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Abstract— The domain of robotics is challenging to apply
deep reinforcement learning due to the need for large amounts
of data and for ensuring safety during learning. Curriculum
learning has shown good performance in terms of sample-
efficient deep learning. In this paper, we propose an algorithm
(named GloCAL) that creates a curriculum for an agent to learn
multiple discrete tasks, based on clustering tasks according to
their evaluation scores. From the highest-performing cluster,
a global task representative of the cluster is identified for
learning a global policy that transfers to subsequently formed
new clusters, while remaining tasks in the cluster are learnt
as local policies. The efficacy and efficiency of our GloCAL
algorithm are compared with other approaches in the domain
of grasp learning for 49 objects with varied object complexity
and grasp difficulty from the EGAD! dataset. The results show
that GloCAL is able to learn to grasp 100% of the objects,
whereas other approaches achieve at most 86% despite being
given 1.5× longer training time.

I. INTRODUCTION

Recent years have showcased vast improvements in
deep reinforcement learning applications, ranging from self-
driving cars [1] to game play exceeding human performance
[2]. Reinforcement learning algorithms can now succeed in
high-dimensional state spaces and continuous action spaces
[3] thanks to the approximation power of deep neural net-
works [4]. Deep learning requires collection of large amounts
of data for training [5], which is highly time-consuming
in robotic applications, both in simulation and the real
world [6], [7]. Additionally, safety from physical collisions
needs to be ensured during learning [8]. As a result, deep
reinforcement learning algorithms are challenging to apply
to robotics when learning from scratch.

Sample-efficient learning strategies in the robotics lit-
erature include learning from demonstration [10] and do-
main randomization [11]. However, these methods require
either human intervention or an (almost) perfect simulation
environment, which constitute additional effort apart from
the learning problem itself. Curriculum learning [12] is a
promising method for dealing with the problem of sample
efficiency. Having its roots from developmental psychology
[13], this approach was initially used in deep learning where
the goal was ordering training data based on a difficulty
metric before feeding into a neural network [14]. Curriculum
learning is recently being applied with deep reinforcement

A. Kurkcu, C. Acar and K.P. Tee are with Institute for Infocomm
Research, A*STAR, Singapore.

D. Campolo is with Department of Mechanical & Aerospace Engineering,
Nanyang Technological University, Singapore.
∗ Corresponding author. Email: ANIL004@e.ntu.edu.sg

Fig. 1: We showcase our algorithm in a robotic grasping environ-
ment setup, where the objects are from the EGAD! dataset [9]. Our
proposed algorithm GloCAL is able to learn grasping the whole set
of objects, while other approaches including a learning-progress
based method and a random curriculum were not able to do so.

learning on robotic applications involving tasks such as
locomotion [15], [16] and pick-and-place [17].

Although curriculum learning is suitable for learning in
a sample-efficient manner, the issue is about generating the
curriculum itself. Automatic curriculum learning [18], [19]
is a recent field of research aiming at developing algorithms
that could autonomously organize the ordering of tasks in
multi-task problem setups. The benefit is a sample-efficient
training routine that would have not been possible if the tasks
were ordered randomly during training.

Regarding robotic grasping domain, grasp detection algo-
rithms [20] based on deep learning approaches have been
developed and tested on synthetic and real object datasets,
achieving high success rates and reliable object grasping.
Nonetheless, such approaches create a grasp pose without
taking into consideration the closed-loop grasping behavior
itself. On the other hand, reinforcement learning creates
the whole trajectory of the grasping behavior, which is a
more human-inspired way when teaching how to grasp an
object [21]. A curriculum-empowered deep reinforcement
learning approach is necessary due to the fact that grasping
environments are designed based on sparse and delayed
rewards, saying that an object should be grasped and carried
to a certain height before a reward signal is received [22].
Such a reinforcement learning environment causes difficulty
for agents that rely on pure deep reinforcement learning
algorithms without any additional learning strategy [23].

In this paper, we present an automatic curriculum learning
algorithm that can design a curriculum for a learning agent
to solve multiple tasks. We apply our approach on a set of
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grasping tasks with various difficulty levels and compare our
results with other approaches including a learning progress-
based algorithm and a random curriculum. Our proposed
algorithm, Glocalized Curriculum-Aided Learning or Glo-
CAL for short, generates a curriculum based on formation
of task clusters according to the capabilities of an agent
at a certain time instant. Inspired from the definition of
glocalization [24], our approach picks a global task from
the cluster, updates its policy by training on that task and
uses this updated policy to both learn the remaining tasks
in the cluster named as local tasks and form new clusters.
To the best of our knowledge, this is the first study applying
curriculum learning to grasp a set of objects in a closed-loop
manner. To summarize, our contributions in this paper are:
• An automatic curriculum learning algorithm via task

clustering followed by global-local task decomposition
for discrete set of tasks.

• Application of GloCAL to robotic grasp learning of a
set of objects with varied object complexity and grasp
difficulty, and comparison of efficacy and efficiency
with other approaches.

II. RELATED WORK

A. Automatic Curriculum Learning

Curriculum learning was initially defined in [13], [14],
where training data was organized according to a difficulty
metric. Once fed into a neural network, the ordered training
data from easy to difficult resulted in shorter training times
compared to a random ordering of training data. Empowered
by such studies, curriculum learning has become a handy
method for finding sample-efficient learning strategies [25].

Although it is expected that a curriculum would speed
up the learning of tasks by sequencing them from easy to
hard, an issue that needs to be solved is how to estimate the
difficulty level of a task. Despite the existence of approaches
handcrafted for certain environments (e.g. grid-world domain
[26]), we need more general ways of generating the cur-
riculum itself, which is the main focus point for Automatic
Curriculum Learning, defined [27] as “approaches able to
autonomously adapt their task sampling distribution to their
evolving learner with minimal expert knowledge.”

An ACL approach based on a generative network for
sampling medium-difficult tasks in a goal-based environment
was proposed in [15]. Their approach benefits from the idea
of tackling tasks that could be learned by the agent based
on its capabilities at that time instant, ignoring too simple or
very difficult tasks. One downside of pursuing a generative
model for an automatic curriculum lies in the architecture and
training of the model itself which could not be that intuitive
to decide upon.

Another approach for ACL was proposed in [16] based
on the notion of Absolute Learning Progress (ALP) and
Gaussian Mixture Models (GMM) for tackling problems
in continuously parameterized environments. The algorithm
fits GMMs where the ALP signal is high, meaning that
tasks within that region are suitable for the agent to learn.

However, for discrete task environments considered in this
paper, a continuous ALP signal may not be available, so
the performance of the ALP approach in such environments
warrants further study.

The value disagreement approach is a recent goal sampling
strategy for ACL [17]. Based on the value function of
the base reinforcement learning algorithm, empirical results
showed that learning performance was improved with this
approach compared to algorithms in [15] and [16]. Despite
its success in goal-based problem setups (i.e. single task), it
is not easy to apply to our problem which involves learning
multiple tasks.

B. Robotic Grasp Learning

Deep learning-based grasping strategies are usually con-
cerned with grasp pose detection [28], [29], or use human
demonstrations as a prior to speed up grasping algorithms
[30], [31].

A comparison of various deep reinforcement learning
algorithms applied to grasping was made in [32], where it
was suggested that for the problem of grasping, off-policy
reinforcement learning algorithms have a higher chance of
success thanks to the replay buffer that the agent could make
use of by sampling from its previous experiences in novel
environments.

Grasp learning problems have been studied in pick-and-
place problems involving a single cuboid object [33]. Rather
than focusing on the learning strategy for grasping, the work
studied the performance of the algorithm for goal-based
reinforcement learning environments, where the object is
picked and placed at varying locations. Our problem setup
focuses directly on the learning of a grasping policy with
objects of various geometries provided as different tasks to
the agent. These objects are spawned in random orientations
for assessing the generalization capabilities of the agent.

III. AUTOMATIC CURRICULUM LEARNING

Our approach takes into consideration reinforcement learn-
ing environment setups which are based on a discrete set of
tasks. We would like to highlight that in this paper, a task
refers to the problem of grasping an object. With this in mind,
we come up with a strategy that attempts to learn a number
of tasks to a certain success rate threshold. Based on the
capability of the learning agent, tasks are clustered according
to their success rates obtained during evaluation. The cluster
with the highest average score is chosen and a representative
task is determined within this cluster. The agent first attempts
this task, which we name as the global task, and updates its
policy ( i.e. global policy). The remaining tasks in the cluster,
which we denote as local tasks, are then tackled by the agent.
However, local tasks do not update the global policy that
will be used in the learning of tasks in subsequently formed
clusters. As a result, a sequence of tasks are formed that the
agent has followed as a curriculum where multiple policies
exist for each learned task. An overview of our algorithm is
given in Figure 2 and the pseudocode Algorithm 1.
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Fig. 2: Overview of our algorithm. In the first iteration, a prior πinit is used for clustering tasks. The first cluster is selected and tasks
are marked as global and local. Training on the global task generates πG1 , which is used to train the remaining local tasks. In iteration
m, πGm−1 is used as a prior to cluster the remaining tasks. The result is an order of tasks for curriculum learning.

A. Initialization

Let each task be given a number n where n = 1, 2, ..., N ,
and the full set of tasks represented by N, where |N| =
N . Let πinit be an initial/prior policy used to initialize the
algorithm.

The set Llearnt, to contain learnt tasks, is initialized as
an empty set. The constant number B is a success threshold
such that any task with evaluation score above B is marked
as learned and stored in Llearnt. Then, the remaining set of
tasks after removing Llearnt is given by:

L = N \ Llearnt (1)

B. Evaluation

We define a score metric Sπn to assess the success rate of
a policy on a certain task as follows

Sπn =

S̄∑
i=1

Sπi,n, n = 1, 2, ..., N (2)

where Sπi,n ∈ [0, 1] is an evaluation score of policy π on
task n for the ith evaluation trial with S̄ being the number
of times this evaluation is performed, 1 being success and 0
being failure.

C. Task Clustering

At the start of each task clustering iteration, the evaluation
of current policy πcurr is performed with (2) for each task
n = 1, 2, ..N . A score Sπn is obtained from each task for
S̄ times. According to these score values, tasks are grouped
via k-means clustering algorithm where the minimum and
maximum number of clusters are empirically chosen. To
determine the optimal number of clusters, we use silhouette
analysis [34]. For each cluster number, the silhouette score
is computed as a value between -1 and 1. When the score
is close to 1, it shows us that the clusters are well separated

from each other. On the other hand, a score of 0 shows that
there is no significant distance between clusters, and a score
of -1 means that clusters are wrongly separated. Based on
these score interpretations, the cluster number c is selected
according to the highest silhouette score. For the case when
only 2 tasks are left, a single cluster is formed. The set of
clusters are represented as C (where |C| = c) as follows:

C = {C1,C2, ...,Cc ∈ L|C̄1 > C̄2 > ... > C̄c} (3)

where C̄i is the average of the scores in cluster Ci. In other
words, the ordering of clusters in (3) are from highest to
lowest average success rates, so C1 contains tasks with the
highest success rate. Since tasks with higher success rate
have greater chance of being learnt, the algorithm picks
the first cluster C1, which is an ordered set, such that the
evaluation score satisfy

SπC1,1
> ... > SπC1,i

> ... > SπC1,n
(4)

where C1,i, i = 1, ..., n are the individual tasks in cluster
C1. From this set of tasks, the median is selected as the
global task Tglob as follows:

Tglob = dM(C1)e (5)

where M(•) denotes the median of set •. According to (4),
tasks in C1 are in descending order, implying that global
task Tglob has a score value in between the highest and
lowest scores within the chosen cluster C1. We apply ceiling
operator de in case the number of tasks is even.

Once the global task Tglob is determined, the remaining
tasks in C1, after removing Tglob, are labelled as local tasks
Tloc defined by:

Tloc = C1 \ Tglob (6)



Algorithm 1: GloCAL: Glocalized Curriculum-Aided Learning
1 Data: Set of tasks N, |N| = N where n = 1, 2, ..., N
2 Input: Initial policy πinit
3 Initialize: Success threshold B, empty list of learnt tasks Llearnt, πcurr ← πinit
4 for m = 1, 2, ..., max iter do
5 Remaining tasks L = N \ Llearnt

6 Evaluate πcurr on all L tasks, obtain Sπn , n = 1, ..., N
7 Apply k-means clustering on L, determine number of clusters c according to silhouette coefficient
8 Obtain cluster set C = {C1,C2, ...,Cc|C̄1 > C̄2 > ... > C̄c}
9 Pick cluster C1 which has highest average task score

10 Set median of C1 as global task Tglob
11 Label remaining tasks in C1 as local task set Tloc = C1 \ Tglob
12 Train πcurr on Tglob until Sπcurr

Tglob > B, πGm ← πcurr

13 Push Tglob to Llearnt

14 Set global policy as prior for learning local task Tloc,0, πLm,−1 ← πGm

15 for i = 0, ..., |C1| − 1 do
16 Train πLm,i−1 on Tloc,i until S

πLm,i−1

Tloc,i > B, πLm,i ← πLm,i−1

17 Push Tloc,i to Llearnt

18 end
19 πcurr ← πGm

20 end
21 Result: Sequence of tasks Llearnt

D. Curriculum Learning

After tasks in C1 are marked, a two-level training regime
is employed. The policy πcurr is trained on global task Tglob
until the evaluation score Sπcurr

Tglob surpasses threshold B. The
policy updated at the end of this training session is named
as πGm

(where m is the iteration number) and global task
Tglob is added to the set of learnt tasks Llearnt. The updated
policy πGm is then used to train local tasks in Tloc. Task
Tloc,0 is trained first until the threshold B is surpassed, i.e.
S
πLm,i−1

Tloc,i > B. The policy updated at the end of this training
session is denoted by πLm,0

, and Tloc,0 is added to the set of
learnt tasks Llearnt. The updated policy πLm,0

is then used to
train the next local task Tloc,1. This loop continues until task
Tloc,|C1|−1 achieves an evaluation score above threshold B.
When training both the global and local tasks, there exists a
maximum amount of training time, after which, if the success
threshold is still not surpassed, then training is stopped and
the unsuccessful task is passed over to the next iteration.

At the end of iteration m, all learnt tasks in C1 have
entered Llearnt. The next iteration m + 1 starts by setting
πGm

as πcurr. Task clustering is performed again followed
by curriculum learning. The algorithm runs for a number
of iterations, or until all tasks have a score value above
B. As a result, we have a sequence of tasks that represent
a curriculum. A sample run on a set of objects with 12
iterations in total is presented in Figure 3.

We explain the methodology behind such global/local
training as follows. A policy following a curriculum could
experience various difficulty levels based on the task setup.
Because of this, one would like to train a policy on each
difficulty level with the same amount of time. Our approach
is taking this into consideration and not training the curricu-
lum policy on tasks that are all on the same difficulty level,
which could be related to overfitting.

IV. EXPERIMENTAL SETUP & RESULTS

A. Robot Environment Setup

We have used PyBullet [35] robot simulator to perform
our experiments where the robot manipulator is a Panda
Franka Emika that has 7 degrees of freedom and a gripper
with two parallel fingers. To obtain a diverse set of objects
for the application of grasping, we have used objects from
the evaluation set of the EGAD! Dataset [9] consisting
of N=49 objects (also known as tasks). These objects
were created in the aforementioned study based on metrics
of object complexity and grasp difficulty, where within a
{A,B,...,G}×{0,1,...,6} matrix of objects (Figure 1), object
A0 is the simplest and easiest to grasp, while object G6 is
the most complex and hardest to grasp. The resulting discrete
set of tasks is suitable for us to test our algorithm. Objects
were spawned on a table top with randomized orientations
during training and evaluation, which helps to increase grasp
robustness after learning.

The reinforcement learning environment is defined as a
Markov Decision Process (MDP) tuple 〈S,A, P,R, γ〉 which
consists of a 63-dimensional continuous state-space S, a
5-dimensional continuous action-space A, a sparse reward
function R, state transition model P = Pr(s

′ |s, a) and
discount factor γ. Episode length is denoted by T . Each
object is represented as a one-hot vector of length N=49.
The agent receives, as input, this encoding, in addition to
gripper and object poses, and two binary variables for gripper
finger contact. Although not considered in this simulation
study, 6D object pose estimation methods such as [36], [37]
can be used in a real-world setup. Outputs of the agent
include opening/closing of fingers, gripper rotation about
normal axis to table plane, and 3D translation of gripper.
The agent receives a scalar reward of -1 at each timestep
unless the episode is terminated, which occurs either when



Fig. 3: Sample run of our algorithm with beginning of first iteration 1, middle iteration 7 and last iteration 12 where all tasks are learned
at the end. Objects highlighted pink with asterisk (*) are global tasks, whereas those highlighted blue are local tasks. Objects marked
with a green tick mark are the ones that have been learned.

the maximum episode length is reached, or when the agent
has succeeded. Success condition is based on the height
difference between the object and the table top. We have used
the Soft Actor-Critic (SAC) [38], a state-of-the-art off-policy
maximum entropy deep reinforcement learning algorithm, as
our algorithm of choice due to its good performance in sparse
reward setups. In particular, we used the implementation
from Stable Baselines [39] in this work.

Regarding the evaluation phase, we have not used the
cumulative reward that an agent receives during each episode
as this would be tricky for a grasping problem with sparse
rewards. Instead, we evaluate our policy based on 100 runs
of a specific object. Each successful grasp increases the score
by +1 for the agent, so the maximum obtainable score for an
agent during evaluation is 100. Where no successful grasps
could be performed, the score is 0.

B. Benchmarking Algorithms

1) Random Curriculum: This simple algorithm generates
a curriculum by randomly selecting objects for training. A
single policy is updated during training. Such an approach
may be adequate if all objects are of the same difficulty level
in terms of grasping. Usage of this curriculum generation
method can also be seen as an ablation study for understand-
ing whether there is any need for ordering objects based on
their difficulty levels.

2) ALP-GMM: The Absolute Learning Progress-Gaussian
Mixture Models (ALP-GMM) [16] method is a state-of-the-
art curriculum generation algorithm that works in both goal-
based environments and continuous parameter spaces. This
approach relies on the absolute learning progress, which is
the difference between the reward values received of two
consequent training intervals. The idea is to sample tasks
that have the highest absolute learning progress, based on
the idea that these tasks are the most learnable ones for
a policy. The sampling is performed based on a Gaussian
distribution where a new distribution is fit to the task space
after a number of iterations each time. With some minor

adaptations, we applied ALP-GMM to the discrete task
problem in this paper. We compared with 2 versions of ALP-
GMM: the original version which updates distributions every
250 iterations (ALP-GMM-250), and an alternate version
which updates distributions every 10 iterations (ALP-GMM-
10) for potentially better performance in a discrete task
space. While the original implementation [16] used a single
policy throughout all iterations, the implementation in this
paper is such that multiple policies achieving above-threshold
success rates are saved, allowing for a fair comparison with
our proposed GloCAL.

C. Results

Here we present a quantitative comparison of our algo-
rithm with the other two curriculum strategies in Figure
4. The aim of each individual curriculum approach is to
leverage the success rate of each object during evaluation
above a certain value. Our current results have set this
value to be 75 out of the 100 evaluation runs performed
for any object. Each algorithm is run for 10 random seeds
until 4 million (4M) timesteps, where the number of objects
learned is recorded every 1 millionth (1M) timestep. Each
algorithm is given the same initial policy which is a prior
trained on object A0. We have adapted such a prior policy
approach to only focus on the task ordering performance
of the algorithms and eliminate the random effect caused
by different starting conditions and alter the long training
regimes in sparse reward setups including reaching object
before grasping.

As it can be seen in Figure 5, our algorithm is the only one
that can learn to grasp all 49 objects. Although the number of
objects learnt at the end of 1M timesteps is similar between
our algorithm and ALP-GMM, this changed from 1M to
4M timesteps, where our algorithm learned more objects
compared to the rest. At the end of 4M timesteps, number
of learnt objects for our algorithm converged to 49, whereas
that for the rest failed to exceed 42. Though not presented in
Figure 5, these numbers remained the same even if we waited
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Fig. 4: Comparison of all four algorithms at 1M, 2M, 3M and 4M timesteps respectively, from left to right. 10 random seeds have been
performed for each algorithm. The p values of t-tests are provided for our algorithm versus others with significant values marked with
asterisk (*). At the end of 1M timesteps, ours does not perform better than ALP-GMM-250. At the end of 2M timesteps, ours performs
better than the rest. At the end of 3M timesteps, ours has some seeds that have reached the 49 out of 49 learned object ratio, while other
3 algorithms could not pass 42 objects. At the end of 4M timesteps, ours has mostly completed learning all 49 objects, while the other
3 approaches are still struggling around 40 learned objects. Though not presented here, at the end of 5M timesteps, all 10 runs of our
algorithm has been able to grasp all the objects in the dataset, whereas the same is not true for the other three approaches.
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Fig. 5: Comparison of number of objects learned for all four
algorithms with recorded values at every 1M timesteps across
10 random seeds. All three algorithms apart from ours converge
towards 40 objects, whereas ours converges towards all 49 objects.

until 6M timesteps. This shows our algorithm is more sample
efficient than the rest and is able to learn to grasp the most
difficult objects, with objects highlighted in Figure 7.

D. Ablation Studies

We have performed two ablations to GloCAL, with one
being the removal of the global representative task, and the
other being the random selection of a cluster. As seen in

Figure 6, if we use a policy trained over all tasks within the
cluster (instead of a global representative task) as a prior for
the next iteration, this results in only 39/49 objects being
learned at the end of 4M timesteps. Even worse, instead of
choosing the cluster with the highest average score, randomly
selecting a cluster from the available ones results in only 10
objects being learned at the end of 4M timesteps.
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1M timesteps across 10 random seeds. Only the original version
converges towards all 49 objects.

This ablation study suggests that picking the cluster with



Fig. 7: Comparison of objects learned at the end of 4M timesteps. Random and ALP-GMM-250 both learned 41 objects (83.6%), ALP-
GMM-10 42 objects ( 85.7%), and our GloCAL learned all 49 objects (100%). Objects marked with the letter G (last row) are the ones
that are most difficult to grasp with respect to the difficulty metric provided in EGAD! [9].

the highest average score (instead of a random one) plays
a critical role in successfully learning all tasks. Since there
may exist a number of clusters containing difficult tasks,
randomly picking a cluster could result in starting with
difficult tasks that cannot be learned without a good prior
policy. In addition, when moving from the current cluster
to a more difficult one, if we do not pass a representative
policy for the current cluster, but instead one that arbitrarily
sweeps through all tasks within the cluster, this results in
difficult tasks not being learned. The reason for this is that
once a policy gets trained with too many tasks of a certain
difficulty level, it becomes less adaptive to tasks that belong
to another difficulty level, and sometimes may not learn those
tasks at all.

V. DISCUSSION & CONCLUSION

The implication of our results says this: train a policy first
on the task that represents a certain difficulty level, followed
by utilizing the policy both to learn the tasks remaining
in that difficulty level and as a prior for the remaining
tasks. Once a policy is obtained for a certain difficulty level,
this policy could be used to learn novel tasks of the same
difficulty level, leading a path towards meta learning [40]:
when a task of similar representation to the tasks in a certain
difficulty level is obtained, this new task can quickly be
learned with the policy obtained from training on the global
task. In addition to this, a parallel learning approach could
also be employed with our algorithm for the purpose of
speeding up runtime. Once a policy is obtained from the
global task, the local training regime could be separated from
the global training regime.

We have showcased an automatic curriculum learning
algorithm that clusters tasks and builds a two-stage curricu-
lum based on global and local tasks. Our problem setup
consisted of a reinforcement learning environment where
a robotic agent learned to grasp a diverse set of objects.
In addition to our approach, we also implemented ALP-
GMM which is a learning-progress based approach and also
a random curriculum approach for a benchmark. Comparison
of our algorithm with the mentioned approaches showed that,

although our approach was able to grasp all of the objects,
the other two algorithms failed to learn grasping difficult
objects. Therefore, they could only grasp around 40 of the
objects out of the 49. These results show the power of our
algorithm for problem setups with discrete set of tasks. As
future work, we would like to extend our algorithm towards
one that is capable of parallel processing; once a cluster is
assigned its global and local tasks, the global policy could
carry onward forming new clusters, while the training of
the local tasks could be performed at the same time. We
would also like to approach our algorithm from an adaptive
policy perspective where the global task acts as a meta task,
suiting well for few-shot learning on novel tasks that are
similar to the global task which could be thought as unknown
objects not existing in the dataset. Currently, we are working
on testing the efficiency of our algorithm on a real-world
experimental setup, where pose estimation and variational
autoencoder (VAE) methods are utilized for detecting the
pose and physical geometry of the objects, which also makes
it possible to consider grasping unknown objects.
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