
Scalable Reinforcement Learning Policies for Multi-Agent Control

Christopher D. Hsu, Heejin Jeong, George J. Pappas, and Pratik Chaudhari

Abstract—We develop a Multi-Agent Reinforcement Learning
(MARL) method to learn scalable control policies for target
tracking. Our method can handle an arbitrary number of
pursuers and targets; we show results for tasks consisting up
to 1000 pursuers tracking 1000 targets. We use a decentralized,
partially-observable Markov Decision Process framework to
model pursuers as agents receiving partial observations (range
and bearing) about targets which move using fixed, unknown
policies. An attention mechanism is used to parameterize the
value function of the agents; this mechanism allows us to handle
an arbitrary number of targets. Entropy-regularized off-policy
RL methods are used to train a stochastic policy, and we discuss
how it enables a hedging behavior between pursuers that leads to
a weak form of cooperation in spite of completely decentralized
control execution. We further develop a masking heuristic that
allows training on smaller problems with few pursuers-targets
and execution on much larger problems. Thorough simulation
experiments, ablation studies, and comparisons to state of the art
algorithms are performed to study the scalability of the approach
and robustness of performance to varying numbers of agents and
targets.

I. INTRODUCTION

This paper studies a multi-agent control problem where a
team of pursuers tracks multiple targets. This problem has
a wide variety of applications that range from defense [1],
[2], search and rescue [3], to environmental monitoring [4].

Figure 1: Multi-agent pursuer,
multi-target tracking task: a team
of blue agents with limited range
and bearing sensing (blue cones)
track red targets; the belief of target
states, shown in green, is computed
using the observation history of the
targets.

Our work is motivated by
the following challenges in
this problem. First, the num-
ber of targets, or even the
number of pursuers may not
be known a priori. In partic-
ular, for learning-based ap-
proaches which the present
paper focuses on, the num-
ber of agents at deployment
can be different (typically
larger) than that at training
time. Second, control po-
lices should ideally be decen-
tralized to enable execution
without communication overheads and latency. However, a
trade-off in this setting is that it is difficult to design con-
trollers that can benefit from cooperative strategies to improve
performance. Our approach to resolving these challenges is
based on the following key ideas.
1. Off-policy Reinforcement Learning for multi-agent con-
trol problems. We model pursuers as agents that observe the
distance and bearing of targets within their sensing radius;
their goal is to localize target states while targets follow a
fixed, but unknown policy. We use entropy-regularized off-
policy reinforcement learning (RL) to learn the pursuers’ value
function which aims to minimize the uncertainty of the targets’

Department of Electrical & Systems Engineering and the GRASP Lab-
oratory at the University of Pennsylvania. chsu8@seas.upenn.edu, hee-
jinj@alumni.upenn.edu, pappasg@seas.upenn.edu, pratikac@seas.upenn.edu

The interested reader can find the implementation at https://github.com/
christopher-hsu/scalableMARL

states maintained by the pursuers’ belief system. For the large-
scale multi-agent problems we are interested in, continuous-
control policies are challenging to learn. Therefore, we have
the pursuers choose actions from a discrete set of motion
primitives; our experiments indicate that discrete actions are
enough to learn performant policies.
2. Building policies that can handle an arbitrary number
of pursuer agents and targets. Each pursuer follows a control
policy with the goal of maintaining a Gaussian belief distri-
bution for each target; pursuers receive noisy measurements
about target locations when targets are within its sensing radius.
Given this setting, it is desirable for the RL-based policy to not
be limited by a specific number of targets or pursuer agents.
We achieve this by parameterizing a value function using a
self-attention-based neural architecture and sharing it amongst
agents. This architecture has two powerful properties: (i) it
creates a permutation-invariant embedding of the input state-
vector (the beliefs) which makes the value function invariant to
the ordering of the targets in the pursuer’s vicinity, and (ii) it
can handle an input vector of an arbitrary size, which provides
the ability of deploying the trained policy on larger problems,
with many more targets. Since execution is decentralized across
pursuers, the approach is naturally deployable with different
numbers of pursuer agents. Furthermore, our approach can
seamlessly handle tasks where the number of agents or targets
changes during deployment.
3. Using stochastic policies to obtain a weak form of cooper-
ation. Centralized planning/execution and communication are
bottlenecks for cooperation in large-scale multi-agent problems.
We develop an effective workaround for this issue by training
a stochastic RL policy in centralized fashion but executing it
in decentralized fashion; neither local observations nor control
actions are shared amongst pursuers during deployment. This
paradigm forces multiple pursuers to hedge their control actions.
For example, two pursuers have two targets in their vicinity,
since the policy is trained to minimize the average uncertainty
across all targets, instead of both non-communicating pursuers
heading towards the closest target, entropic regularization in
the policy encourages them to also seek the further target with
a small probability. This weak, but extremely useful, form of
cooperation improves tracking performance as compared to
deterministic policies.
4. Heuristics for Scalability. Training large multi-agent
policies is difficult: we observe that even state of the art sample-
efficient off-policy RL algorithms fail to learn performant
policies in the MARL setting. We develop a heuristic that
takes a policy trained on a smaller problem, say 4 agents
and 4 targets, and executes this policy on a larger problem
by masking far away targets. We show that this masking is
particularly effective; we can execute policies trained on the
smaller problem, with minimal degradation, on problems as
large as 1000 pursuers tracking 1000 targets. This heuristic
allows us to address a dramatic distribution shift in the number
of targets: it essentially scales down the large and complex
observation space at test time into something that is close to

ar
X

iv
:2

01
1.

08
05

5v
4

 [
cs

.M
A

]
 1

0
N

ov
 2

02
1

mailto:chsu8@seas.upenn.edu
mailto:heejinj@alumni.upenn.edu
mailto:heejinj@alumni.upenn.edu
mailto:pappasg@seas.upenn.edu
mailto:pratikac@seas.upenn.edu
https://github.com/christopher-hsu/scalableMARL
https://github.com/christopher-hsu/scalableMARL

what the pursuer policy was trained for. Experiments show that
this heuristic performs much better than state of the art MARL
algorithms for large problems.

II. PROBLEM FORMULATION

Consider the multi-agent multi-target setup where the goal of
a team of N homogeneous pursuers is to acquire information
about M homogeneous targets. The ith agent with state xit ∈
R2 × SO(2), and the jth target with state yjt ∈ R2 × SO(2),
follow a discrete-time dynamical model. Given the initial state
for the pursuer xi0 ∈ X , an initial target state yj0 and a horizon
T , the pursuer agent chooses control actions uit to maximize the
mutual information between yjt and the measurement history
denoted by z1:t. Mutual information between the ith pursuer and
the jth target I(yjt , z1:t) = KL

(
p(yjt , z1:t), p(y

j
t)p(z1:t)

)
is the

Kullback-Leibler (KL) divergence KL(q, p) =
∫

dq log(q/p)
of the joint distribution and the product of the marginals. The
objective for localizing target states is

max
u(·)

N∑
i=1

T∑
t=0

M∑
j=1

I(yjt , z1:t | xi1:t) (1)

such that xit+1 = f(xit, u
i
t), yjt+1 = g(yjt) and zt =

h(xit, y
1
t , . . . , y

M
t) and uit = u(z1:t) for t ∈ {0, T}. The

functions f(·) and g(·) are the dynamical models of the
pursuers and the targets respectively, and h(·) is the observation
model. Note that the measurement history z1:t is shared among
the agents. Further decentralization can occur by performing
distributed information filtering [5].

A. Multi-agent Formulation

We consider the decentralized partially observable multi-
agent setting where pursuers cannot observe the full state of
the environment. Each agent receives observations of targets
in its vicinity. Therefore, the task is defined as a decentralized
partially observable Markov Decision Process (Dec-POMDP)
represented by the tuple, (G,S,Ai,Zi, P,R, γ), where G is a
set of agents, S is a set a states, Ai is a discrete set of actions
for each agent i, Zi is a set of observations for each agent i,
and P,R, γ are the state transition probability kernel, the global
reward, and the discount factor, respectively. In this work, we
consider problems where G, S, and Z can be infinite to account
for scalable teams in a continuous domain. Optimally solving
Dec-POMDPs is a hard combinatorial problem that involves
searching through all the agent’s histories. This process results
in an exponentially growing policy space as the time horizon
increases, making the policy search quickly intractable [6].
The following simplifying assumptions are made to keep the
problem tractable.

1) Partial Observability: In the partially observable setting,
the agent does not have access to the ground truth target states.
As a substitute, the agent maintains a belief on target states and
solves a continuous belief MDP [7]. We denote such a belief
distribution for the jth target as B(yj,t) = p(yj,t|z1:t, x1:t) and
its predicted distribution for the subsequent step as B̄(yj,t+1) =
p(yj,t+1|z1:t, x1:t) [8]. Assuming yt+1 is independent of x1:t,
the optimization problem can be reduced to minimizing the
cumulative differential entropy, H(yt+1|z1:t, x1:t) [9]. When
the belief is Gaussian, B(yj,t) = N (ŷj,t,Σj,t),

H(yt+1|z1:t, x1:t) =
1

2
log
(
(2πe)M det(Σt)

)
(2)

the optimization problem (1) becomes:

min
π

T∑
t=0

log det(Σt) (3)

At each time step t, the agent at state xt, chooses a control
input ut from the policy π, based on the predicted belief of
the target, B̄(yt+1). In order to maximize the objective (1),
the agent receives a measurement zt+1 from the sensor. At
the same time, the true target state transitions from yt −→ yt+1

and if it is observed by the agent, the corresponding belief
distribution is updated with the new measurement. This process
is repeated until the time horizon T . In the case of multiple
agents or multiple targets, at each time step, all agents and
targets will transition before the environment transitions from
t −→ t+ 1.

2) Decentralization: Consider a team of N agents pursuing
M targets where each agent can make control actions inde-
pendently of its team. A tractable solution to this problem
is through the use of the centralized training, decentralized
execution parameter sharing approach [10]. Assuming that
the agents are homogeneous, during centralized training,
agents share the parameters of a single value network and an
experience replay buffer. This formulation reduces the policy
space that the algorithm has to search through because it
optimizes a single, shared policy rather than multiple individual
policies [11]. This approach also mitigates the non-stationarity
issue in multi-agent training by exposing the policy to all of the
agents’ experiences simultaneously [12]. A shared policy also
alleviates computational issues in multi-agent centralized critic
algorithms that suffer from the curse of dimensionality problem
as the number of agents increases [13]. A parameter-shared
policy can be executed in decentralized fashion at test time for
any number of agents.

B. Off-policy Reinforcement Learning
In reinforcement learning (RL), the goal is to learn the action-

value function which is defined as the expected reward obtained
using the policy π, from an initial state x, with control action
a. Off-policy RL is a popular technique to estimate the action-
value function. It minimizes the expectation of the 1-step tem-
poral difference (TD) error. Off-policy methods are named so
because they maintain a dataset D = {(st, at, rt, st+1)}t=0,...

collected using a (behavior) policy and estimate the value
function of the current policy π using this data. We will
parametrize the value function using a deep network with
parameters θ. The optimal parameters θ∗ can be found by
performing stochastic gradient descent to minimize the Huber
loss applied to the TD error. In the sequel, we design a
simulation environment for multi-agent problems which allows
us to study complex multi-agent interactions across diverse
scenarios in the target tracking problem. This simulator is used
to train our off-policy RL methods. We next discuss RL-specific
details of this simulation setup.

1) Observations: In the partially observable target-tracking
task, exact target states are not known to the agents. Each agent
maintains a belief over target states [8], [14] that is updated
using a Kalman filter as new observations about the target are
received. The dynamics of targets is unknown to the tracking
agent, and more importantly, target states are independent of
the agent’s control input. The value function and the control
policy of the ith agent therefore take the predicted belief of
target j at the next time instant t + 1 as the input at time

t. This is neat way to ensure that the RL policy has access
to the target tracking information maintained in the Kalman
filter without having to relearn it from scratch, which would
require a large amount of data. We also transform the belief of
the jth target in agent i’s local frame (ŷ(xi)), this ensures that
there is no distribution shift between observations collected by
different agents. The state is
sj :=

[
ŷ
(xi)
j,r , ŷ

(xi)
j,θ ,

˙̂y
(xi)
j,r ,

˙̂y
(xi)
j,θ , log det Σj , I(yj ∈ O(xt))

]
.

The quantities ŷ(xi)
j,r and ŷ(xi)

j,θ denote polar coordinates of the
mean of target j’s belief. We also use their derivatives as a
part of the state. Target belief covariance, Σj , is represented
with the differential entropy formulation (3). We model agents
with a limited sensing range using the Boolean function I(·): it
returns 1 if the true target state is in the vicinity of the agent,
and zero otherwise. The combined state denoted by st of M
targets is the concatenation of the states of individual targets,
and it is a vector of 6M entries.

We are motivated by the realization that if one were to use
a multi-layer perceptron (MLP) for parameterizing the value
function, the number of targets M would have to be fixed
between training and testing. Further, and this is much more
debilitating, the order in which states of individual targets are
concatenated together would also have to be fixed between
training and testing. Ideally, we would rather train on smaller
problems with few agents where it is easy to gather rich
data from the simulation and execute the same policy on
problems with more agents at test time. We therefore think
of the observations as a set of M elements and design an
embedding of this set as the state for the RL policy, (i) that is
permutation-invariant, i.e., it does not depend upon the order in
which observations are concatenated together, and (ii) that can
handle an arbitrary number of targets. Section III-A discusses
how a self-attention-based architecture is used to achieve these
desiderata.

2) Rewards: We would like to find the optimal policy π∗
that maximizes the cumulative mutual information (1) between
the ith pursuer and the jth target, this amounts to minimizing
the objective (3). We approximate the objective as a discounted
sum by defining the reward as the average uncertainty over
all the targets such that R(st, at) = − 1

M

∑M
j=0 log det(Σjt+1),

resulting in a value function:

V π(s) = −Eπ
[1

M

T−1∑
t=0

M∑
j=0

γt log det(Σjt+1) | s0 = s
]

(4)

Observe that the reward given to each agent depends upon the
performance of all the other agents, this is desirable because
the value function and the policy are shared between agents
and also because doing so makes the policy π∗ responsive to
how the other agents undertaking the same policy are tracking
their respective targets.

3) Discrete Action Space: Continuous-control RL policies
are challenging to learn in multi-agent settings. Our goal is
to understand the multi-agent aspects of the problem and in
order to so, we choose a discrete action space using motion
primitives: A =

{
(v, ω)|v ∈ {0, 0.67, 1.33, 2.0}[m/s], ω ∈

{−π/4, 0, π/4}[rad/s]
}

. This set of actions is rich enough to
lead to performant tracking policies, and yet, it is small enough
for us to be able to learn RL policies for large, challenging
problems.

III. APPROACH

A. Self-Attention-based Model Architecture
We require a policy that can be trained on smaller problems

and executed at test time on larger problems with more targets
in order to improve sample efficiency and alleviate debilitating
restrictions such as requiring specific input ordering [15].
Therefore, for this setting, we think of the observations as
a set of elements that is fed into an embedding (i) that
is permutation-invariant, i.e., the embedding is invariant to
changes in the ordering of observations, and (ii) that can
handle an arbitrary number of elements in the observation
set. In this work, the policy is built with an encoder-decoder
style model architecture as described by DeepSets [16], filled
with self-attention layers [17]. Self-attention layers provide
the desired property of permutation-invariance by highlighting
the actionable information in the observation [18]. The second
property of handling an arbitrary number of elements is taken
care of by the summation in the DeepSets architecture, i.e., any
additional elements are simply part of the linear combination
of the embedding space.

1) Permutation input representations and embeddings of sets:
DeepSets [16] show that a function φ(A) operating on a set A
is invariant to permutation of the elements in A iff it can be
decomposed as φ(A) ≡ ρ(

∑
a∈A ψ(a)) for some functions ψ

and ρ. Both ψ and ρ can be learnt to build invariance and the
summation enables φ(A) to handle sets with varying number
of elements.

2) Attention: The self-attention mechanism [17] is a power-
ful way for the value function to learn to pay attention to parts
of the input that are more relevant to the output. Through the
structure of learning embeddings, attention amounts to mapping
a query, Q, and a set of key, K, value, V pairs to an output.
Structured as a linear combination of V , attention is able to
learn these embeddings by computing the dot product QKT

which measures how compatible they are. The attention module
ω(d
− 1

2
q QKT)V gives more weight to the key that has a large

dot product with the query vector, i.e., the output is computed
as a weighted sum of the values, a measure of the compatibility
between the query and the corresponding key. ω is an activation
function, e.g. softmax, and 1√

dq
is a scaling factor. Finally, the

self-attention module can be improved by considering higher
order interactions of Q and K by projecting the inner product
across multiple sub-spaces, creating the Multi-Head Attention
Block (MAB).

B. Maximum entropy policies
In order to learn a stochastic policy, the maximum entropy-

regularized objective [19] looks to balance maximizing the
expected return and entropy, i.e, to be successful at the task
while acting as randomly as possible. The entropy of the policy
is controlled by a temperature parameter, α, that reflects the
idea that high entropy equates to high temperature and high
randomness and vice versa. The entropy H of a distribution P
over a random variable x is given as:

H(P) = Ex∼P [− logP (x)] (5)
At each time step, the agent gets a bonus reward proportional to
the entropy of the policy. The RL problem can be reformulated
with a maximum entropy objective:

J(π) =

T−1∑
t=0

E(st,at)∼π[r(st, at)− α log π(at|st)] (6)

This objective favors stochastic policies by augmenting the
equation with an expected entropy over the policy. Stochastic
policies have conceptual and practical advantages. First, the
policy is incentivized to explore more widely, while giving up
on unpromising trajectories. Secondly, the policy can capture
multiple modes of optimal behavior, i.e., when there are equally
attractive actions, the policy places an equal probability mass
to each of those actions. Lastly, these stochastic policies have
shown to substantially improve exploration and are therefore
beneficial for cooperative tasks.

C. Details of the off-policy training implementation

We utilize and augment the state-of-the-art off-policy method
Clipped Double Q-Learning [20] to provide the structure in
which we learn the deterministic and stochastic policies. The
original Double Q-Learning algorithm learns two independent
estimates of the true Q value parameterized by neural networks
denoted as Qφ1 and Qφ2 . This framework is able to reduce
overestimation of the Q value by taking the minimum value
of the two independent estimates. The author suggests that
this method provides higher values to states that have lower
variance estimation error, leading to more stable learning. The
double Q-learning update is highlighted below.

Q∗(s, a)←− r + γ min
k=1,2

Qφ′
k
(s′, arg max

a′

∑
k=1,2

Qφk
(s′, a′)) (7)

Double Q-learning learns a deterministic policy due to the
action being chosen by taking the arg max(Q(s, a)). Standard
deterministic policies utilize an ε-greedy exploration schedule
during training.

To learn a stochastic policy, we augment the standard
double Q-learning formulation with an entropy-regularized
objective [21]. This algorithm (see Alg. 1) is denoted as Soft
Double Q-learning and balances the expected return and entropy
during exploration. The soft double Q-learning update is

Q∗(s, a)←− r + γ min
k=1,2

E
a′∼π

[
Qφ′

k
(s′, a′)− α log π(a′|s′)

]
(8)

With a stochastic policy, actions are chosen by sampling from a
multinomial defined by the log softmax of the Q function values.
During exploration, a larger entropy is used to encourage the
policy to sample actions that might not necessarily have the
largest value. This helps the policy learn about less frequented
parts of the state space thereby improving exploration. Other
implementations of maximum entropy objectives have used
fixed or learned schedules to control α in order to promote
exploration vs. exploitation.

D. Algorithm

We adjust the standard single-agent learning algorithm, Soft
Double Q-learning, with the parameter sharing approach [10]
to provide the benefits of centralized training with decentralized
execution for multi-agent learning. In Alg. 1, the addition of
parameter sharing to Soft Double Q-learning can be seen in
the for loop starting in line 8, where we are sampling the
environment with each agent. For each environment step, we
feed each of the agent’s local observations through the shared
networks to produce a unique experience to be stored. Only
when all the agent’s have taken their action with the current
policy, does the full environment transition from t→ t+1. The
second half of the algorithm, starting line 14, updates the value
functions with stochastic gradient descent. We sample from a
replay buffer that includes the experiences from all the agents.
This procedure helps to nullify the non-stationarity problem of

decentrally trained systems. When training is complete, each
of the agents receives a copy of the learned policy that can be
used to execute decentrally.

In order to improve generalization, n number of agents
in the current team and m number of targets are sampled
uniformly randomly during training to create different numbers
of cooperative agents in the team as seen in line 6. This has
two benefits. First, it shows flexibility of the algorithm as n and
m fluctuate during training. Second, it helps sample diverse
training episodes and expands the task space, resulting in a
more generalizable and robust policy.
Algorithm 1 Parameter-Shared Soft Double Q-Learning
1: Initialize value networks Qφ1

, Qφ2
2: Initialize target networks φ′1 ←− φ1, φ′2 ←− φ2
3: Initialize N and M, max number of agents and targets
4: Initialize replay buffer G
5: for each iteration do
6: Randomly sample n ∈ [1, N] and m ∈ [1,M]
7: for each environment step do
8: for i←− 0, 1, . . . n do
9: Observe state st and sample at ∼ π(at|st)

10: Execute ai; observe next state s′i, reward rt
11: Store (si, ai, rt, s

′
i) in replay buffer G

12: end for
13: end for
14: for each update step do
15: Sample mini-batch of N:
16: gt = (s, a, r, s′) ∼ G
17: Compute soft target Q value using 8
18: Perform clipped gradient descent step on
19:

∑
k=1,2 huber(Qφk

(s, a)−Qtarg(s, a))
20: Update target network parameters:
21: φ′k ←− τφk + (1− τ)φ′k
22: end for
23: end for

E. Heuristic Mask
In this paper, the heuristic mask is used during evaluation to

improve scalability of trained policies. At every time step, each
agent’s observation state is masked to expose the k nearest
target beliefs based on its range measurement, ŷj,r.
Algorithm 2 Heuristic Mask for Scalability

for each environment step do
for i←− 0, 1, . . . , n do

st ←− maskk,ŷj,r{st(ŷ1,r, . . . , ŷM,r)}
end for

end for

IV. EXPERIMENTAL VALIDATION

A. Setup
The multi-agent multi-target tracking task results in a highly

stochastic environment. We randomly initialize agent, target,
and belief locations. Targets move about randomly with their
fixed double integrator with Gaussian noise model. The belief
model and the observation model also have noise components,
compounding the randomness of the environment. With this in
mind, to lower training variance and focus on tracking rather
than a search task, we define a restricted random initialization
for target locations and their corresponding beliefs. All the
agents’ positions, x0,...,N , are randomly initialized within the
given map, avoiding other teammates. The targets’ positional
component of y0,...,M are randomly initialized 5-10 meters
away from an uniformly randomly sampled agent. The targets’
initial velocity components are set to 0.0. The Gaussian belief
of the targets’ locations are initialized 0-5 meters away from
their respective target with covariance Σ. Both agents and

targets have a maximum velocity of 2 m/s. The time horizon
T is 200 steps. Finally, each agent has an observation range
of 10m and bearing of π

4 for a total of 25πm2 of coverage.
See [14] for more details of the target tracking environment,
including agent, observation, and target models.

1) Framework: The framework shown in Fig. 2, expands
upon a single agent strategy [8] with the use of parameter
sharing for multiple agents.

Figure 2: Multi-Agent Target Track-
ing Framework. The MARL block is
built of any number of homogeneous
agents with the same dynamics. Each
robot receives a local observation state
of target beliefs from the centrally stored
Kalman Filters. The policy, π, can easily
be exchanged with models such as the
DeepSets self-attention, deterministic and
stochastic models or the MLP model.

2) Evaluation
methodology: In
multi-agent multi-
target domains, the
balance between the
number of agents
and the number of
targets is critical to
the behaviors. We
will train on the
tasks defined by
n ∈ [1, N] agents and
m ∈ [1,M] targets
and evaluate, without
retraining, on other
task spaces with or
without a heuristic
mask. To denote the
difference between
policies, for example, a deterministic self-attention-based
policy trained on the task space of [1, 4] agents and [1, 4]
targets will be "det-4a4t" and a stochastic self-attention-based
policy trained on the same task space will be "stoch-4a4t".
When evaluating policies on larger task spaces, we also scale
the map to fit the density of the originally trained 4a4t task
where the empty map has an area of 2500m2. With each
agent able to observe an area of 25πm2, we maintain the
same density when scaling to 8, 20, 100, and 1000 agents.
It is important in RL to train the policies on multiple seeds
in order to reduce the possible variance caused by random
initialization [22]. We train each policy on multiple random
seeds and evaluate on 50 episodes per task for 5 seeds.

3) Assumptions: In the current framework, we designate a
centrally stored Kalman filter that each of the agents has access
to and can update. We assume that the data association problem
is solved, i.e. if an agent observes a target, the corresponding
belief of that target is updated correctly. When a different
agent queries the central Kalman filter, it receives the updated
information from the rest of the agents. Although this part of
the system is centralized, local observations and control actions
are not shared amongst the team. Therefore, this formulation
allows for an easy extension to a distributed Kalman filtering
paradigm [5] for further decentralization.

Targets move around with a double integrator model with
Gaussian noise and an additional noise term when faced with
obstacles, i.e. the walls of the map. The Kalman filter is updated
with the double integrator, however, agents are unaware of this
extra noise term. Therefore, when targets bounce off the walls,
belief updates become considerably inaccurate leading to a
more challenging task.

B. Baseline methods and experiments
Greedy heuristic. Our first baseline is a greedy heuristic mask

that reduces the multi-agent multi-target tracking problem into

a single-agent single-target problem; each agent’s observation
state is masked to only have the nearest target’s belief. This is
a simple baseline and comparisons against it are a sanity check.
With the greedy heuristic, note that based on the random initial
locations of the targets, two agents can greedily track the same
target, leaving targets free. This phenomenon can be seen in
the variance of the middle sized tasks in Fig. 3. The greedy
heuristic opens up the possibility for performance improvement.
However, we observe in Fig. 3 that even this baseline is better
than state-of-the-art graph-based policy gradient (GPG [23]).
Note that these authors employ an idea that has a similar
setting: training a graph CNN on a smaller task and evaluating
the policy on larger tasks without retraining.

Figure 3: Task labels, "1a1t" and "1ka1kt", denote the task of the
environment where one agent tracks one target and 1000 agents
track 1000 targets, respectively. In blue, the trained stochastic-4a4t
policy, during evaluation, is masked with the greedy heuristic of
k = 1, where k is the number of targets to consider. It can be
seen that the greedy heuristic baseline does a very good job of
extrapolating to tasks outside of the original training space without
much performance degradation by reducing the task to a single-agent
single target tracking environment. In red, a state-of-the-art graph
policy gradient (GPG) algorithm [23] seemingly scales, but suffers in
performance. (evaluation on 50 episodes/task for 5 seeds).

Performance of the graph policy gradient (GPG) algorithm.
In Fig. 3, GPG is not evaluated on the 1a1t task as with 1 agent
there is no graph to define. Although GPG seemingly scales,
it consistently falls into a local optima even when trained on
multiple seeds and training lengths. We surmise that GPG,
designed for the fully observable setting, cannot handle policy
learning in a partially observable setting where training is less
stable.

Multi-layer perceptron (MLP). We train MLP policies with
parameter sharing between pursuer agents using double Q-
learning. A different MLP policy is needed depending on the
number of targets (1-4), however, parameter sharing allows for
a varying number of agents. Baseline performance is shown
in Fig. 4. As expected, when the number of targets increase,
the expected average return received decreases. Intuitively, this
result stems from the fact that even if the uncertainty of 3 of
4 targets is low, a high uncertainty of the last target strongly
affects the overall averaged reward.

C. Main results
1) Deterministic vs Stochastic Policies: In real-time, requir-

ing the knowledge of the number of targets at initialization
is a severe limitation, therefore, we present deterministic and
stochastic self-attention-based policies. Both policies are trained
with parameter sharing while the former uses double Q-learning
and the latter uses soft double Q-learning. This architecture
has the property to allow for changes in number of agents
or targets during evaluation. We train a deterministic policy

Figure 4: Online returns of 4 different MLP-based policies based on
the number of targets, averaged across 5 seeds. The curve associated
with "1a1t" is the cumulative sum of returns collected on an single-
agent single-target task. Teams are more successful with more agents
(color shades) and suffer when tracking more targets (color-coded).

and a stochastic policy that each generalizes over the 16 tasks
of n ∈ [1, 4] agents and m ∈ [1, 4] targets in the multi-agent
multi-target tracking environment.

From Fig. 5 and Fig. 6, we surmise that the self-attention-
based policy that takes deterministic actions, results in a policy
that can be extremely greedy and sub-optimal; each agent
acting individually acquiring short term rewards rather than as
a cooperative team gaining long term high rewards. Although
it outperforms the 4 MLP-based policies, it under performs
against the greedy heuristic baseline which has an intrinsic
sense of target assignment. Therefore, we also developed a
stochastic self-attention-based policy which outperforms the
greedy heuristic across all tasks with much lower variance. This
phenomenon occurs due to the policy acting more intelligently
to minimize uncertainty of all targets and forgoes short term
rewards for long term higher team rewards, whereas the greedy
heuristic policy focuses on the closest target (highly dependent
on initializations) and allows the uncertainty of the rest of the
targets to explode. We observe a weak form of cooperation
from the stochastic policy as it is able to hedge it control
actions while robustly tracking across different tasks. Stochastic
policies separate itself from the rest of the policies in the more
difficult task space of n < m and in simpler parts of the task
space, it performs the optimal policy. Episodic visualization
can be seen in Fig. 7.

Figure 5: Comparing the architecturally different policies when n ≤
m. The stochastic policy (stoch-4a4t) outperforms all other policies
with minimal variance. (evaluation on 50 episodes/task for 5 seeds).

In Fig. 7, we illustrate the stochastic policy in a 1 agent
tracking 3 targets scenario. The single agent acts intelligently,
rotating its sensing region amongst the targets to maintain a
strong belief. The greedy heuristic policy (not shown) would
focus on the closest target in question and maintain constant
observation as it only considers the one-on-one scenario,
leaving the other two targets to gain large uncertainties.

Figure 6: Contour plots of the deterministic and stochastic policy
trained and evaluated on n ∈ [1, 4] agents tracking m ∈ [1, 4] targets.
The returns are normalized against the greedy heuristic baseline and
averaged across the seeds evaluated on 50 episodes/task. Lines on the
red spectrum denote returns greater than the baseline (white, 0.0) while
blue is less than. Stochastic policies stand out against the baseline in
the most difficult parts of the task space.

Figure 7: Example evaluation episode of the stochastic policy
maintaining low uncertainty of the 3 targets.

D. Ablation experiments

1) Scalability: We study in Fig. 8 whether it would be
better to retrain policies on the larger task space or simply
allow our stochastic policy to extrapolate with either the full
observation state or a heuristic mask. We compare a stochastic
policy trained on the task space of n ∈ [1, 4] and m ∈ [1, 4]
denoted as “4a4t”, a stochastic policy trained on n ∈ [1, 8]
and m ∈ [1, 8] denoted as “8a8t”, and a stochastic policy
trained on n ∈ [1, 20] and m ∈ [1, 20] denoted as “20a20t”.
These trained policies are then evaluated, without retraining,
on the larger task spaces with either the full observation state
or a heuristically masked state, e.g. "-evalk1" (greedy heuristic,
k = 1) or "-evalk4" (a mask of k = 4).

Figure 8: Comparing scalability of policies trained on larger task
spaces. Heuristically masked policies (-evalk) outperform their un-
masked policies. Policies evaluated with masks of k = 4 outperform
the mask of k = 1. Training on smaller task spaces leads to more
stable training and higher average returns. Heuristic masking further
improves scalability. (evaluation on 50 episodes/task for 5 seeds).

As we saw previously, there are pros and cons of using
the greedy heuristic (4a4t-evalk1): the former gives agents a
specific objective while the latter precludes the opportunity for
better performance compared to one-on-one tracking. Fig. 8
shows that applying a k = 4 heuristic on the stochastic 4a4t
and 8a8t policies outperforms all other policies as they balance

limiting the agent’s objectives and utilizing the stochasticity
of the policy as seen in Fig. 5. When scaling to larger spaces,
a heuristic mask handles the distribution shift enacted by the
large number of targets by allowing the policy to return back
to the distribution space that it was originally trained within, a
space with high performance.

Evaluating policies with the full observation state results
in a degradation in performance as the task space expands
past their training space. Policies 4a4t and 8a8t marginally
outperform the greedy heuristic baseline for tasks within the
training space but degrade outside of it. Meanwhile, the 20a20t
policy does not work well even on tasks inside its training
space. This result demonstrates the challenges with training
MARL systems; the task space here is 25 times larger that of
4a4t (400 tasks vs. 16 tasks). The larger task space policies
were trained to convergence, however, the local-optimum that
they settle in is not optimal. We conclude that training on larger
task spaces in MARL is difficult, and simply using a heuristic
on a well-trained 4a4t policy provides better performance than
directly training large MARL systems.

2) Cooperative behavior due to the stochastic policy: In Fig.
9, we look to display the cooperative-like behaviors that emerge
from stochastic policies and compare it with the deterministic
policy. We set up 2a2t and 4a4t scenarios where the team of
agents is initialized towards the bottom of the map and they
must search to observe all the targets. The targets are initialized
in 10× 10m2 boxes with increasingly further ranges to force
the agents to cooperate.

Figure 9: Deterministic and stochastic policies were evaluated on
tasks where the targets were randomly initialized somewhere in the
corresponding black box. Out of 50 episodes, how many times are
the agents able to observe all the targets in the map? Results of the
corresponding policy and task are shown on the graph. Not shown,
the greedy policy in both tasks received a score of 0.0.

The stochastic policies learn something more significant
than just tracking the closest target. Not only are able to find
the further targets, they are able to self delegate which target
is assigned to whom, confirming our intuition that they have
some sense of cooperation. Unsuccessful episodes occurred
when the stochastic policy agents take too long. The target has
already moved too far away from the belief for the agent to
observe it and the agent is forced to randomly search.

3) GRU vs KF: So why did we choose to use a Kalman
filter (KF) to update target beliefs? Why not make the policy
a fully neural network based model? We evaluate a policy,
shown in Fig. 10, that uses a Gated Recurrent Unit (GRU) to
maintain the belief statistics of the target. The output of the
GRU to the stochastic policy is the mean and covariance of the
target beliefs. The policy should learn to use those statistics
in order to predict the locations of the targets and therefore
perform just as well as previously shown policies.

The lack of performance can be hypothesized as the
following. In comparison with the GRU, the KF formulation
maintains a statistic for each target. The agent can simply query
the associated KF for the target beliefs. On the other hand,

Figure 10: Comparison of policies utilizing a KF vs a GRU; the
GRU under performs the policies utilizing a KF and self-attention
network. (evaluation on 50 episodes/task for 5 seeds).

the single GRU must maintain statistics for all the targets. If
desired, it is possible to have a GRU for each target in order
to mimic the KF formulation. However, during training, as the
number of targets increase, there is an ever growing parameter
space to have to learn, reducing the power of the scalability in
our formulation. With a KF, there is nothing to learn and with
more targets, it is simply a matter of storing the additional
belief statistics.

V. RELATED WORK

Multi-agent control for pursuit-evasion has seen a wide range
of perspectives, see for instance sampling-based algorithms
for few agents which allow for real-time implementation [24].
Analytical solutions for general dynamical systems are difficult
to compute, except for special cases, e.g., the homicidal
chauffeur [25]. In pursuit-evasion problems, perimeter defense
and multi-agent settings have been handled by decomposing the
task into two-player games and reducing the defense strategy
to an assignment problem [26]. More explicit cooperation can
be performed by decomposing into smaller local-games played
by a subset of agents [27].

Information acquisition methods that build control policies
to minimize the entropy in the estimation task are close to our
methods; [9], [28]. These works develop non-myopic control
policies by minimizing the uncertainty in the target state,
conditioned on past measurements. Decentralized policies can
be obtained in MARL using independent Q-functions [11], but
training these policies is challenging due to non-stationarity.
Centralized policies alleviate non-stationarity, but have to pay
the cost of exponentially large multi-agent action-spaces [13],
[29]. Works like QMIX [30], and QTRAN [31], formulate a
centralized value representation to approximate the collection
of individual action-values obtained by each agent during
training. Wider literature using graphs networks [23], [32] and
permutation invariant structures [33] provides similar claims of
scalability and cooperation. However, these works evaluate their
algorithms in fully observable settings where training is stable.
We observe that when [23] is executed with partial observations,
it is difficult to learn a performant policy. There are also
directions that focus on emergent behaviors in multi-agent
systems to build cooperative and competitive strategies [34],
identify emergent roles [35], coordination and emergent use
of tools [36].

Similar to us, [37] utilized an attention network in an
MARL framework to get permutation invariance. However,
they used attention in a centralized critic which forces the
input space to scale linearly with the number of agents
whereas ours is independent of that dimension. [38] uses a
structured prediction approach to assign agents to tasks. The
assignment policy is well learned on small problem instances

and evaluated on problems with more agents; they show results
for about 80 agents. Other strategies for task allocation in
swarm intelligence with multi-agent and multi-target tracking
have been also investigated [39], [40]. Another strategy uses a
curriculum learning paradigm to scale MARL [41]. Through an
evolutionary approach, they are able to introduce more agents
into the systems and select the policies that best adapt; they
show results with 24 agents.

VI. CONCLUSIONS

We presented an off-policy reinforcement learning method
for multi-agent target tracking and demonstrated that our
decentralized policy is able to scale to an arbitrary number of
agents, e.g., up to 1000 pursuers tracking 1000 targets. The key
innovation of this approach it to train on a lower dimensional
task, e.g., with fewer agents, and execute—without retraining—
on larger tasks. Architectural innovations in the policy such as
self-attention layers and a masking heuristic at test time enable
this and demonstrate how off-policy RL methods can be used
for large-scale multi-agent problems.

The central challenge in multi-agent problems lies in the
fact that agents need to take decentralized control decisions to
work within the constraints of communication latency and yet
accomplish some form of cooperation or information sharing
to be able to track multiple targets. This paper explores a
heuristic to strike such a tradeoff between communication
and cooperation. It trains a stochastic policy, as opposed to
a deterministic policy, that helps agents hedge their control
actions at test time when multiple targets are in the vicinity.
This is a very weak form of cooperation, but it comes at zero
communication cost. This heuristic is not well-suited for more
challenging scenarios which fundamentally require cooperative
tracking using multiple agents, e.g., targets whose uncertainty
increases quickly. Such environments are good avenues for
further exploration.

REFERENCES

[1] R. Wise and R. Rysdyk, UAV Coordination for Autonomous Target
Tracking. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.
2006-6453

[2] A. R. Hilal, “An intelligent sensor management framework for pervasive
surveillance,” 2013.

[3] V. Kumar, D. Rus, and S. Singh, “Robot and sensor networks for first
responders,” IEEE Pervasive Computing, vol. 3, no. 4, p. 24–33, Oct.
2004. [Online]. Available: https://doi.org/10.1109/MPRV.2004.17

[4] M. Dunbabin and L. Marques, “Robots for environmental monitoring:
Significant advancements and applications,” IEEE Robotics and
Automation Magazine, vol. 19, no. 1, pp. 24–39, 2012. [Online].
Available: https://eprints.qut.edu.au/63029/

[5] B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas,
“Anytime planning for decentralized multirobot active information
gathering,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.
1025–1032, 2018.

[6] J. Dibangoye, C. Amato, O. Buffet, and F. Charpillet, “Optimally solving
dec-pomdps as continuous-state mdps,” vol. 55, 08 2013.

[7] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable markov processes over a finite horizon,” Operations
Research, vol. 21, no. 5, pp. 1071–1088, 1973. [Online]. Available:
https://doi.org/10.1287/opre.21.5.1071

[8] H. Jeong, B. Schlotfeldt, H. Hassani, M. Morari, D. D. Lee, and G. J.
Pappas, “Learning q-network for active information acquisition,” 2019.

[9] N. Atanasov, J. L. Ny, K. Daniilidis, and G. J. Pappas, “Information
acquisition with sensing robots: Algorithms and error bounds,” 2013.

[10] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous Agents and
Multiagent Systems, G. Sukthankar and J. A. Rodriguez-Aguilar, Eds.
Cham: Springer International Publishing, 2017, pp. 66–83.

[11] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative
agents,” in In Proceedings of the Tenth International Conference on
Machine Learning. Morgan Kaufmann, 1993, pp. 330–337.

[12] J. K. Terry, N. Grammel, A. Hari, L. Santos, and B. Black, “Revisiting
parameter sharing in multi-agent deep reinforcement learning,” 2020.

[13] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” 2020.

[14] H. Jeong, H. Hassani, M. Morari, D. D. Lee, and G. J. Pappas, “Learning
to track dynamic targets in partially known environments,” 2020.

[15] J. Mern, D. Sadigh, and M. J. Kochenderfer, “Exchangeable input
representations for reinforcement learning,” in 2020 American Control
Conference (ACC), 2020, pp. 3971–3976.

[16] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and
A. Smola, “Deep sets,” 2017.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[18] S. Soatto, “Actionable information in vision,” in 2009 IEEE 12th
International Conference on Computer Vision, 2009, pp. 2138–2145.

[19] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy
inverse reinforcement learning,” 2008.

[20] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” 2018.

[21] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018.

[22] H. Mania, A. Guy, and B. Recht, “Simple random search provides a
competitive approach to reinforcement learning,” 03 2018.

[23] A. Khan, E. Tolstaya, A. Ribeiro, and V. Kumar, “Graph policy gradients
for large scale robot control,” 2019.

[24] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for a class of pursuit-evasion games,” vol. 68, 01 2010, pp. 71–87.

[25] R. Isaacs, Differential Games I: Introduction. Santa Monica, CA: RAND
Corporation, 1954.

[26] M. Chen, Z. Zhou, and C. J. Tomlin, “Multiplayer reach-avoid games via
low dimensional solutions and maximum matching,” in 2014 American
Control Conference, 2014, pp. 1444–1449.

[27] D. Shishika, J. Paulos, M. R. Dorothy, M. Ani Hsieh, and V. Kumar,
“Team composition for perimeter defense with patrollers and defenders,”
in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019,
pp. 7325–7332.

[28] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized ac-
tive information acquisition: Theory and application to multi-robot slam,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 4775–4782.

[29] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” 2017.

[30] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” 2018.

[31] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” 2019.

[32] S. Li, J. K. Gupta, P. Morales, R. Allen, and M. J. Kochenderfer, “Deep
implicit coordination graphs for multi-agent reinforcement learning,”
2021.

[33] I.-J. Liu, R. A. Yeh, and A. G. Schwing, “Pic: Permutation invariant
critic for multi-agent deep reinforcement learning,” 2019.

[34] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” 2015.

[35] T. Wang, H. Dong, V. Lesser, and C. Zhang, “Roma: Multi-agent
reinforcement learning with emergent roles,” 2020.

[36] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent tool use from multi-agent autocurricula,”
2020.

[37] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” 2019.

[38] N. Carion, G. Synnaeve, A. Lazaric, and N. Usunier, “A structured predic-
tion approach for generalization in cooperative multi-agent reinforcement
learning,” 2019.

[39] K. H. Low, W. K. Leow, and M. Jr, “Task allocation via self-organizing
swarm coalitions in distributed mobile sensor network,” Proceedings of
the National Conference on Artificial Intelligence, 10 2004.

[40] K. H. Low, W. K. Leow, and M. H. Ang, “Autonomic mobile sensor
network with self-coordinated task allocation and execution,” IEEE
Transactions on Systems, Man, and Cypernetics–Part C: Applications
and Reviews, vol. 36, pp. 315–327, 2005.

[41] Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, and X. Wang, “Evolutionary
population curriculum for scaling multi-agent reinforcement learning,”
2020.

https://arc.aiaa.org/doi/abs/10.2514/6.2006-6453
https://arc.aiaa.org/doi/abs/10.2514/6.2006-6453
https://doi.org/10.1109/MPRV.2004.17
https://eprints.qut.edu.au/63029/
https://doi.org/10.1287/opre.21.5.1071

	I Introduction
	II Problem Formulation
	II-A Multi-agent Formulation
	II-A1 Partial Observability
	II-A2 Decentralization

	II-B Off-policy Reinforcement Learning
	II-B1 Observations
	II-B2 Rewards
	II-B3 Discrete Action Space

	III Approach
	III-A Self-Attention-based Model Architecture
	III-A1 Permutation input representations and embeddings of sets
	III-A2 Attention

	III-B Maximum entropy policies
	III-C Details of the off-policy training implementation
	III-D Algorithm
	III-E Heuristic Mask

	IV Experimental validation
	IV-A Setup
	IV-A1 Framework
	IV-A2 Evaluation methodology
	IV-A3 Assumptions

	IV-B Baseline methods and experiments
	IV-C Main results
	IV-C1 Deterministic vs Stochastic Policies

	IV-D Ablation experiments
	IV-D1 Scalability
	IV-D2 Cooperative behavior due to the stochastic policy
	IV-D3 GRU vs KF

	V Related Work
	VI Conclusions
	References

