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Abstract— As multi-robot systems (MRS) are widely used
in various tasks such as natural disaster response and social
security, people enthusiastically expect an MRS to be ubiquitous
that a general user without heavy training can easily operate.
However, humans have various preferences on balancing be-
tween task performance and safety, imposing different require-
ments onto MRS control. Failing to comply with preferences
makes people feel difficult in operation and decreases human
willingness of using an MRS. Therefore, to improve social
acceptance as well as performance, there is an urgent need to
adjust MRS behaviors according to human preferences before
triggering human corrections, which increases cognitive load.
In this paper, a novel Meta Preference Learning (MPL) method
was developed to enable an MRS to fast adapt to user pref-
erences. MPL based on meta learning mechanism can quickly
assess human preferences from limited instructions; then, a
neural network based preference model adjusts MRS behaviors
for preference adaption. To validate method effectiveness, a task
scenario ”An MRS searches victims in a earthquake disaster
site” was designed; 20 human users were involved to identify
preferences as {”aggressive”, ”medium”, ”reserved”}; based on
user guidance and domain knowledge, about 20,000 preferences
were simulated to cover different operations related to {”task
quality”, ”task progress”, ”robot safety”}. The effectiveness of
MPL in preference adaption was validated by the reduced
duration and frequency of human interventions.

I. INTRODUCTION
An multi-robot system (MRS), where multiple robots

with various functions are coordinated to perform tasks,
are widely used for complex and large-scale missions, such
as disaster search and rescue [1], [2], site surveillance
[3], [4], and social security [5], [6]. Advanced by recent
developments in artificial intelligence algorithms, sensor and
power technologies, the capability of MRS in task planning,
environment perceiving, following human control has been
largely improved, leading to wide real-world applications.

However, for general users it is still challenging to control
an MRS to achieve desired mission performance, impeding
the wide MRS implementations. One critical cause is the
failure of human adaptation. First, human preference is
dynamically associated with robot behaviors, task progress,
and environmental risks. It is challenging to estimate human
preferences by using only pre-defined motions while ignoring
dynamic status of robots and environmental constraints.
Second, human users have various preferences, imposing
the MRS control with different requirements related to in-
process robot behaviors, safety concerns, mission efficiency,
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Fig. 1. The illustration of using MPL to guide MRS adaptation of human
preferences, including ”aggressive” emphasizing on Progress >> Quality
> Safety, ”medium” emphasizing on Progress = Quality = Safety, and
”reserved” emphasizing on Safety >> Quality > Process. The colored
shadow areas denote safety distance to obstacles adjusted according to
human preferences. The black dots highlighted UAV locations.

etc. For example, an MRS customized by aggressive users
who focus more on execution speed may fly at high speed in
area inspection which is unacceptable for reserved ones who
focus more on safety assurance in victim search [7]. Third,
complying with human preferences needs intensive human
monitory and corrections, adding a heavy cognitive load onto
a human user, further increasing the operation difficulty and
decreasing human willingness to use an MRS [8].

To adapt to human preferences and finally lower down the
operation difficulty of an MRS, in this paper, a novel fast user
adaptation model, Meta Preference Learning (MPL), was
developed to quickly extract preference information from
limited user instructions; then integrate it into the robot
motion planning model to customize MRS deployments
according to user preferences. The method idea is illustrated
in a simulated earthquake disaster site, shown in Fig. 1,
in which MPL helps a searching and rescuing MRS team
to adapt to different preferences {”aggressive”, ”medium”,
”reserved”} by balancing the task progress, execution quality,
and robot safety (the details are in the Evaluation section).
This paper mainly has three contributions:

1) A novel fast user adaptation method, Meta Prefer-
ence Learning (MPL), is developed to explore control
preference from human instructions and adjust MRS
motions online to follow human preferences of mission
progress, quality and system safety. MPL is developed
by fusing a novel meta learning into a human pref-
erence learning model for quick preference estimation
and MRS motion corrections.

2) An active collaboration-calibration manner is designed
to improve the human-MRS teaming. Instead of wait-
ing for further human corrections, an MRS actively in-
terprets human instructions to understand performance
expectation; then proactively adjust its behaviors to
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adapt to a human, improving the collaboration quality
and meanwhile reducing human cognitive load in robot
operations.

3) A novel user-centered cognitive framework is designed
by fusing user cognition into robot motion planners.
The user cognition refers to general human cogni-
tion related to preferences, safety concerns, quality
assurance, etc. This framework provides a pipeline
to customize an MRS by user cognitive processes,
meaningful for future research.

II. RELATED WORK

Recently, numerous researches were done to use active
learning to learn human preferences. In [9] and [11], users
proactively chose more preferred trajectories for an au-
tonomous driving system to learn and behave satisfying
human preferences. [13] developed a ranking-based learning
framework to enable a robot to learn from human-ranked
grasping demos. Both of the above approaches represent
user preferences based on a linear weighted sum of pre-
defined features such as speed, acceleration and trajectory
smoothness. This human preference representation method is
inefficient as human preference is highly entangled with task
progress, robot performance, and environmental limitations
[12]. Moreover, these entangled relations are temporally
varying, making it unrealistic to define robots’ adaptive
behaviors for all dynamic moments. To address the problem
mentioned above, [14]–[16] modeled human preference by
Markov Decision Process (MDP) by involving reinforcement
learning into active learning and learning an adaptation
policy guiding robot behaviors. However, an MDP based
preference model requires a huge number of interventions
to adapt to a new human user. To achieve the goal of
faster human preference adaptation, in this work, a novel
architecture, meta-learning guided deep neural network, was
used to quickly and dynamically update human preference
models based on limited human feedback. Most importantly,
this fast adaptation method is integrated with an MRS control
method, specially designed for an MRS to adapt to the
preferences of its human operators.

To reduce users’ mental effort, researches investigated
query selection strategies in active preference learning for
robot performance improvement [10], [12], [17]. [10] utilized
the information gain formulation to help a robot to propose
easy-answered but informative queries for robots to request
guidance while reducing human mental efforts. [12] provided
trajectories that are easily distinguishable for the user by
maximizing the difference of the presented trajectories in
the regret aspect. In [17], an order optimization strategy
was developed to propose queries targeting entities that are
related to each other, giving users few continuous context
switching to reduce the workload of the human teach-
ers, making them reply faster and consequently increasing
the human preference learning. However, above approaches
mainly focus on query delivery instead of query generation
which is more critical for retrieving useful human guidance
compared with query delivery. Moreover, the sub-optimal

queries generated by robot based on its current understanding
of human preference mix unsatisfied and human preferred
behaviors together, consequently hindering the human pref-
erence learning process. Therefore, in this work, human
instructions on MRS performance factors, such as in-process
robot behaviors, mission execution quality, and robot system
safety were explicitly interpreted as motion adjustments. Ex-
plicit human instructions with interactive preference learning
can reduce the negative impact of unsatisfied robot behaviors
contained in sub-optimal queries, furthermore speed up user
preference adaptation.

III. PRELIMINARIES

A. Definitions

Consider an MRS with n robots, the position of each robot
i is denoted by xi ∈ R3. The volume of robots is denoted
as V ⊂ R3. The workspace is given by W = R3 \ (O+V +
safetydistance), where the volume of obstacles O is dilated
by V and human preferred safety distance. The human
preference based multi-robot flocking process is parameter-
ized by a set of parameters, {inner, height, speed, safety},
which change based on human preference H . inner denotes
the minimal distance between robots; height denotes the
flying height of robot system; speed represents the flying
speed of multi-robot system; and safety represents the
minimal distance between robots and obstacles.

B. Largest convex region in free space

To compute the largest convex region in a collision-free
workspace, a fast iterative method, IRIS, was designed in
[18]. Two recurrent steps are contained in this designed
method: given an ellipsoid E and the workspace W , find
the hyperplanes separating these two sets via quadratic
optimization; given the current convex region P , find the
largest E contained in P via semi-definite program. In this
work, we used IRIS to guide MRS behavior planning to
increase the robustness of finding feasible human preferred
flocking parameters. Besides, the waypoints generated by a
global path planner A∗ was used to increase the robustness
of IRIS in finding feasible P [19].

C. Human preference-based multi-robot flocking control

In [20], the author designed a tunable self-propelled flock-
ing model, which guaranteed stable behavior with a large
flocking speed in confined spaces. In this work, we adopted
the flocking method by involving human preferences. The
desired velocity is calculated by:

vi = vflocki + vrepi + vatti + vsafi + vheii + valii (1)

where vflocki is flocking speed towards to goal positions.
vrepi andvatti is short-range repulsion and long-range attrac-
tion terms, respectively. vsafi is repulsion between robots
and obstacles. vheii is robot flying height adjustment. valii is
velocity alignment. An upper limit is introduced to regulate
flying speed to prevent over adjusting:

vi =
vi
‖vi‖

hspeed (2)



Fig. 2. Workflow illustration for using MPL for fast human preference
adaptation. The left part is the meta-learning framework with a meta learning
based preference learning and adaptation. The right part illustrates the
fast human adaptation process during MRS deployments. Preferences are
adapted by three steps, including initial task planning (a), human instructions
for MRS behavior corrections (b), quickly update the deep neural networks
supported preference model (c) for MRS motion adjustment (a).

where hspeed denotes human preferred MRS flying speed.
The above-mentioned adjusting velocity terms have been
calculated by a simple half-spring model with a cutoff at
the specific value determined by human preference, H ,
under/above which velocity terms start working. For detailed
mathematical formulations, please refer to the attachment
file.

IV. META PREFERENCE LEARNING

The Meta Preference Learning (MPL) method is devel-
oped to provide a high-level adaptation strategy to guide the
control framework introduced in the above section.

A. User model

Robot motion behaviors are customized for a specific user
by iteratively exploiting relations between robot behaviors
and human instructions for motion improvements, expressed
below.

Ins =


+1 if(h∗ −R∗ > 0.1)

0 if(|h∗ −R∗| ≤ 0.1)

−1 otherwise

(3)

Ins denotes human instructions; R∗ represents the current
MRS motion status and ∗ represents one of the motion be-
haviors {robot inner distance (inner), flying height (height),
safety distance to the obstacle (safety), averaged team speed
(speed)}; +1 denotes that a human prefers to increase R∗,
−1 denotes to decrease, and 0 denotes no further motion
change needed. This formulation considered one human user
has different preferences H on MRS performance as tasks
proceed and locations vary.

B. Human preference model

Instead of representing human preference by a linear
weighted sum of predesigned features, in this work, a feed-
forward deep neural network M(θ) is used to approximate
human preferences according to the human feedback on
MRS performance. θ denotes the parameter set of human

preference model. The M(θ) is effective in exploring the
highly nonlinear relation between various preferences, robot
behaviors, and task situations. The input I of M(θ) includes
current robot statuses (positions, speed, accelerations) and
environment situations (obstacles position and target posi-
tion); the output is the human preference value H corre-
sponding to MRS motion status.

C. Learning framework

As shown in Fig. 2, to achieve fast human preference
adaptation, we designed a learning framework by using meta
learning to guide the neural network based preference learn-
ing. Implicit human preferences are extracted from multiple
human instructions. During the learning process, current
human preference model M(θt) predicts preference values
Ĥt based on current It; then, MRS adjusts motion behaviors
by using the preference based multi-robot flocking model
designed in Sec. III-C. Then, a user gave instructions Inst
to further adjust robot behavior. And new human preference
values, Ĥnew = Ĥt+0.1Inst, are considered as the training
label for time step t + 1. To evaluate the result of learning
H , the L2-Norm distance between H and Ĥ is calculated:

L(M(θ)) =
1

2
‖H − Ĥ‖2 (4)

Learning different users’ preferences is considered as as
different tasks via meta-learning algorithms, which is fun-
damentally different from optimizing the human preference
model to represent all the users. For each training epoch,
a batch of n = 10 user preferences, Dtrain is used; each
person pi (i = 1, ..., n) gives new instruction as new samples
Insi to update the training date set Dsupport

pi and label set
Ĥnew,

θ′pi = θ − α5θ LDsupport
Pi

(M(θ)) (5)

where α is the learning rate of inner optimization. With the
unused preference samples Dquery

pi , the meta-learning model
is trained to maximize performance. The meta objective is
defined as following [21]:

minθ
∑

Dpi
∈Dtrain

LDquery
pi

(M(θ′pi)) (6)

Another meta-learning model ”Reptile” in [22] is also used
to evaluate the reliability of the fast human adaptation
method. Instead of applying stochastic gradient descent on
the meta-model parameters θ to compute the gradient of
LDquery

pi
(M(θ′pi)), meta-model parameter θ is directly up-

dated by θ′pi :

θ ← θ + β
1

n

n∑
i=1

(θ′pi − θ) (7)

where the β is the meta-learning rate. After meta-training
process, an optimal meta preference model M(θ∗) can
be obtained to guide fast human preference adaption with
limited human instructions.



Fig. 3. Illustration of experiment setting, include an earthquake disaster
site, human preference and multi-robot flocking behaviors. User preferences
were identified from pioneer user study regarding to the priority in ensur-
ing ”Progress”, ”Quality” and ”Safety”. Three typical user preferences,
”Aggressive”, ”Medium” and ”Reserved”, were used.

V. EVALUATION

To evaluate MPL’s effectiveness in supporting fast human
adaptation to an MRS, a multi-robot search and rescue in
an earthquake site was designed in a real-gravity simula-
tion environment. The following aspects were validated. (i)
the effectiveness of MPL in reducing human interventions,
which is for robot behavior correction and indicates human
cognitive load; (ii) the effectiveness of MPL in reducing
the intervention duration before MRS achieves qualified
performance. In this research, to provide human preferences
for model learning and validation, a pioneer user study with
about 20 human volunteers was conducted to finally identify
three types of user preferences {”Aggressive”, ”Medium”,
and ”Reserved”}. Based on the domain knowledge in MRS
deployments and flocking task requirements, motion behav-
iors of MRS were interpreted as the motion status with value
ranges regarding to obstacle and target locations (detailed
in Section V.A). Targets in this task were the areas that
potentially include victims or has abnormal fire and smoke
spots.

A. Experiment setting

Fig. 3 shows the experiment environment ”MRS search
and rescue in an earthquake disaster site”, which was de-
signed by using the open-source platform AirSim [23] and
Unreal Engine Editor [24]. To simulate flocking tasks, the
size of the earthquake site was set to 400 m × 400 m.
The multi-robot team consisted of five UAVs and flocked
in the disaster site to inspect abnormal fire and smoke
area and identify victims for further assistance. The MRS
motion status included four types of flocking behaviors: 1).
”covering area” represented by the minimal distance between

Fig. 4. Human preference values for three typical user preferences ”Ag-
gressive”, ”Medium” and ”Reserved” in four kind of situations (”FF”: away
from obstacles and target, ”TF”: near obstacles but away from target, ”FT”:
away from obstacles but near target, and ”TT”: near obstacles and target).
For ”Area (covering area)/m”, ”Height (flying height)/m” and ”Speed (flying
speed)/(m/s)”, darker color represents higher preference value; while for
”Dist. (safety distance)/m”, darker color represent closer to obstacles.

UAVs was set within [2m, 5m] ; 2). ”average flying height”
denoted by the average altitude of UAVs was set within [0m,
30m]; 3).”flying speed” represented by the average speed of
UAVs was set within [3m/s, 8m/s]; 4). ”safety distance to
the obstacles” represented by the minimal distance between
UAVs and obstacles was set within [0m, 3m].

For searching and rescuing task, three aspects, ”Progress”,
”Quality” and ”Safety”, were used to illustrate human
preferences on MRS deployments. ”Progress” represents the
total mission time needed in a task and is mainly affected by
”covering area” and ”flying speed”; ”Quality” denotes the
in-process searching resolution, in which a higher resolution
means a more careful and slower search for potential targets
and was affected by ”flying height” since the higher flying
height the less likely for an MRS to discover a target.
”Safety” was the safety distance of the MRS to obstacles and
was affected by ”safety distance”. As shown in Fig. 3, three
types of human preferences, ”Aggressive”, ”Medium” and
”Reserve” were involved. ”Aggressive” was human prefers
to finish a task quickly with an more emphasize on mission
progress, and less emphasize on mission quality and system
safety. ”Reserved” denotes a human prefers to be cautious
about the robot operation by maintaining robot safety and
mission quality. The expected robot behavior details corre-
sponding to these three types of human preference are shown
in Fig. 5.

To analyze the effectiveness of MPL in fast adaptation,
the testing process was designed to adapt to multiple hu-
mans continually; a baseline method without meta-learning
mechanism was used to serve as a control group. Two
meta-learning algorithms MAML and Reptile were used
to confirm method’s reliable performance. The duration of
human intervention during one preference adaptation and
the number of human interventions needed for achieving
qualified performance were compared and analyzed.

B. Result analysis

Human User Study. With the pioneer user study involving
20 human volunteers, human preferences in MRS opera-
tion were identified as three types {”aggressive, medium,
reserved”}; based on task understanding, each type of pref-
erences was interpreted by volunteers as a value range



Fig. 5. Robot behavior illustration for three typical user preferences
”Aggressive”, ”Medium” and ”Reserved”.

of a motion behavior regarding to the location of both
targets and building obstacles. The details of one sample for
{”aggressive, medium, reserved”} are listed in Fig. 4. The
sample behavior illustrations for different human preferences
are shown in Fig. 5.

Learning Performance Validation. With volunteer guid-
ance, motion behaviors such as {”covering area”, ”flying
height”, ”distance to an obstacle”, ”flying speed” } within the
above ranges were sampled to generate about 20,000 prefer-
ence samples and each sample denote the operation style of
one human; these samples followed into the three categories
”aggressive, medium, and reserved”; each category includes
about 33% of the total preference samples. To evaluate
MPL performance, another 30 human preference samples
suggested by human volunteers were used. As shown in
Fig. 6, after two times of update, the L2 losses between
real human preference and predicted human preference of
human preference models trained with MAML and Reptile
are less than 0.05; while the L2 losses obtained from baseline
methods are greater than 0.05. It shows the proposed method
MPL has a faster convergence speed to customize MRS
motions for human adaptation.

Adaptation Effectiveness Validation. To validate the
method’s effectiveness in fast preference adaptation, the
multi-robot behaviors during one human intervention phase
were analyzed; the average number of human interventions
needed for the MPL to accurately estimate one human
preference in MRS motion control was calculated. As shown
in Fig. 7, it was a sample process of MPL supported human
preference adaptation during one complete flocking path. The
baseline is the method without meta learning. The black
boxes shown in Fig. 7 were the human interventions needed
for MPL model adapting to a specific preference. The darker
black boxes represent the first human intervention, while the
lighter black box denotes the following human interventions
following prior interventions. To evaluate the effectiveness
of MPL in fast adapting user preference, the average in-
tervention duration (steps in one box) was calculated. The

Fig. 6. Testing Loss comparison between the developed method MPL
which have two formats based on two meta learning algorithms {”MAML”,
”Reptile”}, and the baseline methods which are traditional preference
models without meta learning support. It shows with the same update
number, MPL adapted to human preference faster than traditional adaptation
methods.

intervention duration of MPL (12.6±3.7) was 42.4% shorter
than that of the baseline method (21.9± 17), validating the
method’s effectiveness in fast adapting to the user preference.
As shown in Fig. 8, one human intervention duration example
for the four MRS behaviors was illustrated. As shown in Fig.
8(left), the human intervention duration needed is 2 steps’
shorter than that of the baseline method. Fig. 8(a,b,c,d) shows
that with the same steps, MRS behaviors in ”covering area”,
”flying height”, ”safety distance” and ”flying speed” evolve
faster comparing with that guided by the baseline human
preference model. Besides, in order to validate MPL can
fast generalize to similar situations, the average number of
human interventions (the number of boxes) needed for an
MRS evolving to ”Aggressive”, ”Medium” and ”Reserved”
human preferences was calculated by another 30 human
preferences generated by domain knowledge and pioneer
user study. As shown in Fig. 9, MPL used fewer interventions
than the baseline method for all ”Aggressive”, ”Medium”
and ”Reserved” human preferences. Given intervention fre-
quency and time duration are closely correlated with human
cognitive load and operation difficulty, the reduced inter-
ventions proved MPL positively reduced human cognitive
burden and the operation difficulty of a human.

VI. CONCLUSION AND FUTURE WORK

This paper developed a novel fast adaptation method, Meta
Preference Learning (MPL), to enable multi-robot systems to
adjust team motions according to human preferences quickly.
To validate method effectiveness, a five-UAV-based multi-
robot team was deployed for victim search in an earthquake
disaster site; with 20 volunteer based user study, three
types of user preferences were identified as ”Aggressive”,
”Medium” and ”Reserved”. The effectiveness of our pro-
posed method for fast adapting to users was validated by the
reduced human intervention frequency, and the interaction



Fig. 7. The illustration of the process of multi-robot system continually
adapting to three typical user preferences ”Aggressive”, ”Medium” and
”Reserved”. The black boxes are the human interventions needed for MPL
model adapting to a specific huam preference.

Fig. 8. Illustration of robot behaviors adaptation based on explicit
human instructions during the first intervention phase of fast adaptation
to ”Aggressive” human preference.

Fig. 9. The average number of human intervention phases needed for
adapting to three typical user preferences calculated over ten experiments
each.

times for correcting MRS behaviors. Given the capability of
enabling cognitive teaming, MPL can be extended to guide
flexible teaming multiple robots and even the cooperation
between vehicles and human units. In the future, psychology
studies could be done to investigate the triggering and
maintenance mechanism for some cognitive processes such
as safety concern and trust; then, the adaptation method could
be enriched and further improved for better human-MRS
collaboration.

REFERENCES

[1] C. Mouradian, S. Yangui and R. H. Glitho, ”Robots as-a-service in
cloud computing: search and rescue in large-scale disasters case study,”
IEEE CCNC, pp. 1-7, 2018.

[2] Z. Beck, Teacy, N. R. Jennings and A. C. Rogers, ”Online planning
for collaborative search and rescue by heterogeneous robot teams,”
Association of Computing Machinery, 2016.

[3] J. Roldán, E. Peña-Tapia, P. Garcia-Aunon, J. Del Cerro, and A.
Barrientos, ”Bringing adaptive and immersive interfaces to real-world
multi-robot scenarios: Application to surveillance and intervention in
infrastructures,” in IEEE Access, pp. 86319-86335, 2019.

[4] J. Scherer and B. Rinner, ”Multi-robot persistent surveillance with
connectivity constraints,” in IEEE Access, 8, pp. 1509-15109, 2020.

[5] K. Garapati, J. J. Roldán, M. Garzón, J. del Cerro, and A. Barrientos,
”A game of drones: Game theoretic approaches for multi-robot task
allocation in security missions,” in Iberian robotics conference, pp.
855-866, 2017.

[6] L. V. Utkin, V. S. Zaborovsky, and S. G. Popov, ”Siamese neural
network for intelligent information security control in multi-robot
systems,” in Automatic Control and Computer Sciences, 8, pp. 881-
887, 2017.
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