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Abstract— Inferring a complete 3D geometry given an in-
complete point cloud is essential in many vision and robetics
applications. Previous work mainly relies on a global feature
extracted by a Multi-layer Perceptron (MLP) for predicting the
shape geometry. This suffers from a loss of structural details,
as its point generator fails to capture the detailed topology
and structure of point clouds using only the global features.
The irregular nature of point clouds makes this task more
challenging. This paper presents a novel method for shape
completion to address this problem. The Transformer structure
is currently a standard approach for natural language process-
ing tasks and its inherent nature of permutation invariance
makes it well suited for learning point clouds. Furthermore,
the Transformer’s attention mechanism can effectively capture
the local context within a point cloud and efficiently exploit
its incomplete local structure details. A morphing-atlas-based
point generation network further fully utilizes the extracted
point Transformer feature to predict the missing region using
charts defined on the shape. Shape completion is achieved
via the concatenation of all predicting charts on the surface.
Extensive experiments on the Completion3D and KITTI data
sets demonstrate that the proposed PCTMA-Net outperforms
the state-of-the-art shape completion approaches and has a 10%
relative improvement over the next best-performing method.

I. INTRODUCTION

The use of point clouds as a format of shape repre-
sentation has increased in the last years due to the rapid
development of 3D acquisition technologies such as Lidar
and depth cameras. The limited sensor resolution, occlusion,
and camera angles however make it challenging to obtain
a point cloud representation of the complete shape of an
object. As a result, the acquired raw points are typically
sparse, noisy, and miss large regions. On the other hand,
complete 3D shapes are essential in vision applications,
such as semantic segmentation and SLAM [1]. A complete
3D shape can improve the performance of CAD model-
based point registration [2] and enables more flexible grasp
planning [3], [4]. In this work, we focus on completing
partial 3D shapes that suffer from occlusion and limited
sensor resolution.

Previous work [5], [6], [7] principally followed the
encoder-decoder paradigm framework by extracting a latent
global feature from an incomplete point cloud. Decoders
leverage these feature to predict missing regions. Benefiting
from PointNet-based [8] feature extractor networks, the task
of shape completion made tremendous progress in recent
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years. However, the extracted global features from PointNet
ignore the geometric relationship within the point clouds due
to the max-pooling operation. As a result, these approaches
suffer from a loss of structural detail in the reconstruction.
The intuitive solution is to make up for the shortcomings
of the PointNet by excavating the semantic affinity within the
point cloud. Therefore, we propose a novel framework named
Point Cloud Transformer with Morphing-Atlas-based Point
Generation Network for Shape Completion (PCTMA-Net)
to address this problem. The Transformer [9] is a standard
framework for natural language processing and has been
further extended to vision tasks for image recognition [10],
as well as point cloud classification and segmentation [11].
The Transformer follows the encoder-decoder structure and
consists of four main modules: input embedding, positional
encoding, (self-)attention mechanism, and positional feed-
forward. In this work, we apply only the encoder module
and neglect the positional encoding module due to the point
cloud’s irregular nature. The Transformer’s central core is the
attention mechanism, which can generate refined attention
features by leveraging the global context. The attention
weight between any two positions is updated by the dot
product of query and key vector. The weighted sum of all
attention weights is the attention feature. The concept of
query, key, and value vector makes it possible to match and
learn the global context. The attention feature of each word
is related to all input features. Furthermore, the permuta-
tion invariant nature of softmax, dot product, and point-
wise feed-forward network makes it well-suited for point
cloud learning. The offset attention mechanism introduced
in [11] uses the idea of the Laplacian matrix to improve the
attention performance further. In this work, we replace the
original attention design with the offset attention mechanism.
The morphing-atlas-based point generation network is the
decoder component in our overall structure. The extracted
global feature from the Transformer is further utilized to
generate the points. An atlas, as defined in topology, consists
of a set of charts on a surface. Therefore, we assume that a
missing region of the surface can be recovered by a chart.
Based on this assumption, we duplicate the Transformer
feature and concatenate it with a predefined grid. We utilize
the idea of multi-head attention by linearly projecting the
concatenated features to learn n,,,, different features, where
each feature is responsible for generating a chart defined
on the surface. We quantitatively and qualitatively evaluated
the proposed PCTMA-Net on the Completion3D data set
and demonstrate a 10% relative improvement over the next
best-performing method for the task of shape completion.



Furthermore, the qualitative evaluation on the KITTI data
set shows that our proposed network is able to predict more
structural details than other state-of-the-art approaches.

Our contributions are summarized as follows: (1) We
propose a novel shape completion framework named Point
Cloud Transformer with Morphing-Atlas-based point gener-
ation Network for shape completion (PCTMA-Net), which
is inherently permutation-invariant and has the capability of
learning the global context within the point clouds and pre-
serving structural details. (2) The integration of the concept
of an atlas and the multi-head attention mechanism leads
to the generation of high-resolution, high-fidelity, and fine-
grained shapes. (3) Extensive experiments are conducted
on the Completion3D benchmarks, and the KITTI data
set, which indicate that the proposed networks remarkably
outperforms other competitive methods.

II. RELATED WORK

Shape completion approaches made significant progress in
recent years due to the rapid development of deep learning
and 3D acquisition technologies. We can roughly catego-
rize the existing work into volumetric-based and multilayer
perceptron-based networks from the perspective of network
structure and the underlying 3D data representation.

Volumetric-based shape completion: The extension of
CNN to 3D convolutional neural networks can be used
for dealing with a shape in the volumetric representa-
tion [12], [13]. Notable work such as 3D-Encoder-Predictor
Networks (3D-EPN) [14] progressively reconstruct the 3D
volumetric shape. The work in [15] directly generates the
high resolution 3D volumetric shape by combining the global
structure with the refinement of local geometry, while [16]
introduced a variational auto-encoder to learn a shape prior
to inferring the latent representation of complete shapes.
GRNet [17] took one step further by introducing Gridding
and Gridding Reverse to convert between point clouds and
3D grids. However, a quantization effect is introduced during
the transformation of point clouds into a 3D volumetric
representation. The computational costs increase cubically
to the resolution and therefore make it more challenging to
process fine-grained shapes.

Multilayer perceptron (MLP)-based shape completion:
Point clouds can be directly obtained by several acquisition
techniques. It is much more efficient compared to the voxel-
based representation when processing costs are compared.
Inspired by PointNet [8] and its successor work [18],[19],
several approaches use them for point cloud learning, as
the point-wise MLP enables the handling of irregular point
clouds and aggregating features using a symmetric func-
tion. However, the PointNet network suffers from a loss
of structure details. The current state-of-the-art approaches
for shape completion such as AtlasNet [6], PCN [20] and
Folding-Net [7] use PointNet as their baseline to extract
global features and to apply a decoder to predict the missing
regions. Unlike PCN and FoldingNet, AtlasNet completes
the shape by generating surface elements utilizing the atlas

concept. TopNet [5] improves the decoder by using a hier-
archical rooted tree. By combining reinforcement learning
with an adversarial network, RL-GAN-Net [21] and Ren-
der4Completion [13] propose a reinforcement learning agent-
controlled GAN to improve the quality and consistency of the
generated complete shape. However, most of these studies
suffer from information loss on structural details, as they
predict the whole point cloud only from a single global
shape representation. SA-Net [22] extended these approaches
with a skip-attention mechanism to preserve more structural
details. PF-Net [23] introduced a point pyramid decoder to
generate a shape in different resolution levels.

III. THE ARCHITECTURE OF PCTMA-NET
A. Overview

The overall structure of PCTMA-Net is illustrated in
Fig 1, which aims to learn a semantic affinity within a
partial point cloud by using a Transformer encoder. The
complete 3D shape is reconstructed with a morphing-atlas
decoder utilizing the extracted feature from the Transformer
encoder. We formulate the whole shape completion pipeline
as: Given a partial point cloud, indicated as P with N;,
points, where each point is represented in 3D coordinates x =
[x;,¥;, z;], we first convert this partial point cloud into a
feature vector F, by a PointNet. The difference to previous
work [7], [6], which relies on only the global feature for
shape completion, is that we further utilize the Transformer
encoder to process the feature to obtain a piece of semantic
affinity information for predicting the missing regions. The
extracted feature is later fed to the morphing-atlas point
generator for completing the shape.

B. Point Cloud Transformer Encoder

The Transformer encoder of PCTMA-Net first transforms
an incomplete point cloud to the feature space using an
input embedding network. We then feed the extracted feature
to NX stacked encoder layers, where they share a similar
philosophy of design as the original paper [9], except for the
attention mechanism. The purpose of the encoder layer is to
learn a discriminate representation for each point. The en-
coder can be mathematically formulated in the following: By
given a partial point cloud P € RNinX¢ with N;, points each
having a d-dimensional feature description, an embedding
feature F, is firstly learned with an input embedding network,
indicated as Fgppeqqing: The difference to the embedding
network presented in [11] is that we defined Feppeqqing 3 @
PointNet followed by a max-pooling operator. As a result, we
acquire a d,, 4o;-dimensional embedding feature F, € R @model
instead of Fy € Rmede*Nin[11]. Tt will improve the shape
completion performance, as the F after max-pool operator
can reduce redundant information and make the training
more efficient. The global feature F, is later fed to F

encoder,-:
F, = Fepoder, Fi_). i = [1,.... N]. (1)

Furthermore, we concatenate the features from each encoder
layer and follow up by two cascade LBR layers to form an
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Fig. 1: The overall structure of PCTMA-Net. The whole structure consists of a Transformer encoder and morphing-atlas point
generation decoder. The Transformer encoder aims to extract features from the input point clouds by using an N X stacked
encoder layer which consists of an attention mechanism and positional feed-forward network. The morphing-atlas-based
surface reconstruction decoder uses multi-chart point generation networks for point cloud completion by concatenating the

features from the Transformer encoder and mesh grid.

effective global feature

F. = BatchNorm(F; @ - @ Fy) 2
Frg = LBR(LBR(F,)), (3)

where F; € Rmoael, F, € RN*%model and Fpp € R%model,
The operator @ is denoted as concatenation, and the func-
tion LBR represents a linear layer followed by BatchNorm
and ReLU operators. The F, .4 . consists of two sub-layers,
namely self-attention mechanism and positional forward

feedback:
Fencoder, (F,_,) = FFN, (attention;(F,_))),
FFN;(x) = LBR; | (LBR, 4(X)) +X.

“4)
o)

The layer FFN; is a shared positional forward feedback
network comprising two cascaded LBRs with the size
of [dgs, dipoger]s Where dep = 2048 and d 4, = 1024.

a) Offset self-attention mechanism: Self-attention is a
mechanism that calculates the semantic relationship between
different elements within a sequence of data. In the context
of point cloud processing, attention is employed to build
weights between every two positions in the feature space. In
comparison to k-nearest neighbors algorithms, the attention
mechanism has a larger receptive field. Furthermore, the
attention mechanism’s permutation invariant property makes
it suitable for disordered, irregular data representation such as
point clouds. The work in [11] proposed the offset attention
by utilizing the idea of a Laplacian matrix L = D — E,
where E is the adjacent matrix E and D is the diagonal
matrix. The attention mechanism is adopted as

F (6)

= attentiOH(Fsa,in)
= LBR(Fsa,in - Fsa) + Fin ’

sa,out

The remaining part of the attention computation operators
still follows the same design as in the original paper [9].
The self-attention feature F, in (6) concatenates the multi-
head attention with the following formulation:

)

where the attention feature at the i-head Fy,q.7 € [1, ..., A
is formulated as

Fg, = Linear(Fheadl SZ RS Fheadh) ’

®)

F = softmax
head; ( \/d_k

with Q = Linear(Q), K = Linear(K), V = Linear(V). The
variables Q,K and V are projected with a different linear
layer, respectively. Following the same principle as the orig-
inal paper, weset Q =K =V =F,; € Rmodel, We reshape
the linear projected query and key as Q.K € Rmoax!
to obtain the attention weights A by matrix dot product
via QK”. We normalize A with \/ﬁ to avoid large values
in magnitude, where d; = %. The equation in (8) shows,
that the self-attention Fy.,q is equal to the weighted sums of
the value vector Linear(V) using the corresponding attention
weights. The multi-head attention mechanism can jointly
capture information from different representation subspace at
different positions [9]. Therefore, it can efficiently preserve
and capture the point cloud’s detailed topology and structure
for predicting the missing regions in comparison to [5], [6].

C. Morphing-Atlas-Based Point Generation Network

At the first stage, the Transformer encoder extracts a
global feature Fr for expressing an incomplete point cloud.
We then feed the extracted features into a morphing-atlas-
based point generator for predicting continuous and smooth
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shapes. Atlas [6] is defined in the topology for describing a
manifold and an atlas is composed of each chart that, roughly
speaking, describes the local region of the manifold. In the
context of 3D shapes, the manifold can be considered as a
shaped surface. Therefore, we can represent a 3D shape by
combing all the charts. Based on the Atlas concept, we define
a chart as C; and let a designed decoder D; learn to map a
2D grid to a 3D surface. Furthermore, we introduce a hyper-
parameter ng,,. to control the number of charts defined
on a shape to predict a smooth and high-resolution shape.
The global feature Frp € R9model is duplicated Ny /Nhart
times and then concatenated with a mesh grid to describe
a new feature, denoted as Frg; € R@moaet2X(Now/ehar),
It beneficial to linearly project Fyp ; with different learned
linear projections. This concept is similar to multi-head
attention by allowing the model to obtain the shape fea-
tures from different representation subspaces at different
positions. Therefore, Frp; is duplicated n,, times and
each Frp, is fed to an MLP layer which produces a new
hidden code, denoted as F . ; € R @moaet ¥2XWNow/Menar)) | j €
[1, ..., Acpar]- For each single chart, we feed F,.; into
a PointGenNetwork (Fig. 2), sharing the same structure as
in [6]. All charts are concatenated to form a complete shape.

D. Evaluation Metrics

We apply the Chamfer distance (CD) [24] as a quantitative
evaluation metric due to its efficient computation compared
to the earth mover’s distance [24]. The Chamfer distance
measures the mean distance between each point in one point
cloud to its nearest neighbor in another point cloud. Let S; =
[x;,¥;»2,1,¢ be the ground truth and S = [x;,;, 2,1/ * be the
reconstructed point by given a partial point cloud. n; and ny
indicate the number of points in S; and Sy, respectively.
The Chamfer distance dcp of S; and Sy with L2 norm is
formulated as

1 . 2 1 - 2
dep = — Z min [|x=yl|“+— Z min [lx=yIl=. (9
nR XGSRy G nG yeSGx R

E. Implementation details

We implemented PCTMA-Net in PyTorch, where the
model is optimized with an Adam optimizer with f; = 0.9
and f, = 0.999, together with a CosineAnnealingLR sched-
uler. The number of encoder layers used in the Transformer
encoder is set to 4, and we follow the original papers by
setting the multi heads in the offset attention mechanism
to 8. We trained the network on a Linux system with a

2.6 GHz Intel Core i7-6700HQ, 16 GB of RAM, and one
Nvidia RTX 2080 Ti GPU.

IV. EXPERIMENTS

We compare our proposed shape completion algorithm
PCTMA-Net with other state-of-the-art approaches on two
large scale data sets: Completion3D [5] and KITTI [26]. The
Chamfer distance is employed as a metric in the evaluation.

A. Shape Completion on Completion3D Data Set

Completion3D [5] from ShapeNet [27] offers a data set,
which consists of 28974 training samples and 800 point
cloud evaluation samples with a point resolution of 2048
for training and validation, respectively. In the comparison,
we use different output resolutions and the quantitative
results are summarized in Table I. Note that the results of
FoldNet [7], SA-Net [22], and PCN [20] are cited from the
Completion3D benchmark leaderboard. Table I shows that
our PCTMA-Net algorithm outperforms the other methods
in 6 out of 8 categories with the overall Chamfer distance
of 9.48 for N, = 16152 and ng,,; = 32. The qualitative
visualization of completion results shown in Fig. 3 indicates
that our approach is able to predict more details. The perfor-
mance in the quantitative and qualitative evaluations proves
the Transformer encoder and the morphing-atlas decoder’s
effectiveness for predicting and preserving the shape details.

B. Shape Completion on Robustness of Input Resolution

The input resolution can greatly affect the performance of
a neural network. In this section, we will study the robustness
of input resolution on the different network structures. We
downsample the evaluation data set from Completion3D
to obtain four levels of input resolutions: 256, 512, 1024,
and 2048. The visualization of these four levels of input
resolutions is shown in Fig. 4a. All networks are trained
on an input resolution of 2048 and output a fixed size
of 16384 points. For point resolutions less than 2048, we
follow the principle in PCN [20] to select points from the
input randomly and pad the input cloud to raise the number
of points to 2048. We evaluate these four levels of input
resolution on the Completion3D data set. The quantitative
illustration in Fig. 4b indicates that our network has the best
robustness and outperforms the other approaches in all four
input resolutions experiments.

C. Shape Completion on KITTI data set

For a further study of the application area, we conduct
experiments on the KITTI data set [26], which is collected
from real-world Velodyne Lidar scans composed of 2401
highly sparse point clouds. Note that the KITTI data set
does not include the ground truth in a quantitative evaluation.
Therefore, we can only qualitatively visualize the shape
completion results. Unlike other work [5], [17], which trains
the network with only the car category in ShapeNet [27] and
then evaluates the KITTI data set, we use the same trained
network as in Section IV-A for evaluation. This evaluation
strategy can show the capability of the generalization of



TABLE I: Point completion results on Completion3D with ground truth and input resolution (2048 points) compared using
Chamfer distance (CD) with L? norm. The results are multiplied by 10*. In our algorithm (PCTMA-Net), we set meshgrid =
0.05. The best result is highlighted in green, and a lower value is better.

Methods Airplane  Cabinet Car Chair Lamp  Sofa  Table Watercraft Overall
AtlasNet (N, = 2048) [6] 5.82 29.28 11.02  27.11 34.04 19.11 29.27 15.55 21.40
AtlasNet (N, = 16384) [6] 5.50 19.89 923 21.17 3099 1534 21.67 14.64 17.31
FoldNet [7] 12.83 23.01 1488 25.69 21.79 2131 20.71 11.51 19.07
FCN [20] 9.79 22.70 1243 2514 2272 2026 20.27 11.73 18.22
TopNet (N, = 16384) [5] 5.85 21.27 10.03  20.09 22.98 14.65 24.25 11.78 16.36
PointNetFCAE (N, = 2048) [25] 5.81 21.14 895 2201 3336 1581 27.52 14.09 18.59
PointNetFCAE (N, = 16384) [25] 4.00 16.70 6.24  14.63 18.15 10.99  15.77 8.55 11.88
SA-Net [22] 5.27 14.45 7.78  13.67 13.53 1422 11.75 8.84 11.22
GRNet (N, = 2048) [17] 7.64 24.06 12.02 24.62 28.73 18.85 32.90 12.48 20.16
GRNet (N, = 16384) [17] 3.79 14.86 6.71 12.74  13.73 11.05 1543 6.50 10.60
Ours (Mgpare = 32, Ny = 2048) 3.60 14.67 7.03 14.04 20.61 10.66  18.01 7.62 12.03
Ours (Mg = 128, N, = 10240) 3.16 13.53 6.58 13.21 12.93 10.29 14.25 6.98 10.11
Ours (Mgt = 32, Ny = 16152) 3.38 13.00 6.12 12.72 11.87 9.18 12.43 7.17 9.48
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Fig. 3: Visualization of completion results on the Completion3D evaluation set.

one network. The incomplete point clouds from KITTI have
diverse input resolutions and are highly sparse. We use
the same strategy as in Section IV-B to lift the number
of points to 2048. Besides, we transform the incomplete
point cloud by using the 3D bounding boxes to get a point
cloud that is distributed between [—0.5,0.5]. The qualitative
result illustrated in Fig. 5 indicates that our approach and
PointNetFCAE can generate more detailed shape information

compared to the other methods.

D. Ablation Studies

In this section, we will study the effectiveness of our
designed structure and chosen hyper parameters. All studies
are conducted on the Completion3D data set for consistency.
Without loss of generality and without special instructions,
we set N, = 10240 and n = 32 in the following

chart
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TABLE III: The Chamfer distance (CD) on the number of
charts.
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Fig. 4: In (a) the point resolution varies from 256, 512,
1024 to 2048. In (b), we compare the proposed approach
against other state-of-the-art approaches on the Comple-
tion3D benchmarks. Lower values are better.
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Fig. 5: Qualitative completion results on the LiDAR scans
from KITTI. The incomplete input point cloud is extracted
and normalized from the scene with its 3D bounding box.

I

experiment.

1) Effect of Transformer encoder: The Transformer
encoder is the main core used in PCTMA-Net, which has
two hyper parameters: the number of encoder layers n.,.oder
and the number of heads & used in the attention mechanism.
In this section, we will study the effect on shape completion
by varying different combinations of these two parameters.
We can conclude from Table II, that we can achieve better
shape completion performance with higher numbers of h
and ngp o4~ Taking various factors such as the network
parameters into consideration, we set these hyper parameters
to A =8 and ngpcoqer = 4-

2) Effect of number of charts: The hyper parameter n,,,
is used to control the number of charts defined on a shape.
In this section, we will study the effectiveness of the number
of charts. We summarize the results in Table III. It can be
shown, that PCTMA-Net can result in a smaller Chamfer
distance with a greater number of charts. However, the

TABLE II: The Chamfer distance (CD) on different hyper
parameters in the Transformer encoder.

parameters of the network will be increased correspondingly,
which is shown in the second row of Table III.

3) Effect of grid strategy: In our proposed morphing-atlas
decoder, the pointGenNet maps 2D grids to 3D surfaces. In
this section, we will use the plane grid for point genera-
tion, which introduces two additional values. We can either
randomly sample the value from [0, 1] or use a grid with a
predefined grid scale and grid size. The evaluation results
on different grid strategies are listed in Table I'V. It can be
shown, that the mesh grid method shows significantly better
performance in comparison to the randomly sampled grid
methods. We further study the effectiveness of the grid scale
by using the same grid size. The results in Table IV show
that the mesh grid scale from 0.05 to 0.5 shares a similar
performance.

4) Effect of metrics: Most existing work employs the
Chamfer distance as a loss function due to its efficient
computation. The earth mover’s distance (EMD) is another
option for point clouds and can be formulated as:

dimp(Sk. S6) = 75— o, min Xék llx = @)l (10)
where @ is the bijection function. In this section, we will
study the effect on shape completion of different training loss
functions. The comparison results in Table V demonstrate,
that for a pure EMD loss function, the shape completion
value with the metric of CD has the worst performance. The
utilization of CD and EMD in the loss function can reduce
the Chamfer distance value, and generate a more uniformly
distributed point cloud than the pure CD loss function. As
EMD uses the bijection function to force the output to have
the same density distribution as the ground truth for coping
with the linear assignment problem. It hence can generate a
point cloud which is more discriminative to local details.
However, EMD is much more computationally expensive

TABLE V: The Chamfer distance (CD) on different loss
functions.

Mencoder 2 4 6
h 4 8 4 8 4 8 Loss function EMD CD+EMD CD
CD (x10%) 10.86 10.41 10.59 10.21 10.69 10.21 CD (x10%) 16.12 10.45 10.21




TABLE VI: The Chamfer distance (CD) on different point
generators. We abbreviate our Encoder as TE and connect to
different algorithm point generators.

Methods
CD (x10%)

TE-FoldNet TE-TopNet TE-AtlasNet

13.22 13.49 11.36

with approximately 9(n?), where n is the number of point
cloud, compared to CD.

5) Effect of point generator: In this section, we study
the effect of different point generators on shape completion,
introduced in FoldNet [7], TopNet [5], by attaching them
to our Transformer encoder. The results are summarized in
Table VI. All of these three networks have improved to some
degree by using the Transformer encoder. FoldNet shows
an improvement from 19.07 to 13.22, TopNet improved
from 16.36 to 13.49, and the performance of AtlasNet
improved from 17.31 to 11.36.

V. CONCLUSION

We propose a novel network named PCTMA-Net for point
cloud completion. Through its encoder-decoder structure,
PCTMA-Net can effectively capture features of local regions
for predicting missing shape parts. The utilization of the
concept of an atlas further helps the network to reconstruct
a smooth shape with a predefined number of charts. We
conducted extensive experiments on the Completion3D and
KITTI data sets to validate our proposed network structure’s
effectiveness. Via the experiments, we can conclude that our
approach outperforms other state-of-the-art approaches on
these two large data sets.
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