2105.06562v1 [cs.CV] 13 May 2021

arxXiv

SpikeMS: Deep Spiking Neural Network for Motion Segmentation

Chethan M. Parameshwara, Simin Li, Cornelia Fermiiller, Nitin J. Sanket, Matthew S. Evanusa, Yiannis Aloimonos

Fig. 1.

Event-based motion segmentation pipeline using a deep spiking neural network. Left to right: Event stream input represented as red (brightness

increase) and blue (brightness decrease), representation of the proposed encoder-decoder spiking neural network called SpikeMS and the output predicted
spike containing only the region of moving object(s). All the images in this paper are best viewed in color on a computer screen at a zoom of 200%.

Abstract— Spiking Neural Networks (SNN) are the so-called
third generation of neural networks which attempt to more
closely match the functioning of the biological brain. They
inherently encode temporal data, allowing for training with
less energy usage and can be extremely energy efficient
when coded on neuromorphic hardware. In addition, they
are well suited for tasks involving event-based sensors, which
match the event-based nature of the SNN. However, SNNs
have not been as effectively applied to real-world, large-scale
tasks as standard Artificial Neural Networks (ANNs) due to
the algorithmic and training complexity. To exacerbate the
situation further, the input representation is unconventional
and requires careful analysis and deep understanding. In this
paper, we propose SpikeMS, the first deep encoder-decoder SNN
architecture for the real-world large-scale problem of motion
segmentation using the event-based DVS camera as input. To
accomplish this, we introduce a novel spatio-temporal loss
formulation that includes both spike counts and classification
labels in conjunction with the use of new techniques for SNN
backpropagation. In addition, we show that SpikeMS is capable
of incremental predictions, or predictions from smaller amounts
of test data than it is trained on. This is invaluable for providing
outputs even with partial input data for low-latency applications
and those requiring fast predictions. We evaluated SpikeMS on
challenging synthetic and real-world sequences from EV-IMO,
EED and MOD datasets and achieving results on a par with
a comparable ANN method, but using potentially 50 times less
power.

Chethan M. Parameshwara and Simin Li contributed equally to this work.
(Corresponding author: Chethan M. Parameshwara)

All authors are associated with the Perception and Robotics Group,
University of Maryland, College Park. Emails: {cmparam9, s1i12348,
fer, nitin, evanusa, yiannis} Qumiacs.umd.edu

SUPPLEMENTARY MATERIAL

The accompanying video and supplementary material are
available at prg.cs.umd.edu/SpikeMsS.

I. INTRODUCTION

The animal brain is remarkable at perceiving motion in
complex scenarios with high speed and extreme energy
efficiency. Inspired by the animal brain, an alternative version
of Artificial Neural Networks (ANNs) called Spiking Neural
Networks (SNNs) aim to replicate the dynamical system
aspects of living neurons. In contrast to standard ANNs
which are essentially networks of complex functions, SNNs
are comprised of networks of neurons modeled as differential
equations, and inherently encode temporal data and offer low
power and highly parallelizable computations. Furthermore,
they possess the capability to deliver predictions whose
confidence scale with the availability of input data [1], [2].
These low-power and low-latency properties are of great use
to real-world robotics applications such as self-driving cars
or drones, which demand fast responses during navigation in
challenging scenarios [3].

Until recently, SNNs have been restricted to simple
tasks and small datasets due to instability in learning
regimes [4]. Recent development in new spike learning
mechanisms [5], [6] has made it possible to design SNNs
for real-world robotics applications. This coupled with
neuromorphic processors such as Intel’s ® Loihi [7] and
IBM’s TrueNorth [8]) along with neuromorphic sensors such

prg.cs.umd.edu/SpikeMS

as DVS [9] and ATIS [10]) have made it possible for
producing real-world prototypes, drastically enhancing the
appeal of such technologies.

In this work, we propose a deep SNN architecture called
SpikeMS for the problem of motion segmentation using a
monocular event camera. We consider the data from event
sensors as they are well-suited for motion segmentation (due
to the disparity in event density at object boundaries) and
are a natural fit for SNNs (due to their temporal nature).
We will now formally define the problem statement and our
main contributions.

A. Problem Formulation and Contributions

We address the following question: How do you learn to
segment the scene into background and foreground (moving
objects) using a Spiking Neural Network from the data of a
moving monocular event camera?

Our spiking neural network, SpikeMS, takes the event
stream as input and outputs predictions of each event’s
class association as either foreground (moving object) or
background (moving due to camera motion).

The model learns to distinguish between the
spatio-temporal patterns of moving objects and the
background. To the best of our knowledge, this is the first
end-to-end deep encoder-decoder SNN. In particular, we
evaluate our network on the task of motion segmentation
using event input.

The main contributions of the paper are given below:

e A novel end-to-end deep encoder-decoder Spiking
Neural Network (SNN) framework for motion
segmentation from event-based cameras.

o Demonstration of “early” evaluation of the network (at
low latency), which we call Incremental Predictions,
for imprecise but fast detection of moving objects for
variable-sized integration windows.

II. RELATED WORK
A. Spiking Neural Network Weight Learning Rules

While the concept of a spiking neuron has been around
for a few decades [11], their progress has been bounded
by the difficulty in training due to the ubiquitous vanishing
gradient problem for deep neural networks. In SNNs, the
neurons output pulses that are non-differentiable, rendering
attempts at directly applying the backpropagation algorithm
non-trivial. Early attempts at training SNNs revolved around
more biologically plausible Hebbian-style mechanisms [12]
that only involve local updates, such as Spike Time
Dependent Plasticity (STDP) [13], avoiding gradient issues.
Work in this field continues to this day, with results [14]-[16]
demonstrating utilities of STDP in training deep SNNs. Early
attempts at incorporating backpropagtion into SNNs involved
first training a traditional ANN, and then transferring the
learned weights to an SNN [1]. Recent methods, which
we build off of here, allow the SNN to be directly trained
through backpropagation by finding a surrogate, continuous
value function that roughly correlates for the spike activity
(51, [6], [17].

B. SNNs for Visual Tasks and Event Data

There has been a renewed interest in using SNNs to
process data directly from event-based visual sensors, such
as the DVS since the sensor produces spike-like activity that
fits well with SNN neurons. Applications of SNNs in this
domain include classification problems [18] such as digit
recognition [19], object recognition [20] gesture recognition
[21], and optical flow [22], [23]. Recent development of
neuromorphic processors such as the Intel Loihi [7] has lead
to the deployment of SNNs on hardware [22], [24], [25].

Closest related to our work, in [4] recently a neural
architecture of multiple layers has been designed. A six-layer
neural network (five convolutional and one pooling layer)
is used to learn with supervision to regress the three
parameters of camera rigid rotation. In Lee er al. [26] a
deep hybrid encoder decoder architecture was designed for
self-supervised optic flow estimation. The encoding layers
are SNN with the backpropagation learning employing the
approximation of [17], and the residual and decoding layers
are ANN with the self-supervised loss computed from the
images of a combined DVS and image sensor (DAVIS). Our
network is the first architecture for the problem of motion
segmentation with event data.

Event-based cameras have been recognized as a promising
sensor for the problem of segmentation and detection
of independently moving objects, as the event stream
carries essential information about the movement of object
boundaries [27]. Classical approaches [28]-[30] treat motion
segmentation as a geometric problem and model it as
an artifact of motion compensation of events. In ANN
approaches, the input representation is formed by binning
the events within a time-interval and convert to an image-like
frame based structure [3], [31] the so called “event-frames”.
Our approach is similar to [32], but rather than creating
event-frames, a sampled version of the event stream is fed
directly into the network, taking advantage of the SNN’s
temporal nature in conjunction with the temporal nature of
the event stream.

III. SPIKEMS ARCHITECTURE
A. Event Camera Input

A traditional camera records frames at a fixed frame rate
by integrating the number of photons for the chosen shutter
time for all pixels synchronously (in a global shutter camera).
In contrast, an event camera only records the polarity of
logarithmic brightness changes asynchronously at each pixel,
resulting in asynchronous packets of information containing
the pixel location and the time of the change known as an
event. If the brightness at time ¢ of a pixel at location x is
given by I; x an event is triggered when

H log (It+5t,x) — log (It,x) ||1 >T (D

where §t is a small time increment and 7 is a trigger
threshold. Each event outputs the following data: e =
{x,t,p}, where p = +1 denotes the sign of the brightness
change. We will denote the event stream in a spatio-temporal

»
'

Neuron Response

Neuron Threshold

Time
Refractory

Input Spikes Response

Fig. 2. Depiction of the dynamical activity of a spiking neuron. The neuron
receives input coming either from the data or lower layers (shown here as
colored arrows), which generate bumps in the membrane voltage; we refer
to this voltage in the paper as u(t). If the voltage u(t) exceeds a threshold
¥, shown here as the dotted line, the neuron outputs a spike, and then enters
a refractory phase where it is less likely to fire another spike for a short time.
Computationally, this spiking after passing a threshold amounts to feeding
u(t) through the spike function f,. The effect that incoming pulses have
on the voltage, and the extent of the refractory response, is governed in
the Spike Response Model (SRM) [33] via the € and v kernels respectively
(See Section III-B for more detail).

window as & (t,t+6t) = {e;}L, (N is the number of
events). We refer to it as event slice/stream/cloud/volume
or spike train interchangeably.

B. Spiking Neuron Model

Spiking Neurons, unlike traditional rate-encoding neurons
(commonly used neurons in standard ANNs), implicitly
encode time in their formulation. They are modeled loosely
after neurons in the brain, following the pioneering work
by Hodgkin-Huxley [11] which laid the groundwork for
differential equation modeling of neuronal activity. We utilize
the Spike Response Model (SRM) which similar to all
spiking neuron models, sums up incoming voltage from
pre-synaptic neurons, but contains two filters: a filter that
accounts for the neuron’s self-refractory response denoted
as v, and a spike response kernel that accounts for the
integration of incoming pre-synaptic pulses denoted as e.
For a given neuron ¢ at timestep ¢, the update of the neuron’s
synaptic potential dynamics takes the form of:

ui(t) = (zj:wj(a * sj)) + (vx*s) o

=w'a+ (vxs)

for all incoming weight connections from pre-synaptic
neurons 1, ...,j, where a(t) = (e * s)(¢), s;(t) is an input
spike train in a neuron and * denotes the convolution
operator. An output spike is generated whenever u(t) reaches
the spiking threshold ¥ (the dotted line in Fig. 2)

The motivation for using SRM neuron types is that it
inexpensively models the refractory behavior of neurons
without having to run multiple differential equation solvers,
as seen in other models.

Specific choices of € and v reduce the SRM equations to
a LIF neuron [34]. Here, we use the formulation from [4]:

e(t) = Ll EH () 3)

Ts

v(t) = —20¢' 7 H(t) 4)

where H is the Heaviside function, and 75 and 7, are the
spike response and refractory time constants.

The activity of the neurons is then propagated forward
through the layers of the network, in the same manner
as an ANN. The feed-forward weight matrix wih =
[W1,...,Wn,,] for a given layer [with N} neurons is applied
to the activity resulting from the spike response kernel, added
to the refractory activity and then thresholded. Thus, for all
layers [in the network, the activity is forward-propagated
as:

a®(t) = (eq % sV)(1))
u(l+1)(t) - W(l)a(l)(t) + (v * S(H'l)(t)) (6)
sUTD () = £ (uD (1) (7

where f; is the thresholding function, WO is the forward
weight matrix for layer [, and €4 is the spike response kernel
with delay, as in [6]. The input to the network, s is the
event data over the learning window.

C. Network Architecture

SpikeMS utilizes an end-to-end deep Spiking Neural
Network, in contrast to many recent models [26] that use a
hybrid combination of spiking and rate-encoding layers. To
the best of our knowledge, SpikeMS is the first end-to-end
spike trained deep encoder-decoder network for large scale
tasks such as motion segmentation.

SpikeMS consists of a traditional hourglass-shaped
layer structure of an autoencoder, with larger layers
progressively encoded to smaller representations, which are
then decoded back to the original size. We use three encoder
layers followed by three decoder layers. The first three
convolutional layers perform spatial downsampling with a
stride of 2 and kernel size of 3x3. The output of the
first encoder layer contains 16 channels, and each encoder
layer after doubles the number of channels. The last three
decoder layers perform spatial upsampling using transposed
convolution, with a stride of 2 and kernel size of 3x3.
Decoder layers 4 and 5 each halve the number of channels.
The last layer (6) outputs the predicted spikes of the moving
object(s) using 2 channels, representing positive and negative
event polarities.

D. Spatio-Temporal Loss

We propose a novel loss formulation which takes full
advantage of the spatio-temporal nature of the event data.
Our loss function consists of two parts: a binary cross entropy
loss Lyce and spike loss Lpike.

The binary cross-entropy loss Ly is computed by
comparing the predicted temporal spike projection to the
ground truth temporal spike projection.

Lpce = — (]lf log (%f) + 13 log (fb)) ()

Where, the spike projection ‘£ is obtained as: E (x) =
> € (x). Such a projection converts a spike train into a
real-valued output, encoding the frequency of spikes. And the
groundtruth foreground and background labels are denoted
as 17 and 1, respectively.

The spike loss Lgpike is derived from the Van-Rossom
distance [35] and measures the distance between two binary
spike trains [36]. Lk preserves the temporal precision of
the event stream. The ground truth spike labels are generated
by applying a binary mask to the event cloud input &, i.e.,
masking all non-moving-object events (background events)
as 0, and keeping intact the events that correspond to the
moving object. Lgpike is given by

t+0t R _ 9
Lspike = Z (5 (t,t+dt)oly —E(t,t+ 5t)) dt (9)

t=0

where o denotes the Hadamard product and 1; denotes
the mask of foreground spikes.
The overall loss Ly is given by

Etotal = Ebce + /\Espike (10)
where A is a weighting factor. The error is backpropagated
through the network using SLAYER [6].

E. Simulation of SNNs on GPU

SNNs are continuous dynamical systems which can
process input event streams asynchronously. However, for
our experiments, we simulate the SNN network on a GPU.
To achieve this, we need to discretize the event data at fixed
time steps. To balance the trade-off between accuracy and
resource availability [4], we restrict the simulation time step
to one millisecond. We train our SNNs with fixed simulation
time window/width/steps At,i, of 10ms for all experiments.
However, to test the out-of-domain temporal performance,
we test our predictions on simulation time steps At of
Ims to 25ms. To fit the event inputs into fixed time steps, the
multiple events with the same polarity and spatial location
within a timeframe are represented as a single binary event.
This downsampling collapses all events within the window
into a single event. The simulated network is trained with
the publicly available PyTorch implementation of SLAYER

[6].

Fig. 3.

Representation of event stream £ and its corresponding projection
(event frame). Note that, only event streams are fed to SpikeMS. The event
frame is shown only for clarity purposes.

IV. EXPERIMENTS AND RESULTS

We evaluate our approach on publicly available synthetic
and real datasets. We demonstrate performance of SpikeMS
both qualitatively and quantitatively by employing the
Intersection over Union (IoU) and Detection Rate (DR)
metrics [30].

A. Overview of Datasets

We use the publicly available MOD [3] and EV-IMO [31]
datasets for training and evaluating the motion segmentation
predictions. MOD [3] is a synthetic dataset specifically
targeted for learning based motion segmentation approaches.
The simulated data contains objects moving in an indoor
room-like environment with randomized wall textures,
static/dynamic objects and the object/camera trajectories.
EV-IMO [31] contains monocular event-based camera data
captured in a lab environment with challenging scenarios
(multiple objects moving in random trajectories and varying
speeds). EV-IMO contains five different sequences (boxes,
floor, wall, table, and fast) which were collected
using the DAVIS 346 camera.

B. Quantitative Results

We compare our method against state-of-the-art ANNs
(both 2D and 3D) and the results are given in Table I. In
particular, 2D ANNs (EV-IMO [31], EVDodgeNet [3]) are
trained with inputs consisting of event-frames computed by
accumulating (or projecting) events on a plane. In contrast,
3D ANNs (GConv [32] and PointNet++ [37]) are trained
directly on the event cloud £. We evaluate ANN-2D with
event frames integrated with a time width At of 25ms.

Fig. 4. Qualitative Evaluation of our approach on two datasets. Top row (a and b): MOD dataset, Bottom row (c and d): EV-IMO dataset. Each sample
includes, (left to right) event stream, groundtruth, and network prediction. Here, we show event projections for clarity purposes but SpikeMS predicts

spatio-temporal spikes.

TABLE 1
QUANTITATIVE EVALUATION USING 10U (%) 1+ METRIC ON EV-IMO AND MOD DATASETS.

EV-IMO

Method boxes floor wall table fast MOD

100 20 100 20 100 20 100 20 100 20 100 20
EV-IMOT [31] 70+£5 59+9 78+£5 79+6 67+3 -
EVDodgeNet [3] 67+8 61+6 7249 70+£8 60+10 75+12
GConv' [32] 8148 6018 7947 55+19 8344 8017 5714 51+16 74417 39+19 - -
PointNet++ [37] 71+£22 80%15 68418 76+£10 75419 74420 62428 68+23 24410 2046 74+13 67415
Ours (Lpee) 57+11 59+7 56+9 46+12 6248 62+9 51£12 45412 42413 36+£13 62411 63+7
Ours (Lspike) 45+4 5247 4948 4446 5315 47411 43+15 3744 4146 35+4 55+11 55+8
Ours (Lyce + Cspike) 6117 65+8 60+5 53+16 6547 63+6 52+13 5048 454+11 38+10 6847 65+5

T Results taken directly from [32]

ANN-3D approaches are evaluated with two time widths At
of 20ms and 100ms similar to [32].

During evaluation, SpikeMS is tested at Aty = 100ms and
Atest = 20ms (trained at Aty,;,=10ms) for a fair comparison
with ANNs-3D. Table I provides the mean IoU results on
multiple sequences of the EV-IMO and MOD datasets. We
observe that the performance of SpikeMS is comparable to
ANN-2D and ANN-3D approaches in all cases. However,
note that the ANN-2D and ANN-3D perform better in the
domain they are trained in as compared to SpikeMS and we
speculate this is because of more stable training procedures
in ANNSs. This points to a direction of future work for SNNs
of proposing better training methodologies.

In Table I, we also compare our results when trained
on different loss functions. We observe that the proposed
spatio-temporal loss formulation performs better than just
using the spike loss or crossentropy loss as it utilizes the
information from both spatial and time domains together.

Finally, we also compare SpikeMS with classical
hand-crafted methods in Table II and we see that, our SNN
approach outperforms most hand-crafted methods whilst
being deployable directly on neuromorphic hardware. This
would lead to huge power savings when deployed on a robot.

C. Incremental Prediction

We test the network’s capability to perform incremental
predictions evaluating the network at different testing

discretized window sizes, with Aty ranging from Ims
to 25 ms, while keeping the training window fixed at
Atyain of 10ms. This experiment tests for the out-of-domain
generalization performance of SpikeMS.

All predictions made at At < 10ms can be considered
as incremental predictions (See Fig. 5), since the testing
window is smaller than the training window. This is
particularly important for robotics applications since one
can filter these incremental predictions to get close to the
accuracy of the model with long time predictions but with a
lower latency. For example, we can filter predictions (we use
a linear Kalman filter [38] for filtering) of 3ms to obtain up to
~64% of the accuracy of 10ms predictions, but with 70% less
latency which might be required for time-critical controllers.
We also experiment with values greater than 10ms, where
we examine whether longer integration windows yield more
accurate results.

Fig. 5 shows the plot of accuracy (IoU) versus the duration
of input spikes during simulation, considered for prediction.
We observe that the prediction accuracy increases over
time with the occurrence of more spikes, but critically,
that the SNN is able to output reasonable predictions from
less spikes. As shown in SNNs outperform ANN-2D and
ANN-3D at early stages with less amount of data. We
observe that ANN-3D outperforms ANN-2D since it is
trained with temporal augmentation techniques as proposed
in [32]. Note that the SNN does not rely on temporal

100

—SNN = SNN-F
90 |[—ANN-2D = ANN-2D-F
—ANN-3D — ANN-3D-F

loU (%)

Fig. 5. Incremental Prediction: Segmentation accuracy vs. input spike
window length in milliseconds for various simulation time width At.
SpikeMS is able to achieve good accuracy significantly faster than ANNs,
given smaller input data. The dashed lines represent accuracy improvement
after employing a filtering (See Sec. IV-C).

augmentations for incremental predictions rather utilizes
dynamic nature of spiking architecture. This demonstrates
how well SpikeMS generalize outside the temporal domain.

D. Qualitative Results

Fig. 4 shows qualitative results of our approach on the
two datasets. For each example the input, moving object
groundtruth, and network prediction are shown. Note that,
we show the event projections for clarity purposes but the
network input and outputs are the event cloud/spikes. We
can observe that the network output predictions are similar
to the ground truth for the moving objects in the presence
of significant background variation and motion dynamics.

Fig. 6 shows the performance of SpikeMS on real-world
event streams, again with significant background variations
and patterns. These results demonstrate the capability of
SpikeMS to generalize to different environments without any
retraining or fine tuning of the network.

E. Power Efficiency

We further analyze the benefits of SpikeMS compared
to a fully ANN architecture with respect to power
consumption. It is important to note that the main power
consumption benefits occur when the SNN is implemented
on a neuromorphic hardware such as the Intel® Loihi [7],
where the network only consumes power when there is a
spike. Hence, the power consumption depends on the mean
spike activity of the incoming data and the number of
synaptic operations. In contrast, ANNs perform dense matrix
operations without exploiting the event sparsity. Thus, in
anticipation of deploying SpikeMS on the new generation
of neurmorphic chips, we demonstrate the power savings by
comparing the number of operations by a metric proposed
in [26].

Table III provides the average number of synaptic
operations in SNNs along with a conservative estimate of
the energy benefit when compared to an ANN-2D. We can
observe that SNNs require a significantly lower number of
synaptic operations and power as compared to ANNSs.

._4_____?.&_:_-.-.-_‘

LE Jia(nel_

Fig. 6.
fine-tuning or re-training on real world data. SpikeMS is able to segment the
moving object from the scene even in the presence of substantial background
noise. The objects in the red bounding box are the true moving objects. Top
row: A fast drone approaching a moving event camera. Bottom row: Moving
object behind netted background.

Results showing motion segmentation generalization without

TABLE II
COMPARISON WITH STATE-OF-THE-ART CLASSICAL APPROACHES FOR
EED, MOD, EV-IMO DATASETS.

Method Detection Rate (%) 1

EED MOD EV-IMO
Mitrokhin ef al. [28] 88.93 70.12 48.79
Stoffregen et al. [29] 93.17 - -
0-MMS [30] 94.2 82.35 81.06
Ours 91.5 68.82 65.14

V. CONCLUSION

We presented a first deep encoder-decoder Spiking Neural
Network for a large-scale problem and demonstrated our
architecture on the task of motion segmentation using data
from a monocular event camera. Our novel spatio-temporal
loss formulation takes full advantage of the spatio-temporal
nature of the event data. We demonstrated the unique ability
of our network, SpikeMS, for incremental prediction and
showed its capability to generalize across a range of temporal
intervals without explicit augmentation. A comprehensive
qualitative and quantitative evaluation was provided using
synthetic and real-world sequences from the EV-IMO, EED
and MOD datasets. It was shown that SpikeMS achieves
performance comparable to an ANN method, but with 50x
less power consumption.

TABLE III
PERFORMANCE METRICS FOR EV-IMO AND MOD DATASETS.

EV-IMO MOD

Method boxes floor wall table fast
Num. Operations (x10°) 0.42 0.34 0.52 0.38 0.53 0.83
Energy benefit (x) 116.19 143.53 93.84 12842 92.07 58.80

ACKNOWLEDGEMENT

The support of the National Science Foundation under
grants BCS 1824198 and OISE 2020624 and the support
of the Office of Naval Research under grant award
NO00014-17-1-2622 are gratefully acknowledged. We also
would like to thank Samsung for providing us with the
event-based vision sensor used in this study.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in 2015 International Joint Conference on
Neural Networks (IJCNN), 2015, pp. 1-8.

M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons:
opportunities and challenges,” Frontiers in Neuroscience, vol. 12, p.
774, 2018.

N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam,
C. Fermiiller, D. Scaramuzza, and Y. Aloimonos, “EVDodgeNet: deep
dynamic obstacle dodging with event cameras,” 2019.

M. Gehrig, S. B. Shrestha, D. Mouritzen, and D. Scaramuzza,
“Event-based angular velocity regression with spiking networks,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 4195-4202.

F. Zenke and S. Ganguli, “Superspike: Supervised learning in
multilayer spiking neural networks,” Neural Computation, vol. 30,
no. 6, pp. 1514-1541, 2018.

S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” arXiv preprint arXiv:1810.08646, 2018.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82-99, 2018.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“Truenorth: Design and tool flow of a 65 mw 1 million
neuron programmable neurosynaptic chip,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 10, pp. 1537-1557, 2015.

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128, 120 db
15 p s latency asynchronous temporal contrast vision sensor,” /EEE
Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566-576, 2008.
C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db dynamic
range frame-free pwm image sensor with lossless pixel-level video
compression and time-domain cds,” IEEE Journal of Solid-State
Circuits, vol. 46, no. 1, pp. 259-275, 2010.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation
in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500-544,
1952.

T. J. Sejnowski and G. Tesauro, “The Hebb rule for synaptic plasticity:
algorithms and implementations,” in Neural Models of Plasticity.
Elsevier, 1989, pp. 94-103.

B. Nessler, M. Pfeiffer, and W. Maass, “Stdp enables spiking
neurons to detect hidden causes of their inputs,” Advances in neural
information processing systems, vol. 22, pp. 1357-1365, 2009.

S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“Stdp-based spiking deep convolutional neural networks for object
recognition,” Neural Networks, vol. 99, pp. 56-67, 2018.

M. Evanusa, C. Fermiiller, and Y. Aloimonos, “A deep 2-dimensional
dynamical spiking neuronal network for temporal encoding trained
with STDP,” arXiv preprint arXiv:2009.00581, 2020.

C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep
spiking convolutional neural networks with stdp-based unsupervised
pre-training followed by supervised fine-tuning,” Frontiers in
Neuroscience, vol. 12, p. 435, 2018.

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10,
p. 508, 2016.

D. Neil, M. Pfeiffer, and S.-C. Liu, “Learning to be efficient:
Algorithms for training low-latency, low-compute deep spiking neural
networks,” in Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 293-298.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting
static image datasets to spiking neuromorphic datasets using saccades,”
Frontiers in Neuroscience, vol. 9, p. 437, 2015.

G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor,
and R. Benosman, “Hfirst: A temporal approach to object recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 10, pp. 2028-2040, 2015.

A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243-7252.

G. Haessig, A. Cassidy, R. Alvarez, and G. Benosman, R.and Orchard,
“Spiking optical flow for event-based sensors using IBM’s TrueNorth
neurosynaptic system,” pp. 860-870, 2018.

F. Paredes-Vallés, K. Y. Scheper, and G. C. de Croon, “Unsupervised
learning of a hierarchical spiking neural network for optical
flow estimation: From events to global motion perception,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 8, pp. 2051-2064, 2019.

G. Haessig, X. Berthelon, S.-H. Ieng, and R. Benosman, “A
spiking neural network model of depth from defocus for event-based
neuromorphic vision,” Scientific reports, vol. 9, no. 1, pp. 1-11, 2019.
A. Renner, M. Evanusa, and Y. Sandamirskaya, “Event-based
attention and tracking on neuromorphic hardware,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2019, pp. 1709-1716.

C. Lee, A. K. Kosta, A. Z. Zhu, K. Chaney, K. Daniilidis, and
K. Roy, “Spike-flownet: event-based optical flow estimation with
energy-efficient hybrid neural networks,” in European Conference on
Computer Vision. Springer, 2020, pp. 366-382.

F. Barranco, C. Fermiiller, and E. Ros, “Real-time clustering and
multi-target tracking using event-based sensors,” in 20/8 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 5764-5769.

A. Mitrokhin, C. Fermiiller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 1-9.

T. Stoffregen, G. Gallego, T. Drummond, L. Kleeman, and
D. Scaramuzza, “Event-based motion segmentation by motion
compensation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 7244-7253.

C. M. Parameshwara, N. J. Sanket, C. Deep Singh, C. Fermiiller, and
Y. Aloimonos, “0-mms: Zero-shot multi-motion segmentation with
a monocular event camera,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021.

A. Mitrokhin, C. Ye, C. Fermiiller, Y. Aloimonos, and T. Delbruck,
“EV-IMO: motion segmentation dataset and learning pipeline for event
cameras,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019.

A. Mitrokhin, Z. Hua, C. Fermiiller, and Y. Aloimonos, ‘“Learning
visual motion segmentation using event surfaces,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 14414-14423.

W. Gerstner, “Time structure of the activity in neural network models,”
Physical review E, vol. 51, no. 1, p. 738, 1995.

, “Spike-response model,” Scholarpedia, vol. 3, no. 12, p. 1343,
2008, revision #91800.

M. van Rossum, “A novel spike distance,” Neural Computation,
vol. 13, pp. 751-763, 04 2001.

T. Kreuz, “Measures of spike train synchrony,” Scholarpedia, vol. 6,
no. 10, p. 11934, 2011, revision #190333.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” 2017.
R. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 3545,
1960.

	I Introduction
	I-A Problem Formulation and Contributions

	II Related Work
	II-A Spiking Neural Network Weight Learning Rules
	II-B SNNs for Visual Tasks and Event Data

	III SpikeMS Architecture
	III-A Event Camera Input
	III-B Spiking Neuron Model
	III-C Network Architecture
	III-D Spatio-Temporal Loss
	III-E Simulation of SNNs on GPU

	IV Experiments and Results
	IV-A Overview of Datasets
	IV-B Quantitative Results
	IV-C Incremental Prediction
	IV-D Qualitative Results
	IV-E Power Efficiency

	V Conclusion
	References

