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Abstract— Precise perception is one of the key enablers of
autonomous robotic operations. The right selection of sensors
significantly influences the overall performance of the system.
This paper provides a systematic approach for evaluation of
various sensors available on the market. The main focus is to
assess the performance in use cases of short to medium distance
operations, especially relevant for precise manipulation and/or
quality control. The evaluation is based solely on depth data
(point clouds). We use six metrics to evaluate the sensors and
propose a novel approach for low-cost fabrication of benchmark
targets. The evaluation experiments are conducted on different
materials to simulate various industrial environments. Our
results provide a qualitative and quantitative comparison of
different characteristics of various sensors and can be used to
select an appropriate device for specific conditions.

I. INTRODUCTION

Recent years of advancements in sensor technology have

grown a market of high-end industrial depth sensors which

are advertised to reach sub-millimeter depth accuracy. How-

ever, the selection of the right sensor for a specific use-case

can be quite hard, as their real-world performance heavily

depends on the target environment, e.g. lighting conditions

and/or surface materials. Comparing such sensors is a rather

difficult task, as is creating a highly precise manufactured

reference object or finding a reference sensor which is at

least one magnitude more precise than the sensors accuracy.

As almost all recent benchmarks are focused on consumer-

grade devices such as the Mircosoft Kinect or Intel Realsense

families, we provide — to the authors’ best knowledge —

the first direct comparison featuring a wide selection of

current, industrial grade depth sensors, suitable for precise,

short to medium distance robotic applications. In detail, our

contributions are:

1) We present a set of evaluation targets (see Fig. 1) that

can be easily reproduced by using standard industrial

components without relying on advanced manufactur-

ing techniques like a CNC milling machine.

2) We introduce new metrics which are based on the XYZ

information only (point clouds) and provide a system-

atic approach for evaluation of sensors’ capabilities for

robotic short-distance applications.
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Fig. 1. Evaluation targets and robot with attached Photoneo PhoXi sensor.

3) We perform a competitive evaluation of five state-

of-the-art industrial, and three consumer-grade depth

cameras.

Note that even though some of the featured sensors also

record RGB data this benchmark only evaluates the provided

3D information.

II. RELATED WORK

Many metrics to evaluate the quality of point clouds have

been proposed. Unfortunately most methods like point-to-

point or point-to-plane distances, mean square error (MSE),

Peak Signal to Noise Ratio (PSNR) [1], Hausdorff distance

and Root mean square distance (RMSD) [2] rely on com-

parison to a known ground truth. Other approaches evaluate

fused 3D data to rate the quality of scan alignments [3], [4]

or the sensor’s calibration [5]. Zhang et Al. proposed to use

personal impressions of study participants to rate the quality

of noisy point clouds [6]. An evaluation of objective and

subjective comparison metrics can be found in [7].

Next to the comparison to known ground truths from a

high precision sensor [8], [9], [10], [11], [12] and/or an

accurately manufactured reference object [13], [14], three

metrics have been widely used in the context of sensor

benchmarking: 1) scanning of a known plane to analyze the

sensor’s z-accuracy and/or distortion [15], [11], [16], [17]

as well as 2) recording a rectangular object to measure the

edge noise (spatial precision in x and y direction) [15], [16],

[17] and 3) analyzing the sensor’s spatial resolution [15].

[16] further evaluates the sensor data depending on the view

angle in an outdoor scene.

Most recent sensor benchmarks evaluated low cost con-

sumer sensors and/or LiDARs, such as an actuated SICK



LMS-200 (ground truth), a SwissRanger SR-4000, a Fotonic

B70 and a Microsoft Kinect camera [8], a Hokuyo URG-

04LX, Hukuyo UTM-30LX and Sick LMS-151 [9], a Mi-

crosoft Kinect, ZESS MultiCam 3k and 19k, SoftKinetic

DepthSense 311, PMD Technologies 3k-S and Camcube

41k [10], Kinect and Asus Xtion [13], Kinect II [16], [17],

Microsoft Kinect II and Asus Xtion Pro [14], Intel Realsense

SR300 [11], Intel Realsense D415 [12] and a comparison

of ten different LiDARs for applications in Autonomouts

driving [18]. One exception is the SET framework for the

evaluation of stereo matching used to test a Stereolabs ZED

and a Roboception rc_visard 160 [19]. Unfortunately, it is

not applicable in our benchmark, as most of the included

sensors obtain 3D information via structured light (SL) or

time of flight (ToF).

III. EVALUATION METRICS

We use a total of six different metrics to evaluation the

quality of tested depth sensors. Four of them, namely the Z-
Precision, Angle Dependent Reflectivity (ADR), Edge Preci-
sion (EP) and Spatial Resolution (SR) have been widely used

in the referred work. However, these metrics are computed

on artificial scenes of flat surfaces. During experiments we

realized that many sensors show better results on these kind

of recordings than on real-world data. For example almost all

tested sensors have some kind of integrated denoising filter

on raw data, resulting in a high z-precision on planar sur-

faces. And, when it comes to actually measuring fine struc-

tures those tend to get filtered out. Simultaneously denoising

techniques can also cause laser-shadow like artifacts, where

smoothing on the edges of objects creates invalid z-values

lying between fore- and background. As such, we propose

two new metrics giving a better understanding of the sensors’

behaviour on fine structures computed on scans of multiple

cylindrical objects, aligned perpendicular to a sensor’s view

axis. The Radius Reconstruction Accuracy (RRA) evaluates

a sensors capability of reconstructing curved surfaces, while

the Continuity of a point cloud counts how many inliers of

an object can be retrieved, depending on its diameter. These

metrics show the smallest structures reliably measurable by

a specific depth sensor.

In the definition of the following metrics we use

μ(x) =
1

N

N∑
i=1

xi (1)

and

σ(x, μx) =

√√√√ 1

N − 1

N∑
i=1

(xi − μx)2 (2)

to express the mean and standard deviation of a vector x
respectively. Each metric is computed on a scan of a specific

object which is referred to as target. A detailed description

of the used targets is given in section IV-B. Due to the

dependency of the results on the surface reflectivity of the

targets, we recommend to repeat the tests on different sets

of materials.

A. Z Precision

The goal of this metric is to evaluate a sensor’s depth

precision, i.e. the dispersion of depth measurements. For

calculating the depth precision we use a flat squared object

of a known side length a as a target, which is aligned with

the reference frame of the sensor. Precision is defined as the

standard deviation of measurements to a known reference

value [20] — in case of z the distances between the actual

depth measurements and the target plane:

ζ = σ(z, μz), (3)

where ζ is the precision, z the set of distances between the

depth measurement values and the target plane, and μz the

mean value of the distances between the depth measurements

and the target plane.

B. Angle Dependent Reflectivity

As many depth sensors rely on a projection pattern their

scan quality heavily depends on it being reflected back to

the image sensor. Thus the ADR is based on the ratio of

valid measurements nvalid obtained using a plane tilted by

the angle φ with respect to the sensors view plane and the

actual number of pixels nideal within this area q:

α =
nvalid

nideal

. (4)

A measurement it considered as valid if it is not NaN and

it’s distance from the plane is below a multiple of ζ.

In case the target cannot cover a sensor’s full field-of-view

we propose to crop q to a fixed size square area with side

length lq , centered around the optical axis of a sensor, so

that the number of visible measurement values remains the

same for the entire range of tested angles between φmin to

φmax. The length lq is defined on a plane with φ = 0 placed

at a sensor’s optimal working distance.

C. Edge Precision

di

Fig. 2. Schematic of the metric III-C evaluation procedure. Measured edge
points of the target are coloured red, measured points which fall into the
target, but aren’t part the edge, are shown in gray and the blue dashed line
represents the target edge lines. di corresponds to the i-th distance between
a measured edge point and the target edge line.

While ζ estimates a sensors precision along its z axis,

the EP is used to evaluate the overall lateral precision of a

sensor in x and y direction. To evaluate the edge precision

we again use a square shaped flat object of a known side

length of lq as a target. We calculate the standard deviation

of the distance between each edge point and the target edge

line, di depicted in Fig. 2.

In addition we introduce a condition that the minimum ra-

tio of the number of registered edge points should be greater



than a threshold tε, as each sensor performs differently in

terms of the amount of gaps in the measurements caused by

e.g. reflections. The introduced ratio is defined by the ratio

of the measured edge points medge
ε and ideal number of edge

points mideal
ε , which is derived from the spatial resolution.

ε = σ(d, μd), if
medge

ε

mideal
ε

> tε, (5)

where ε is the edge precision, nedge
ε is the number of

measured points on the edge (red points in Fig. 2 ), d is the

set of distances between each measurement along the edge,

i.e. edge point, and the target edge line (green arrows) and μd

is the mean of all distances between the measurements and

the target edge. To ensure statistical correctness the target

should be measured from multiple random poses.

D. Spatial Resolution

The SR ρ indicates the planar density of the sensor mea-

surements (i.e. the number of points per cm2) at a distance

d, which is defined as:

ρ = nρ/A, (6)

where nρ is the number of points and A the area. For the

estimation of ρ we scanned a flat surface as a placed target

orthogonal to the sensors optical axis and cut out the the

registered points by a square shaped area with a known edge

length of lρ. To achieve statistically correct results we repeat

this calculation with multiple, randomly placed areas inside

the measured flat surface.

E. Radius Reconstruction Accuracy

ri
rgt a

Fig. 3. RRA Parameters: rgt is the expected radius of the target, ri
corresponds to the distance between each point and the axis a of the target.
Due to the finite precision of the sensors one must also take into account
the points that are located below the axis a but fall into the range of the
z precision. Points considered in the metric are depicted in black while the
ones disregarded - in red.

The RRA is used to evaluate a sensor’s capability to

reconstruct surfaces of different curvatures. The information

used for evaluation is depicted in Fig. 3. For estimation, a

cylindrical object with defined dimensions and position is

used (e.g. a pipe or wire with known location). The points

registered by the sensor should form a cylindrical shape p.

For each point pp,i in this point cloud P p a distance rp,i is

calculated. The calculations of all points are gathered into

the mean radius μp = μ(rp) and standard deviation σp.

Depending on the sensor’s edge precision and the material

of the target, one might notice shadows on the edges of

the target. Since this is not the scope of this metric (this

is covered by the EP in section III-C) we only include the

points located in the upper half of the cylinder (blue line

in Fig. 3). Additionally, due to the precision of the sensor,

the points located under the axis a, within the range of

ζ, are also considered valid for the estimation, as those

points result from a correct registration of the actual target,

but their location might differ due to the z precision. To

estimate the extremes of the reconstruction capabilities (the

smallest measurable radius) we propose to use a set of

various cylindrical objects (e.g. a target consisting of a set

of pipes and/or wires as depicted in Fig. 5). Note that the

cylinders should be solid in case a translucent material is

being used. The numerical results of the metric are expressed

for each cylinder p as:

• Difference between the (known) target radius rp,gt and

estimated mean radius μp of rp:

δp =| rp,gt − μp | (7)

• Standard deviation of the calculated radii:

σp = σ(rp, μp) (8)

As the reconstruction precision can depend on the targets

alignment towards a sensors baseline or projection pattern

we propose to average the results of the RRA for multiple

scans of the target in different orientations.

F. Point Cloud Continuity

a1

a2

1 2 3 ... i-1 i
w

rgt

ovalid oideal

m
a) b)

... ... ... ...

Fig. 4. a) An example of continuous point cloud (upper) and not completely
continuous (bottom). a1 and a2 show the center axes of two cylinders. In
case of the bottom cylinder, slices 2 and i− 1 are empty, resulting (in this
case) in the continuity of 80%. b) Top view (projection) of a section of a
cylinder representing a slice. rgt is a radius of the target cylinder, w is the
width of the slice. ovalid

p represents the registered points, oideal
p corresponds

to the expected points estimated based on the spatial resolution. m refers
to the theoretical expectation of a number of rows of points in the slice.

Depending on the reflectivity and angle of a material and

dimensions of an object the registered point clouds might

show inconsistency in density. This metric is tightly coupled

to the previous one and both should be considered together

for a valid evaluation of the sensor. For this reason we

recommend to the same target as in the RRA. We propose

to evaluate the continuity on a cylindrical object by dividing

it into a set of slices, cut perpendicular to its center axis and

classifying each as empty or non-empty. The sketch of the

approach is depicted in Fig. 4 a). The overall continuity of

the p-th cylinder is calculated as the ratio of the number of

non-empty slices sne
p to the overall number of slices sp:

κp = sne
p/sp (9)



TABLE I

SENSOR SPECIFICATIONS ACCORDING TO VENDORS

Intel RealSense D415

Microsoft Kinect Azure

PMD CamBoard Pico Flexx

IDS Ensenso N35

Roboception rc_visard 65c

IDS Ensenso X36

Photoneo PhoXi 3D Scanner M

Zivid One Plus M

Sensor Technology Active IR ToF ToF SL Active IR SL SL SL

Acquisition Time [ms] ≥ 11.1 ≥ 33.3 4.8 - 30 ≥ 33.3 40 - 1 430 ≥ 200 250 - 2 500 ≥ 80

FOV [°]
H 65.0 75.0 62.0 62.8 61.0 46.7 48.8 33.0
V 40.0 65.0 45.0 52.2 48.0 44.5 34.5 25.0

Range [mm]
Min 160 500 100 460 200 700 458 300
Max 10 000 3 860 4 000 3 000 1 000 1 700 1 118 2 000

Optimal - - - 950 300 - 500 1 000 650 600 - 1 600

Color Yes Yes - No Yes No No Yes

Resolution [px]
Visual 1 920×1 080 3 840×2 160 - 1 280×1 024 1 280×960 2 448×2 048 2 064×1 544 1 920×1 200
Depth 1 280× 720 640× 576 224×171 1 280×1 024 1 280×960 2 448×2 048 2 064×1 544 1 920×1 200

Scan Size [Points] 921 600 368 640 38 304 1 310 720 1 228 800 5 013 504 3 186 816 2 304 000

Baseline [mm] 55 32 16 100 65 400 350 137

Ext. Dims. [mm]
width 99 103 68 175 135 460 416 226
height 23 39 17 50 96 65 77 86
depth 20 125.4 7.35 52 75 80 68 165

Weight [g] 72 440 9 650 680 1 700 950 2 000

HW. Interface
Data USB-C 3.1 USB-C 3.0 USB 2.0/3.0 Ethernet Ethernet Ethernet Ethernet USB-B 3.0

Power USB-C 3.1 USB USB 2.0/3.0 12-24 V /
PoE

18-30 V
M12A

24 V 24 V-M12A
/ PoE

24 V-M12-5

Mounting 1/4”-20 UNC 1/4”-20 UNC - 4 x M4 M3 /
1/4”-20 UNC

4 x M4 M4 / M8 /
3/8”-16 UNC

M6 /
1/4”-20 UNC

Price Range Entry level Entry level Entry level Medium Medium High-end High-end High-end

For consistent comparison across the sensors we propose a

universal approach for defining slice sizes and classification

of empty and non-empty slices. The length of the slice is

based on the SR of the sensor (section III-D). For simplicity

we assume that the points are distributed orderly in the point

cloud and equally along x and y direction forming a square

grid, while the size of the grid cell is sensor dependent. We

define a slice as a section of the point cloud with a width of

m points in the grid, as depicted in Fig. 4 b). The drawing

shows the ideal points in case the sensor would return a valid

depth value for every pixel on the target (grey) and the actual

ones (black). The disproportion is caused by the combination

of the material’s reflectivity and the curvature of the object’s

surface. The theoretical number of points oideal
p depends on

the SR, ρ and the dimensions of the slice (w and rp,gt):

oideal
p = 2rp,gt · w · ρ. (10)

The slice is defined as non-empty if the ratio of the number

of registered points ovalid
p is bigger than a threshold t, so that

for a number of i slices we have:

sne
p =

∑
i

⎧⎨
⎩
1,

ovalid
p,i

oideal
p

> t

0, otherwise
(11)

IV. EXPERIMENTAL SETUP

A. Tested Sensors

We used the metrics above to benchmark eight depth

sensors from three different cost rages: 1) Intel RealSense

D415 [21], 2) Microsoft Kinect Azure [22], 3) PMD Cam-

board pico flexx [23], 4) Ensenso N35-602-16-BL [24],

5) rc_visard 65c [25], 6) Ensenso X36-5CP-8/16/1000-

400/1800 [26], 8) PhoXi 3D Scanner M [27] and 9) Zivid

One+ M [28]. All key specifications of the sensors can be

found in Table I. The tested rc_vizard 65c camera comes with

an external random dot projector which has to be mounted on

top of the camera and is not included in the given weight and

dimensions. It is worth mentioning that the Intel RealSense

D415, rc_visard 65c and PhoXi 3D Scanner M support on-

board processing of raw data. Contrary, both Ensenso models

as well as the Zivid One+ M are only supported by PCs with

selected NVidia GPUs.

If possible we disabled all of the sensors integrated pre-

processing functions.

B. Targets and Procedure

For the evaluation of the sensors by the z precision and

ADR metrics flat square shaped targets were used depicted

in Fig. 1. The targets consist of 50 cm × 50 cm sheets and

are fixed with screws to a 15mm thick wooden board to

ensure flatness. For the z precision the targets were manually

positioned in the center of the optical axis for each sensor

to ensure best quality and scanned at nine different working

distances ±200mm around optimal distance with a step of

50mm. Finally, for evaluation an optimal plane model was

fitted to the registered point clouds and aligned with the

reference frame. Afterwards the standard deviation ζ between

the fitted plane and registered points was calculated.

For ADR we scanned the targets at 10 different angles

from 0° − 45°, with a step of 5°, and with the target center

placed at optimal distance. The side length of the cropped



 0.25  0.5  1.0  2.0  3.0  4.0  5.0  8.0  10.0  12.0  18.0
Wire diameters
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20.0

Fig. 5. Example of evaluation targets. For the experiments the same five materials of the cylinders were used as for the background. All measures are in
mm. Wires of 1 mm diameter and below were wrapped around a screw on the outside of the frame to apply tension.

TABLE II

SPATIAL RESOLUTION ρ AND VISIBLE AREA AT OPTIMAL MEASURING DISTANCE

Intel RealSense D415

Microsoft Kinect Azure

PMD CamBoard Pico Flexx

IDS Ensenso N35

Roboception rc_visard 65c

IDS Ensenso X36

Photoneo PhoXi 3D Scanner M

Zivid One Plus M

Measuring Distance [mm] 700* 750* 700* 950 600 1 000 650 800
Spatial Resolution [px/cm2] 170 201 10 131 371 565 1 005 1 117
Visible Area [mm] 982×552 451×406 708×541 1 118×895 665×498 1 030×862 651×487 574×359

*For sensors without vendor specifications of the optimal measuring distance we used the smallest distance at which the target, used in metric III-E and III-F, was fully visible.
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ε
[m

m
]

Edge precision

Fig. 6. Results of metric EP. Colors are the same as in Fig. 7.

square area was set to lq = 200mm. The points inside the

cropped area define nvalid in Eq. 4.

To evaluate the sensors EP a square shaped flat matt steel

sheet of 100 × 100 × 5mm was used and scanned at 10

random poses at each sensors individual optimal distance.

The threshold for the minimum ratio of the number of edge

points was set to tε > 50%. After extracting the target

from the measurement data by using 3ζ as a parameter for

plane fitting, the extracted target points were aligned with the

mathematical model of the target. In order to ensure that all

the points are registered by each sensor, a diffusely reflecting

flat plastics surface was used to calculate the sensors SR

which covered the entire scanning area of each sensor. The

side length of the cropped area was set to lρ = 100mm.

To ensure statistical correctness over the entire field of view

we repeated the procedure for ten random positions of the

cropped area.

For the evaluation of the sensors with respect to RRA

and continuity a set of targets as depicted in Fig. 5 was

used. Note that the thinnest cylindrical object should not

be detectable by any tested sensor in order to ensure each

sensors measuring limits are determined. The targets were

placed on different backgrounds to simulate different condi-

tions, the resulting numerical outcomes were merged from

different combinations of background materials and targets.

The threshold for the percentage of points to consider a slice

to be non-empty (Eq. 11) was set to t = 50% and the number

of rows for slice size to m = 5. For each sensor the target

was placed in the optimal distance to ensure the best possible

quality. To ensure proper estimation of reference axes, each

point cloud was aligned with a ground truth point cloud

(obtained from a CAD model) to allow proper estimation

of the reference axes a1 to a11.

We used multiple sets of targets made of different ma-

terials, selected to demonstrate the limitations of current

state-of-the-art depth sensors. As first tests indicated that

matt materials — even when colored black — oppose very

low difficulties to the sensors, we focused on more chal-

lenging reflective and/or transparent materials. We chose five

materials, most commonly used in industry according to [29]:

matt, natural POM plastics, brushed and polished stainless

steel, copper and a combination of bars made of acrylic

glass with optical fiber strings for the lower diameters. Plain

sheets, bars/pipes and wires of all those materials can be

bought precisely manufactured off the shelf, allowing easy

reproduction of the targets.

We used an additional target composed of pipes of all

used materials to configure the optimal exposure settings for

each sensor. These settings, as well as the light conditions in

our laboratory were kept constant during for all of following

experiments

V. RESULTS

Our results of the z precision metric show how different

materials influence the depth precision ζ of a sensor (Fig. 7).

More reflective, i.e. shiny, materials decrease the depth

precision. We did not include plots for our tests on acrylic

glass, as all sensors looked right through it, retrieving either

depth values of the scene’s background or no data at all, thus

making a detailed evaluation impossible.

In the results (Fig. 8) of metric ADP it is clearly depicted

that with the increase of φ, the ratio α of scanned points
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Fig. 7. Results of the z precision metric on four different materials.
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Fig. 8. ADR on four different materials. Colors are the same as in Fig. 7.
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Fig. 9. Results of RRA and continuity for different materials of the cylinder. In each case the top plot shows the results of RRA, the middle line of
each bar corresponds to the estimated difference δp, while the bars represent the standard deviation of radius σp. The bottom plots shows the cylinder
continuity. All colors are the same as in Fig 7. If the continuity drops below 30% (marked red), the corresponding radius results are not depicted as the
noise influence is too high.



decreases. The decrease is even greater for more reflective

surfaces.
Table II shows the density of each sensors measurements

by SR at each sensor’s optimal distance. The comparison of

the results calculated with metric EP are depicted in Fig. 6.

While the results of SR and EP are generally correlated the

Ensenso X36 shows significantly better results than what we

expected from its SR.
The results of the metrics RRA and continuity (Fig. 9)

show that the minimum diameter of the objects that the

sensors are able to detect is significantly larger than the actual

z precision or SR of a sensor. Additionally, with the decrease

of the pipes diameter both the δp and σp increase resulting

in lower accuracy for tiny objects. It also becomes evident is

that the continuity of registered point clouds highly depends

on both the type of material and the diameter of the pipe.

Again, the transparent targets made from acrylic glass were

invisible to all sensors.

VI. CONCLUSIONS

This paper provided the evaluation of different depth

sensors available on the market from various quality and cost

ranges. With the introduced metrics we were able to perform

quantitative and qualitative comparison of XYZ sensors’

data and performance on different targets and materials. We

believe the proposed metrics can be used in the future for

the evaluation of other sensors and we expect the results to

be relevant for selection of sensors for both industrial and

scientific applications.
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