Our Data DAVIS346 Moving 1-3 Indoor No Yes



TABLE II: Quantitative evaluation on EED dataset [9] using

detection rate of IMOs (in %).

EED sequence EED [9] EMSMC [11] 0-MMS [14] EMSGC [15] Ours

what is background 89.21 100.0 -* 100.0 100.0

occlusion 90.83 92.31 - 100.0 100.0
fast drone 92.78 96.30 - 96.30 96.30
light variation 84.52 80.51 - 93.51 92.21
multiple objects 87.32 96.77 - 0 95.67

Average 88.93 93.18 94.2 77.96 96.84

* Numbers are not available for each individual sequence in [14].

TABLE III: Quantitative evaluation on EV-IMO dataset [16]

using the IoU metric (in%)

Method EV-IMO [16] MOMS [13] 0-MMS [14] EMSGC [15] Ours

IoU 77.00 74.82 80.37 76.81 80.73

three, and challenging cases including HDR scenes and non-

rigid motions were also considered. Details of these datasets

are summarized in Table. I. Two standard metrics are used

in the quantitative evaluation, including detection rate and

Intersection over Union (IoU). Details about the metrics can

be found in [9, 15].

B. Quantitative Evaluation

EED Dataset [9]. We evaluate our algorithm on all the

five sequences using the detection rate metric and compared

against state-of-the-art approaches [9, 11, 14, 15]. As shown

in Table II, our algorithm overall outperforms the other

methods. Note that our method gave less accurate result than

EMSGC [15] on the light variation sequence. The problem

was caused by false-positive feature correspondences used

as input in the first level. These features were extracted

from noisy events induced by a strobe light flashing in the

background. Such a bad information-noise ratio generated

many false-positive motion model hypotheses, leading to

inaccurate segmentation results in the second level. Neverthe-

less, EMSGC [15] failed to detect small-size IMOs (Multiple

objects sequence) because of its initialization that struggled

in the case of bad inlier-outlier ratio, whereas our method

can handle this due to the proposed feature tracking.

EV-IMO Dataset [16]. We also evaluate our algorithm

using the IoU metric when ground-truth dense segmentation

masks are provided. As can be seen from the quantitative

results in Table III, our algorithm outperforms the other state-

of-the-art solutions. The numbers for baseline methods are

still taken from the corresponding publications. Qualitative

results are given in Fig 4, where we respectively show

the labelled features, the labelled events (IWEs), and the

dense segmentation masks (convex hulls) overlapped on

corresponding grayscale images. The results demonstrate that

objects can be successfully separated from the background

as long as they undergo motions independent of the camera’s

ego-motion. Note that the feature labeling result from level

one is sometimes not perfect. We observed redundant motion

model instances, and some weak features from the same IMO

that may be associated to different motion models. Both of
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Fig. 3: Segmentation result on EED dataset [9]. The red

bounding boxes show the location of the IMOs. Note that

all ground truth bounding boxes are manually annotated on

the DAVIS grayscale images that are not temporally aligned

with event data. Hence, offsets are witnessed for fast moving

objects.

these two issues can be resolved in level two thanks to the

applied regularization terms (Potts model and MDL term),

as long as true-positive motion model proposals are obtained

from level one.

C. Qualitative Evaluation

In addition to the above quantitative results, we also

provide extensive qualitative evaluation on a set of real-world

data, including DistSurf dataset [30], EMSMC dataset [11],

and our data. Exemplary results are shown in Fig. 5.

The DistSurf dataset consists of two sequences: cars and

hands. As shown in the first two columns of Fig. 5, our

algorithm successfully separates an IMO from the other, even

when they overlap. Results of the two selected sequences

from EMSMC dataset are illustrated in the third and fourth

column of Fig. 5. The skateboarder sequence was captured

in an outdoor HDR scene with the event camera looking

towards the sun while a pedestrian and a skateboarder pass

by. This result demonstrates that event-based solutions are

qualified in HDR scenarios. Also, the compact segmentation

is due to the MDL term applied in level two, which approx-

imates complex non-rigid motions with a small number of

rigid ones. The fan & coin sequence captures a rotating fan

(rotation speed around 1800 rpm) and a free-falling coin.

Our algorithm supports different types of motion models,

and thus allows us to model and separate the rotating fan

blades and the falling coin. Our data captured indoor scenes

with multiple people passing by. It is more complicated

compared to the aforementioned ones because multiple non-

rigid motions and occlusions coexist. Our algorithm performs

well on these sequences.



Box [16] Table [16]

Fig. 4: Segmentation results on the EV-IMO dataset [16]. Column 1 and 4 show the feature labeling result of two sequences:

Box and Table. Features clustered to the same group are labeled with an identical color. Column 2 and 5 show the labeled

IWEs. Note that we use a different color scheme for the visualization of IWEs than that for feature labeling. Column 3

and 6 show the corresponding dense segmentation masks on the corresponding grayscale images from DAVIS [31]. The

graysclae images are for visualization only.

Cars [30] Hands [30] Skateboarder [11] Fan&Coin [11] Downstairs (ours) Indoor (ours)

Fig. 5: Qualitative results on a set of real-world data.

D. Parameters and Computational Performance

The segmentation is performed on events occurred within

a constant time interval, and we process events in a fashion of

sliding window. The width of the temporal window δt is set

by 15–35 ms according to the scene dynamics and textures.

The confidence threshold µ is set to 0.95. The inlier-outlier

(geometric error in Section IV-A) threshold is set to 1.5 pixel.

The parameters used at level two are taken from [15].

We ran our algorithm using a single thread on an Intel i7-

8700K CPU. The average computation time of each module

in Fig. 2 is listed in Table IV. It is worth mentioning

that the feature clustering algorithm at level one performs

thousands of iterations to propose hypotheses extensively. To

speed up, we reuse historical motion model to bootstrap the

estimation at next time, and thus, only data corresponding

to new appearing IMOs need to be repeatedly sampled and

validated. Numbers in parentheses refer to the time when

reusing historical models. With the resulting compact pool

of models, the spatio-temporal graph cut method at level

two can be finished efficiently. The overall computation

time for each independent segmentation takes 0.36 second

approximately, which is 20 times faster than [15].

TABLE IV: Computation time of our algorithm

Module
Feature Detection
and Tracking

Feature Clustering
(Level One)

Event Clustering
(Level Two)

Overall

Avg. Time (ms) 3 110 (15) 250 363 (268)



E. Limitations

Two limitations of the proposed method are witnessed

during our experiment. First, our method cannot distinguish

two IMOs under similar motion. For example, two cars

moving from right to left in the Cars sequence [30] are likely

to be recognized as one IMO no matter how far they are

from each other. This issue can be resolved by introducing

semantic cues. Second, the width of the temporal window

has to be selected according to the characteristics of each

data. This is due to the fact that the applied linear motion

model is held only within a short time interval, thus a narrow

window is preferred. On the other hand, the applied motion-

compensation scheme needs enough textures to evaluate the

sharpness, thus requiring a relatively wide window. The

parameter δt is set by making a trade-off between the two

considerations. A better way to resolve this limitation is to

apply nonlinear motion models, such as a Bézier spline [32],

which is able to describe complex motion within a relatively

longer temporal window. We leave these to future work.

VI. CONCLUSION

We present a novel approach for event-based motion

segmentation in this paper. Our method is a cascaded two-

level multi-model fitting scheme, which addresses the seg-

mentation problem in a two-step fashion. In the first level,

we leverage event feature tracking and solve the feature

clustering problem via a progressive multi-model fitting

pipeline. In the second level, the event clustering problem

is formulated as inferring a 3-D MRF and solved using a

spatio-temporal graph-cut method. The sequentially cascaded

scheme leads to a more accurate and efficient event-based

motion segmentation, which cannot be achieved by any of

the components alone. The extensive evaluation demonstrates

the versatility of the proposed method.
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