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Abstract— We present a novel approach to joint depth
and normal estimation for time-of-flight (ToF) sensors. Our
model learns to predict the high-quality depth and normal
maps jointly from ToF raw sensor data. To achieve this, we
meticulously constructed the first large-scale dataset (named
ToF-100) with paired raw ToF data and ground-truth high-
resolution depth maps provided by an industrial depth camera.
In addition, we also design a simple but effective framework for
joint depth and normal estimation, applying a robust Chamfer
loss via jittering to improve the performance of our model.
Our experiments demonstrate that our proposed method can
efficiently reconstruct high-resolution depth and normal maps
and significantly outperforms state-of-the-art approaches. Our
code and data will be available at https://github.com/
hkustVisionRr/JointlyDepthNormalEstimation

I. INTRODUCTION

Time-of-flight (ToF) cameras are popular depth sensors
for robots to obtain dense depth estimation by measuring
the time difference between emitting light and receiving
the returned light at the camera. ToF cameras have been
widely used on robots and smartphones for near-range depth
estimation, but their depth maps often have limited resolution
and depth accuracy, and no normal map directly is provided
by the sensor [16]. In this work, we are interested in
estimating high-quality depth and normal maps from ToF
raw sensor data, which are fundamental representations of a
3D scene for various robotic tasks such as 3D reconstruction,
3D object detection, and autonomous driving [33], [44]–[46].

Various methods have been proposed for ToF depth en-
hancement by designing new hardware for sensor data acqui-
sition or post-processing techniques. New hardware coding
strategies have been designed to get the high-performance
of ToF sensing [23]–[25], [38], but these hardware designs
require non-trivial energy and long exposure time, which
is not desirable in practice. Deep learning approaches have
also been applied directly to derive depth information from
ToF raw sensor data [21], [28], [40], [41]. However, these
learning based ToF depth sensing approaches are limited to
training with simulated synthetic data. To address this issue,
we follow a similar data collection protocol by [8] to build a
large-scale real-world dataset (ToF-100) with paired raw ToF
data and ground-truth depth maps for ToF depth sensing.

Our dataset contains 100 scenes captured by a ToF sensor
and a high-end industrial depth camera, with ToF raw data
at the resolution 240× 180 and high-resolution 1280×1024
depth maps from the industrial stereo camera IDS Ensenso
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N35 [1]. Fig. 1 shows our data capture equipment, ToF raw
data, ToF confidence map, ToF/IDS depth maps, and com-
puted normal maps from depth. Looking at the confidence
map, we believe that high-resolution depth and normal maps
can be obtained from the ToF sensor as there are fine details
in the raw ToF data and its confidence map.

With the collected dataset, we design a new convolutional
neural network architecture to jointly estimate the high-
resolution depth and normal maps from ToF raw data. The
architecture first recovers the initial depth and normal maps
from ToF raw data and then refines the estimated depth map
by joint refinement module, generating the high-resolution
depth map. To achieve the best performance, we utilize a
Chamfer loss with jittering that accounts for the imperfect
ICP alignment between two point clouds during training.
Experiments demonstrate that our approach significantly out-
performs current state-of-the-art methods on both depth and
normal estimation. In summary, our contribution is threefold:
• We constructed the first large-scale real-world dataset

named ToF-100 with each data sample consisting of
ToF raw measurements, confidence map, sparse point
cloud, depth map, normal map of resolution 240× 180,
and the corresponding ground-truth dense point cloud,
depth map and normal map of resolution 1280× 1024.
There are 100 scenes in our dataset, and each scene
has 25 depth map pairs from different viewpoints. The
dataset will be publicly available online soon.

• Based on ToF-100 dataset, we design a novel end-to-
end network model to estimate the high-resolution depth
and normal maps from ToF raw data. This is, to the best
of our knowledge, the first attempt to generate high-
resolution normal maps of ToF sensors directly.

• To compensate for the effects of the misalignment be-
tween two point clouds, we introduce a robust Chamfer
loss via jittering to account for the imperfect alignment
measurement.

II. RELATED WORK

Traditional ToF imaging. Depth maps decoded directly
from ToF sensors often suffer from artifacts caused by Multi-
Path Inference (MPI). To alleviate these artifacts, researchers
have proposed traditional methods with multipath light
transport models with different assumptions, including the
Lambertian surfaces assumption [13], introducing reflectivity
as Cauchy distribution [20], focusing on the photometric
cause [14], or extending to general multipath [7], [39].

Then an optimization problem with either iterative opti-
mization [15] or a closed-form solution [11], [20] is formu-
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Fig. 1: The data acquisition process in our ToF-100 dataset. The ToF camera and the IDS stereo camera are fixed on a robot arm to
acquire the paired data simultaneously. The normal maps and IDS depth map in the lower-left framed part are computed given the point
clouds. It can be seen that the ToF camera produces depth and normal maps with limited resolution and accuracy when compared with
the IDS camera.

lated to solve for depth estimation.
To improve ToF data acquisition, some researchers tried

to combine a ToF sensor with structured light [2], [32],
then separated disturbing lights in the frequency domain
or fused depth obtained from a structured light principle
[5]. Similarly, another line of approaches [3], [17], [18],
[29], [31] studies depth fusion of a ToF-stereo system, as
we can use a high-resolution stereo camera for ground-
truth acquisition. To improve the depth resolution, recently,
coding functions are redesigned [22], [23] from a hardware
perspective. Despite the development of traditional methods,
cumulative error and information loss are inevitable due to
the hand-crafted pipeline processing.
Learning based ToF imaging. Learning-based methods
have recently been applied to ToF imaging [3], [9], [21], [28],
[36], [40]. [40] first trained an MPI range-recovery network
with a structured light camera for obtaining ground truth.
[3] targeted the fusion of ToF and stereo depth by learning a
confidence map for local consistency. [28] proposed a two-
stage training strategy with an autoencoder to extract general
low-level depth features and a decoder to remove MPI. [21]
first solved noise, scene motion, and MPI simultaneously.
Using ToF raw data as input, [41] realized an end-to-end
network to directly output depth maps. However, all these
previous methods were only trained on synthetic ToF data
due to difficulties in obtaining sufficient real-world data with
ground truth.

To bridge the domain gap between synthetic and real ToF

measurements, [4] applied unsupervised adversarial learning
on real scenes as a complement to the training on a synthetic
dataset, based on a Coarse-Fine CNN [6]. However, as real-
world scenes are generally complicated, improving perfor-
mance on real scenes remains an essential but challenging
task. Some other real ToF datasets were presented, either
with limited scale [19] or lack of ground truth [36], or the
limited resolution of ground-truth depth [9].

Joint depth and normal estimation. To improve depth esti-
mation, researchers have considered joint depth and normal
estimation [10], [27], [35], [43], [47]. Early work by [10]
was a multi-scale convolutional architecture to predict depth,
normal, and semantic maps simultaneously. [43] introduced
a dense conditional random field to jointly regularize the four
streams, namely depth, normal, planar likelihood, and bound-
ary of a CNN. [35] proposed the two-branch depth-to-normal
and normal-to-depth networks, using geometric consistency
as supervision. Nevertheless, these frameworks mostly take
a single RGB image as input, which would severely degrade
the performance in dark or texture-less environments, while
ToF data with totally different characteristics are not affected.

To the best of our knowledge, we are the first to use a
model that jointly learns high-resolution depth and normal
maps from real-world ToF raw sensor data. Compared to past
methods, our ToF-100 dataset is much larger with 2500 real-
world images pairs with high-resolution ground-truth depth
and raw ToF data. Moreover, trained on this large-scale real-
world dataset with raw ToF data as input, our supervised



TABLE I: Comparison between our ToF-100 dataset and other real-
world ToF datasets.

Dataset Scenes Raw ToF GT
Resolution Resolution

[30] 140 no 320×240 No
[19] 3 no 176×144 No
[40] 900 no 320×240 yes
[28] 10 no 200×200 yes
[6] 8 no 320×239 yes (320×239)
[21] 15 yes 320×240 yes
[41] 5 yes 320×240 no
[36] 400 yes 640×480 no
[4] 113 yes 320×239 yes (320×239)
[9] 200 yes 320×240 yes (320×240)
Ours 2500 yes 240×180 yes (1280×1024)

end-to-end training for joint depth and normal enhancement
can generalize well to real-world scenes without the need for
domain adaptation.

III. DATASETS

There are a few real-world ToF datasets provided in
prior work. However, the raw ToF data that contains rich
information is unavailable in these dataset [6], [19], [28],
[30], [40]. All of them are either limited in scale or without
ground truth depth maps. To this end, we propose a real-
world dataset of 2,500 image pairs, named ToF-100 of 100
objects captured by a ToF sensor, for depth and normal
enhancement tasks. Our dataset contains raw ToF data, low-
resolution 240×180 ToF depth maps, confidence images
decoded from the traditional pipeline of the ToF sensor, and
the corresponding ground-truth high-resolution depth maps
and normal maps. Here is a comparison between our dataset
and other real ToF datasets, as shown in Table I.

a) Dataset overview: Our ToF-100 dataset contains 100
different objects (or object combinations), including models,
household objects, and lab materials, with a wide range
of scales. The materials vary from plastic, wood, paper to
sponges, cloth, rubber, etc., and avoid black, transparent, and
reflective objects. Fig. 2 shows some examples of the objects
in the ToF-100 dataset. For each object, we capture 25 scenes
by either sending the cameras to different viewing distances
and directions or changing the pose of the object. While IDS
camera records 1 frame, ToF camera records 10 frames per
scene. Therefore, the total amount of data is 100 objects ×
25 scenes/object × (1 frame per scene for IDS, 10 frames
per scene for ToF) data pairs.

b) Hardware setup and preprocessing: The ToF camera
configuration parameters are set to 20MHz and 100MHz
double frequency, 400 µs exposure time, and 30 FPS as its
common setting in commercial use. To generate the high-
quality ground truth, we use an industrial stereo camera, IDS
Ensenso N35 [1], with 1280×1024 resolution, which can
output a dense point cloud of high precision in a working
distance of up to 3m. The two cameras are then firmly
mounted to the end effector of a robot arm, as shown
in Fig. 1. Shooting the same scene, they can generate an
overlapped 3D data pair of low and high quality, respectively.

Fig. 2: Some examples in the ToF-100 dataset.

(a) Captured point cloud (b) Alignment (c) Denoising

Fig. 3: Pre-processing steps. The point cloud pairs collected by
the IDS stereo camera (dense in grey) and ToF camera (sparse in
red) are aligned by the averaged-ICP method and denoised to obtain
clean high-quality ground truth, focusing on the target object.

To align the data pairs, we introduced an average ICP
method to calibrate using point cloud pairs of some ob-
ject with distinctive geometric features (e.g., board with
holes [34]). After alignment, the IDS point clouds are
cropped and denoised to obtain high-quality ground truth,
focusing on the target objects in the neighborhood of ToF
data. Finally, point clouds are projected onto the ToF image
plane to generate ground truth depth and masks. Fig. 3 shows
the workflow of data pre-processing.

IV. METHOD

Our model for high-resolution joint depth and normal
estimation from ToF raw data is illustrated in Fig. 4.
The input of our model contains multiple-channel images
{I1, I2, I3, I4, I5, I6, I7, I8} that are decoded from ToF raw
data for different phase offsets. As additional input, we also
use their corresponding confidence and depth maps obtained
from the ToF sensor.

Our model consists of three modules. The first network is
designed for estimating an initial high-resolution depth map
(raw2depth), and the second one is used for normal map
estimation (raw2normal). Then the two outputs from these
two networks will be refined jointly to recover a final high-
quality and high-resolution depth map.
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Fig. 4: Our model take 8-channel raw measurements, a confidence map, and a raw depth map as input. During the depth estimation
process, an initial depth is first estimated through a raw2depth network. Then by projecting the initial depth into an initial point cloud, a
robust Chamfer loss and a reweighted smoothness l1 loss are utilized during training. In parrallel, the normal estimation stage generates
a HR normal map. At last, refined HR depth is recovered by the joint refinement with estimated depth and normal maps.

A. Raw2depth network

As a straightforward idea, we first train the Raw2depth
network end-to-end to generate an initial depth map at high
resolution with the IDS depth maps as ground truth. We
use a traditional U-Net network [37] as the backbone for
the Raw2depth network, whose structure is proven to be
efficient in various dense prediction tasks. Different from
the structure designed based on physical characters of input
channels in [41], our model uses an end-to-end network that
can make the best use of high-resolution ground truth. Other
kinds of network architectures, such as modified encoder-
decoder networks, may also be efficient in improving the
performance, which is not the key in this work.

a) Loss functions: Due to the imperfect alignment
and resolution mismatch between the input raw data and
the ground-truth depth map, a simple `1 or `2 loss for
training may lead to blurry depth estimation. So we design
a combined loss in both 2D and 3D domains. In the 2D
domain, a smoothed `1 loss is used to minimize the error
between the generated depth d and ground-truth (IDS) depth
d̃. In the 3D dimension, we use a robust Chamfer loss to
compare the similarity between our point cloud (derived from
the generated depth) and the ground-truth point cloud.

b) Reweighted smoothed `1 loss: While our method
produces a complete dense depth map, some pixels may
have higher confidence than others. Can we quantify this by
estimating an error map (difference from the ground-truth)
of the estimated depth? We can even use this estimated error
map to enhance the depth estimation by re-weighting each
pixel. We train a U-net [37] that uses ToF raw data and
the estimated initial depth as input to output the expected
error map. Then the inverse of the error map is taken
as the weighting confidence to further improve the depth

estimation. Suppose ep, dp, d̃p are the corresponding error,
predicted depth and ground truth depth, the reweighted
smoothed loss `rs is:

`rs =


∑
p
λ
2

∣∣∣dp−d̃pδ

∣∣∣2 if
∣∣∣dp − d̃p∣∣∣ < δ∑

p λ(
∣∣∣dp−d̃pδ

∣∣∣− 1
2 ) otherwise

(1)

where λ =
d̃p
ep+ε

, ε = 0.001, δ is the threshold and δ = 20.
Note that the error map can be also used to indicate the
confidence of depth map in practice.

c) Robust Chamfer loss: To compare our 3D point
cloud and the ground-truth point cloud, we adopt the Cham-
fer loss that computes the sum of the distance of the nearest
neighbor of each point [42]. Let P and Q be the point
clouds recovered from our output depth and the ground-truth
depth. Assume that x, y are corresponding matched points in
each point cloud after the ICP matching process. Then the
standard Chamfer loss is

`ch =
∑
x∈P

min
y∈Q
‖x− y‖22 +

∑
y∈Q

min
x∈P
‖x− y‖22. (2)

Robustness via jittering. Although the two point clouds are
calibrated as well as possible, slight misalignment still exists,
which may cause blurry results in learning-based methods.
In order to further alleviate this negative effect by slight
misalignment, we move P along the x/y/z dimension for
both backward and forward directions by 1 centimeter, re-
sulting in six slightly moved point clouds. We then compute
the Chamfer loss between each slightly moved point cloud
and Q, resulting in six more Chamfer loss scores. Then we
choose the lowest one, which implies the most accurate point
cloud, among the seven scores we computed for training.



B. Raw2normal Network

Similarly, we design a normal estimation framework to
generate a high-resolution normal map for the ToF sensor,
which takes ToF raw data together with the confidence map
and ToF sensor depth as input. By training a U-net [37]
end-to-end, we learn a model to generate a high-resolution
normal map directly.

Cosine embedded loss: To learn normal vectors from ToF
raw data, we use the cosine embedded loss `cos to measure
the angle similarity between the leaned normal vector n1

and its ground-truth normal n2. The cosine embedded loss
is formulated as follows:

`cos = 1− n1 · n2

‖n1‖‖n2‖
. (3)

Thanks to our ToF-100 dataset with dense ground-truth point
clouds, our work can predict high-resolution normal maps
from ToF sensor raw measurements directly.

C. Joint Refinement

There is a strong geometric correlation between depth and
the surface normal that a normal map can be calculated
from a depth map, and a normal can inversely help refine
a depth, as the normal reveals the high-frequency details of
the geometry feature. Similar to GeoNet [35], we perform
a depth refinement post-processing step that involves the
interactive refinement of depth-to-normal and normal-to-
depth mapping. We take depth and normal maps provided
by the previous modules as the initial inputs and perform
the iterative process to refine them.

V. EXPERIMENTS

In this section, we validate our method for the depth and
normal maps reconstruction on the ToF-100 dataset. In order
to quantitatively and qualitatively evaluate the performance,
we compare our results with other existing approaches, such
as [41] and [21]. Moreover, some complex scenes in the wild
such as office environments, also are tested to demonstrate
the generalization capability of our model. Then an ablation
study is provided to study the effects of different modules
and inputs in our model.

A. Implementation details

We firstly train the depth and normal estimation network
for about 230 and 460 epochs separately, with the learning
rate 1e−4 and Adam optimizer [26]. Then the estimated
depth and normal maps are taken as inputs for the refinement
module, and the final results are obtained after several
epochs. The inference time for our whole framework is 48
ms when running on an Nvidia RTX 2080 Ti GPU. Both the
depth and normal estimation models are trained on the input
size 240 × 180, and we have recovered depth and normal
maps both at 2x resolution 480 × 360, which is also the
resolution for depth and normal evaluation. In principle, we
could also reconstruct higher resolution depth and normal
maps because the absolute resolution of ground truth is
1080× 1024.

TABLE II: Quantitative evaluation for depth and normal estimation
on the ToF-100 dataset.

Depth Normal
Method ABS SQ RMSE MAE MAE 20◦

ToF sensor 0.07 53.4 312.9 113.5 0.17 16.3
Su et al. [41] 0.06 46.5 256.4 84.6 0.12 10.5
Guo et al. [21] 0.05 43.1 230.7 84.7 0.11 9.9
Ours 0.03 12.9 242.3 77.9 0.08 4.0

B. Results on depth estimation

We compare the depth map decoded from the ToF tradi-
tional pipeline, the method of [41], the method of [21] and
our full model. Some visual results are shown in Fig. 5.
Compared with the depth map from the ToF traditional
pipeline, we can see that our method greatly enhances the
depth map quality with more fine-grained details. Comparing
the error maps of [41], [21] and our method, our generated
depth map also is the most accurate one. Regarding object
boundaries, our method alleviates the misalignment effect
with the help of robust Chamfer loss.

C. Results on normal estimation

To visually compare with the normal map derived from the
ToF depth map, we upsample the original ToF sensor depth
map to a high resolution one, and then transform it to a dense
point cloud for normal computation using Cloud Compare
Software1. The results are shown in Fig. 6. It is clear that
our method produces normal maps with much fewer noises
than the one from a traditional pipeline. The normal around
the object edges can be better preserved in our results, which
motivates us to use it to refine depth map.

D. Quantitative evaluation

In this part, we compare the depth prediction performance
with some quantitative metrics: the relative absolute error
(ABS), the relative square error (SQ), the root mean square
error (RMSE), and the mean absolute error (MAE). The
evaluation unit is a millimeter. It can be seen from Table II
that our method significantly improves the quality of the
generated depth maps. Both visual and quantitative results
can further confirm our conclusion. In summary, our method
achieves an average 3% relative error in depth estimation,
which is much better than traditional methods.

Moreover, we evaluate the predicted normal maps with
two metrics: the mean absolute error (MAE) and the average
per-pixel angle distance between the prediction and ground-
truth normals less than 20◦ as used in [12]. As shown in
Table II, our method significantly outperforms state-of-the-
art methods on ToF depth estimation.

E. Analysis

Ablation study. For the analysis, we first conduct the abla-
tion study to evaluate the effectiveness of each module of our
approach, including multiple data source input (confidence
map and decoded depth map), the proposed Chamfer loss,

1https://cloudcompare.org
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Fig. 5: Depth estimation results on the ToF-100 dataset. From left to right are the depth maps of ground truth, the ToF sensor, [41],
results by [21], and our proposed model. The second row below each depth map indicates its corresponding error map(the first one is the
confidence map). The third row shows the corresponding estimated point clouds. More results are shown in the supplement.
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Fig. 6: Normal estimation results on the ToF-100 dataset. The first to fifth rows shows the normal maps derived from the ToF sensor,
Su et al. [41], Guo et al [21], our method and the ground truth.
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Fig. 7: Depth and normal estimation in complex indoor scenes. From left to right are the confidence map, depth map from the ToF
sensor, our depth map, ToF normal map, and our normal map. The right bottom corners are zoomed-in regions.

TABLE III: Ablation study for analyzing different modules of our
model in depth estimation.

Method ABS SQ RMSE MAE

w/o multi-input 0.06 44.0 277.7 103.7
w/o Chamfer loss 0.04 14.9 244.9 80.3
w/o error map 0.04 13.7 243.9 80.1
w/o refinement 0.03 13.9 244.8 79.3
Ours (full model) 0.03 12.9 242.3 77.9

TABLE IV: Experiments with different input data combinations.

Method ABS SQ RMSE MAE

Conf. 0.13 70.9 338 218.3
Raw 0.06 22.1 278.5 95.3
Depth 0.05 18.8 269.1 87.2
Depth + Raw 0.03 13.1 245.9 78.4
Depth + Conf. + Raw 0.03 12.9 242.3 77.9

error map, and the normal map-based refinement. As shown
in Table III, the proposed modules significantly improve
the accuracy of depth estimation, showing their respective
effectiveness. Even only adopting a simple U-Net framework
as the backbone, our method is able to recover a high-
resolution and high-quality depth map.

Besides, to demonstrate the effects of multiple inputs
sources. We compare the results of 5 kinds of input combina-
tions, and the qualitative results are shown in Table IV. From
the results, we can find that even based on raw data only,
our approach can recover the depth map, which indicates
that an end-to-end deep learning based method can replace
the traditional depth reconstruction pipeline. Among all these
results, the result with all the raw data, decoded depth maps,
and confidence maps generates the best result, indicating that
decoding cues from the traditional method can help to guide
the depth estimation from ToF raw measurements.

MPI removal analysis. Multi-path interference causes dis-
tortion in the recovered ToF depth map, which is inherent to
the working principle of extracting depth from raw phase-
shifted measurements with respect to emitted modulated

infrared signals. Traditional methods usually explicitly model
the correction of the MPI error to further enhance the results,
which is not suitable for real-world scenes. In our proposed
method, we take double-frequency ToF raw measurements
as inputs, each of them is a 4-channel data with different
phase shifts, from which indirect light may help improve the
performance by leveraging additional sources of information.
Moreover, the ground-truth depth captured from the IDS
camera has little MPI error because it is a stereo-based
camera. These ideas help to compensate for the MPI effect,
and the visual results show that our estimated high-resolution
depth map preserves many details.
Noise removal analysis. In the traditional pipeline of ToF
depth recovering, denoising is usually based on arbitrary
rules and assumptions, which often lose effectiveness with
changes in intensity and scenes of the received signals.
This causes serious noise in areas with low reflection for
weak input signals. In contrast to conventional methods, our
proposed algorithm provides a simple but strong learning
framework to translate the noisy ToF raw data to the high-
quality depth map, avoiding the above strict assumptions.
From Fig. 7, we can see that our estimated depth maps are
much smoother than ToF depth maps in the plane areas. Two
ways are used to remove the effect of noise - we take 10 shots
of the raw measurements for each scene to reduce the shot
noise, and an average depth of the 10 shots is used as ground
truth to alleviate random noise.

F. Results in complex indoor scenes

Our ToF-100 dataset primarily focuses on single or mul-
tiple objects, which are relatively small in scale. Here we
validate the generalization capability of our method on some
other complex indoor scenes, including office room and
laboratory. As can be seen in Fig. 7, our method also provides
competitive visual results performance, demonstrating its
generalization capability.

VI. CONCLUSION

In this paper, we collect the first large-scale real-world
ToF-100 dataset consisting of ToF sensor raw measurements,



confidence map, sparse point cloud, normal map, depth
map, and the corresponding ground-truth. Based on ToF-100,
we design a novel learning framework to jointly estimate
the high-resolution depth and normal maps from ToF raw
data. Experiments show that our approach significantly out-
performs the current state-of-the-art methods and achieves
outstanding performance on our ToF-100 dataset for the
estimation of depth and normal maps jointly.
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