
RP-VIO: Robust Plane-based Visual-Inertial Odometry for Dynamic
Environments

Karnik Ram, Chaitanya Kharyal, Sudarshan S. Harithas, K. Madhava Krishna

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. eCF ID: ras.IROS21.223.71579967

Abstract— Modern visual-inertial navigation systems (VINS)
are faced with a critical challenge in real-world deployment:
they need to operate reliably and robustly in highly dynamic
environments. Current best solutions merely filter dynamic
objects as outliers based on the semantics of the object category.
Such an approach does not scale as it requires semantic
classifiers to encompass all possibly-moving object classes; this
is hard to define, let alone deploy. On the other hand, many real-
world environments exhibit strong structural regularities in the
form of planes such as walls and ground surfaces, which are also
crucially static. We present RP-VIO, a monocular visual-inertial
odometry system that leverages the simple geometry of these
planes for improved robustness and accuracy in challenging
dynamic environments. Since existing datasets have a limited
number of dynamic elements, we also present a highly-dynamic,
photorealistic synthetic dataset for a more effective evaluation
of the capabilities of modern VINS systems. We evaluate our
approach on this dataset, and three diverse sequences from
standard datasets including two real-world dynamic sequences
and show a significant improvement in robustness and accuracy
over a state-of-the-art monocular visual-inertial odometry sys-
tem. We also show in simulation an improvement over a simple
dynamic-features masking approach. Our code and dataset are
publicly available†.

I. INTRODUCTION

The visual-inertial navigation systems (VINS) of today
are cheap, compact, and provide geometry and pose esti-
mates in real-time with centimeter-level accuracy. VINS are
increasingly being used in mobile robot navigation, virtual
reality, and augmented reality applications [1]–[3]. Cameras
and inertial measurement units (IMUs) in VINS complement
each other: IMUs resolve the scale factor ambiguity with
monocular cameras, while cameras render the unobservable
IMU biases and intrinsics observable. Yet, the approach
has some limitations. Apart from the additional hardware
that needs to be accurately synchronized and calibrated, the
system needs to perform sufficient rotation and acceleration
motions to keep the gravity and scale observable [4]. For
extended operation, VINS also require online calibration
where degenerate trajectories may render the extrinsics and
intrinsics unobservable [5, 6].

Another significant limitation is their performance in visu-
ally dynamic environments that have multiple independently
moving objects. The fundamental multiview geometry [7]

All authors are with the Robotics Research Center at IIIT Hyderabad, In-
dia. Correspondence email: karnikram@gmail.com. The authors thank
the anonymous reviewers for helpful comments, and MathWorks India
Hyderabad for generous financial support.

†Project page: https://rebrand.ly/rp-vio

Input image + IMU

Our planar features Baseline features

x0 x1 x2 x3

π0 π1

p0 p1 p2

Our plane-based optimization

x0 x1 x2 x3

p0 p1 p2

Baseline optimization

−15 −10 −5 0 5 10 15

x [m]

−15

−10

−5

0

5

10

15

y
[m

]

Our trajectory and ground truth

−150 −100 −50 0 50 100 150

x [m]

−300

−200

−100

0

100

y
[m

]

Baseline trajectory and ground truth

Fig. 1: Overview: Motivated by the presence of large planar
surfaces in man-made environments, we propose a monocular VIO
system that estimates motion only from one or more planes in the
scene based on their induced homographies, and ignoring all off-
the-plane features. We show that this leads to improved robustness
and accuracy in dynamic environments. — (blue) indicates the
estimated trajectory and — (magenta) indicates the ground truth.

constraints hold only for static points and lead to errors
when applied on dynamic points. This problem is espe-
cially significant during the initialization phase of monocular
VINS, where pose estimates from visual SfM are usually
directly aligned with the preintegrated IMU measurements
to initialize the scale and IMU parameters. Incorrect visual
pose estimates at this stage can lead to complete tracking
failure, as we demonstrate in our experiments. The traditional
approach of applying RANSAC to filter the dynamic features

ar
X

iv
:2

10
3.

10
40

0v
2 

 [
cs

.R
O

] 
 5

 D
ec

 2
02

1

https://rebrand.ly/rp-vio


using a fundamental matrix model works well only for a
small number of dynamic features, provided the features
are also not following any degenerate motion profiles along
the epipolar plane [8]. Motion segmentation approaches to
directly predict the motion status of each image pixel often
have elaborate multi-stage pipelines to distinguish the ego-
motion from the object motion, resulting in high computation
times [9] that are not yet suitable for real-time SLAM
systems.

Current best approaches use semantic labels to filter out
features from potentially-dynamic semantic classes [10, 11].
Semantic segmentation, fuelled by deep learning, has seen
tremendous progress and can produce accurate semantic
labels at frame rate. But the notion of a dynamic class is
handcrafted, and enumerating all possible dynamic classes
leads to intractability. A tractable approach would be to
instead directly identify static structures in a scene for feature
tracking, bypassing semantics. We note that planar surfaces
are the most abundant static regions in everyday man-made
environments. Crucially, planes also offer a simple geometry
that can be further exploited for an improved estimation.
With this insight, we propose RP-VIO, a plane-based monoc-
ular visual-inertial odometry (VIO) system that is tailored for
dynamic environments.

RP-VIO uses only features from one or more planes in the
scene, identified by a plane segmentation model, and uses
the plane-induced homographies [7] for motion estimation.
We augment a state-of-the-art monocular VIO system [12]
with our proposed homography constraints, and significantly
improve performance over the state-of-the-art on an in-house
photorealistic synthetic dataset, as well as three diverse
sequences from standard datasets including two real-world
dynamic sequences.

To summarize, our main contributions are as follows:
• RP-VIO, a monocular VIO system (built atop VINS-

Mono [12]) that only uses planar features, and their
induced homographies during both initialization and
sliding-window estimation for improved robustness and
accuracy in dynamic environments.

• A photorealistic visual-inertial dataset, which unlike
existing datasets, contains dynamic characters present
throughout the sequences (including initialization), and
with sufficient IMU excitation.

• An extensive evaluation of our method against [12] on
our in-house dataset, an outdoor simulated sequence
from the recently released VIODE dataset [10], as
well as two challenging real-world sequences from
OpenLORIS-Scene [13] and ADVIO [14] using a CNN-
based plane segmentation model.

II. RELATED WORK

A. Visual-Inertial Odometry

A concise overview of VINS research can be found
in [15]. We focus on closely related visual-inertial odometry
algorithms (VIO) herein, which unlike visual-inertial SLAM
systems [16, 17], only estimate the trajectory of the device
and do not build a globally consistent map.

Filtering-based approaches to VIO still continue to be
widely prevalent because of their efficiency. An important
work in this area is the multi-state constraint Kalman fil-
ter (MSCKF) [18] which adopts a structureless approach
and marginalizes out the landmark positions, avoiding the
quadratic EKF cost. A modern, performant implementation
can be found in OpenVINS [19].

Optimization-based approaches instead solve for the entire
trajectory [20, 21] or a sliding window of recent poses [12,
22], and are generally more accurate and robust. An impor-
tant enabler for optimization-based VINS is IMU preintegra-
tion [23] which allows multiple inertial measurements to be
summarized, reducing state space size.

B. Monocular VIO using Planes

Plane-based visual-inertial systems that use stereo or depth
sensors have been proposed in many works [21, 24, 25].
In monocular VIO systems however, planes are harder to
segment accurately and their depths are also not directly
available.

A monocular VIO system that uses only ground plane
features, within an UKF was proposed in [26]. They also
showed that the translation in the direction of the ground-
plane normal becomes globally observable, reducing the
total number of unobservable directions to three. A direct
frame-to-frame planar homography based VIO formulation
was proposed in [27] for a downward-facing camera, but
assumed a laser rangefinder for accurately estimating the
scale. A recent optimization-based monocular VIO system
used an efficient plane and line parameterization [28], while
also leveraging a deep neural network for plane instance
segmentation. However, all of these approaches have only
been evaluated in static environments.

C. VIO in Dynamic Environments

A systematic survey of approaches for visual SLAM and
visual odometry in dynamic environments can be found
in [29]. Broadly, these approaches filter dynamic elements
as outliers [10, 11, 30], or jointly estimate the egomotion
and the motion of the dynamic elements [31, 32]. Our focus
is on the former class of approaches as the latter approaches
typically assume device egomotion to be readily estimated.

Relatively fewer approaches have specifically addressed
VIO in dynamic environments. A method to detect conflicts
between vision-only and inertial-only estimates has been
presented in [33], but assuming the inertial measurements are
always more reliable. [10] exploited semantics to mask out
dynamic objects for better egomotion estimation. However,
this approach requires an enumeration of static and dynamic
classes which is not always possible.

Datasets: The lack of publicly-available visual-inertial
datasets that capture the dynamic nature of real-world envi-
ronments has also made it difficult to evaluate the robustness
of existing approaches. Progress has been made on this front
with the recent release of the ADVIO [14] and OpenLORIS-
Scene [13] datasets. But the sequences in ADVIO are suitable
only for a coarse, long-term evaluation of VIO algorithms



since their ground truth is only sub-meter accurate. The
sequences in OpenLORIS on the other hand were captured
from a ground robot without sufficient excitation for the
IMU which leads to unobservability [4], making it difficult
to isolate the effect of the dynamic characters. Recently, a
challenging simulated dataset was proposed in [10], along
with an evaluation of two state-of-the-art VIO algorithms
[12, 34] where they showed significant degradation of their
accuracy. These sequences however do not contain enough
dynamic characters present throughout the sequences, and
during the initialization subsequence, which is the most
fragile part of the system, there are no dynamic characters
at all.

Conclusion: To the best of our knowledge, a monocular
VIO system that optimizes over planar homographies and
that is targeted at dynamic environments has not been
proposed before. A fully dynamic visual-inertial dataset
with accurate ground truth, synchronization, and sufficient
observability also does not publicly exist.

III. METHOD

While our proposed method is general enough to be
integrated into any VIO or SLAM system, in this work
we build upon VINS-Mono [12]. VINS-Mono is a state-of-
the-art, monocular VIO system that is based on a tightly-
coupled sliding-window optimization of preintegrated IMU
measurements and visual features. We consider it as a pure
VIO system and ignore its relocalization and loop-closure
modules. We build upon its front-end to detect and track
only planar features in the scene, and introduce the induced
planar homography constraints into its initialization and
optimization modules.

A. Definitions

W denotes the world frame whose z-axis is in the downward
direction along gravity. B denotes the body frame, which
co-incides with the IMU frame, and C denotes the camera
frame. Bi and Ci denote the body frame and camera frame
at time ti respectively. Rji and tji, together written as the
homogeneous matrix Tji, denote the rotation and translation
that transforms points from the frame at ti to the frame at
tj . The frame can be the camera frame or the body frame,
depending on the context. Ri and ti denote the rotation and
translation of the frame at ti with respect to the world frame.
ul denotes the normalized 2D image coordinates of the l-th
visual feature. The corresponding 3D point pl is represented
by its inverse depth λl with respect to its first frame of
observation. A plane πp is represented by its normal and
distance parameters (n, d) with respect to the C0 frame. The
planar homography matrix (Fig. 2) which maps the 2D image
coordinates of a planar point from the C0 frame to the Cj
frame is denoted as Hj .

The state of our system at ti, xi, is defined by the
IMU position, orientation, velocity, biases, the inverse depth
of the 3D features, and the plane parameters, i.e. xi

.
=

[Ri, ti,vi,bi, {λl}, {πp}].

X denotes the state of all the frames within the sliding
window K, which we want to estimate, i.e. X .

= {xi}i∈K.

B. Front-end

Our system takes as input grayscale images, IMU mea-
surements, and plane segmentation masks. These plane seg-
mentation masks are obtained from a CNN-based model
which we describe in Sec. III-E. We apply the obtained plane
instance segmentation masks on the original images to detect
and track only the features that belong to the (static) planar
regions in the scene, while also maintaining information
about which plane each tracked feature belongs to. To avoid
detecting any features along the edges of the mask which
might belong to a dynamic object, we apply an erosion
operation on the original masks. Further, we use RANSAC to
fit a separate planar homography model to the features from
each plane to discard any outliers. These outliers could be
features arising from incorrect matches by the KLT optical
flow algorithm, or from inaccurate segments that do not
belong to the larger parent plane. The raw IMU measure-
ments between image frames are converted into preintegrated
measurements, and image frames with sufficient parallax and
feature tracks are selected as keyframes.

C. Initialization

The main visual-inertial sliding-window optimization is
non-convex and is minimized iteratively which requires an
accurate initial estimate. To obtain a good initial estimate
without making any assumptions about the starting config-
uration, a separate loosely-coupled initialization procedure
is used where the visual measurements and inertial mea-
surements are processed separately into their respective pose
estimates and then aligned together to solve for the unknowns
in multiple steps.

We begin by first solving for the camera poses, the 3D
points, and the plane parameters. From the window of initial
image frames, two base frames having sufficient parallax are
selected. Out of all their matching features we select only
the ones that arise from the largest plane in the scene, i.e. the
plane having the maximum number of features. Using these
features, we fit a planar homography matrix H relating the
two base frame poses and the largest plane using RANSAC.
This homography matrix is normalized and then decomposed
into the rotation, translation, and plane normal using the
analytical method of Malis and Vargas [35], as implemented
in OpenCV [36]. The method however returns up to four
different solution tuples which must be reduced to one. We
first reduce this solution set to two by enforcing the positive
depth constraint, i.e. all the plane features must lie in front of
the camera. We implement this as the constraint, nT

i uµ > 0,
where uµ is the mean 2D feature point in normalized image
coordinates. From the resulting two possible solutions, we
finally select the one whose rotation (after transforming to
B frame) is closest to the corresponding preintegrated IMU
rotation ∆R̃ij ,

arg min
k

‖∆R̃Tij(RBCR
k
ijR

T
BC)− I‖2 (1)



Fig. 2: The planar homography matrix H1 =
(
R1 +

t1n
T
0

d0

)
is a

3 × 3 matrix, arising from the planar constraint pl · n0 = d0,
which maps the observation ul from the first frame to ul

1 in the
second frame [7]. The known ambiguity in its decomposition can
be resolved using the IMU.

Even though the gyroscope bias inside the preintegrated
IMU rotation is not estimated yet, its magnitude is usually
too small to cause a difference in the solution. The estimated
pose from the decomposition is then used to triangulate the
3D positions of the features between the two base frames
and obtain an initial point cloud. The poses of the remaining
frames within the window are estimated with respect to this
point cloud using PnP. We note here that since the estimated
pose between the two base frames is in the scale of the
plane distance d, the triangulated point cloud and the deduced
poses are also in the same scale. All the pose estimates are
then fed into a visual bundle adjustment solver where, in
addition to the standard 3D-2D reprojection residual, we
include the following 2D-2D reprojection residual arising
from the planar homography,

rH = ulj −
(
Rj +

tjn
T

d

)
ul (2)

This residual measures the discrepancy between the ex-
pected observation of the point pl in frame Cj , obtained
by mapping its corresponding image location ul from the
first frame using the planar homography matrix, and the true
observation ulj . This is also illustrated in Fig. 2. The output
of this bundle adjustment is the up-to-scale (d) camera poses
and 3D feature points, and the plane normal. This unknown
scale (d), along with the remaining unknowns needed to
initialize the main optimization such as the gravity vector,
velocities, and IMU biases are estimated using the same
divide-and-conquer approach used in [12].

Once these are estimated, the camera poses and 3D feature
points are re-scaled to metric units, and the world frame is re-
aligned such that its Z-axis is in the direction of gravity. For
the planes in the scene other than the largest plane, including
planes that might be newly observed during operation, we
similarly compute their respective planar homography ma-
trices and decompose them. But for computation reasons,
we avoid doing another round of bundle adjustment and
the re-alignment of their poses with the IMU measurements

to estimate the respective scale factors dp. We instead di-
rectly estimate dp as the inverse ratio of each decomposed
translation tp (which is in the scale of dp as t

dp
) to the

corresponding metric translation t, which has already been
estimated previously using the largest plane and inertial
measurements. With this, all the visual and inertial quantities
in our state have been solved for, and these estimates are fed
into the sliding-window estimator as the initial seed for the
optimization.

D. Sliding-window Optimization

A full batch optimization of the entire history of poses,
map points, inertial and plane parameters quickly becomes
computationally infeasible for real-time operation. Instead, a
sliding-window of a fixed number of recent frames are opti-
mized over their associated inertial and visual measurements.
The optimization objective is described formally as follows.

We denote with Iij the set of all IMU measurements
between two consecutive frame instances i and j within
the window K. The set of all planar features observed in
frame i is denoted as Ci, and the set of all observed planes
is denoted as P . A factor graph representation of these states
and measurements within a simplified window is shown in
Fig. 3. The MAP estimate X ? of all the states in the sliding
window is obtained as the minimum of the sum of the
squared residual errors,

X ? .
= arg min

X
‖rp‖2 +

∑
(i,j)∈K

∥∥rIij∥∥2
+
∑
i∈K

∑
l∈Ci

ρ
(
‖rCil‖2

)
+
∑
p∈P

∑
i∈K

∑
l∈Ci

ρ
(
‖rH‖2

)
(3)

where rp is the prior residual resulting from marginaliza-
tion of the previous states, rIij is the preintegrated IMU
residual, rCil is the standard 3D-2D reprojection residual as
defined in [12], and ρ is a Cauchy loss that is used to down-
weigh any outliers. rH is our planar homography residual
that is defined as,

rH = ulj − T−1BC

(
Rji +

tjin
pT

i

dpi

)
TBCu

l
i (4)

This term is similar to the one used in the initialization,
except the pose and plane parameters are in the body
frame. The p-th plane normal np and depth dp which are
both originally defined in the first camera frame C0 are
transformed to the current body frame Bi as follows,

nBi = RTi RBCnC0

dB0 = dC0 + tBC · nB0

dBi = dB0 − tB0Bi · nB0 (5)



x0 x1 x2 x3

π0 π1

p0 p1 p2

Prior
Factor

IMU
Factor

Point
Factor

Plane
Factor

States

3D
Points

3D
Planes

Fig. 3: A factor graph representation of the (simplified) sliding
window optimization showing the states and measurements linked
together by the IMU, point, and plane factors.

This entire non-linear objective function is minimized
iteratively using the Dogleg algorithm with Dense-Schur
linear solver implemented in Ceres Solver [37]. At the end
of the optimization, the window is moved forward by one
frame to incorporate the latest frame. The state of the latest
frame is initialized by propagating the inertial measurements
from the previous frame. The dropped frame is marginalized
as done in [12]. The optimized plane parameters however are
not dropped or marginalized and are instead reused as and
when the plane is observed again.

E. Plane Segmentation

To segment the plane instances from each input RGB
image, we use the Plane-Recover [38] model. Their model
is trained using a structure-induced loss to simultaneously
predict plane segmentation masks and their 3D parameters,
with only semantic labels and no explicit 3D annotations.
The model runs on a single Nvidia GTX Titan X (Maxwell)
GPU at 30 FPS which also makes it suitable for real-time
VIO.

Despite the effectiveness of their model, we noticed in our
experiments that the predicted segments are often not con-
tinuous and single large planes were segmented as multiple
separate planes. To overcome this we introduce an additional
inter-plane loss function that constrains planes with small
relative orientations between them into a single plane.

Linter =
1

n

n∑
i=1

m∑
j=1

‖nji · nji − li‖2 (6)

where n is the plane normal, m is the number of planes
which we fix to 3, n is the number of images in a batch, and
li is the inter-plane label generated online that is assigned
the value 1 if 6 (nji ,n

j
i ) <

π
4 and 0 otherwise.

With this added loss function, we retrain the network with
their provided training data from SYNTHIA, and we train on
two additional sequences (00, 01) from the indoor ScanNet
dataset. To further improve the segmentation and capture the
fine boundary details, we employ a fully dense conditional
random field (CRF) model [39] that refines the network’s
segmentations. We use its default parameters as such without
much tuning. Segmentation results from the model for an
unseen real-world sequence that we use in our evaluations
are visualized in Fig. 5.

To summarize, in this section we’ve described how we
detect and track planar features from the scene, how we de-
compose their induced planar homography matrices into their
respective motion and plane estimates using the IMU, and
how we introduce the plane parameters as added constraints
into the initializer and the sliding-window optimization. In
the next section we demonstrate the effectiveness of this
approach in dynamic environments.

IV. EXPERIMENTS

We demonstrate using both simulated data and real-world
data that using only planar features and their induced planar
homography constraints leads to an improvement in estima-
tion accuracy in dynamic environments. All the evaluations
are run on a 6-core Intel Core i5-8400 CPU with 8 GB RAM
and a 1 TB HDD. To account for randomness from RANSAC
and the multi-tasking OS, we report the median results from
five runs for each evaluation. All code and data to reproduce
our results are available on our project page.

A. Simulation Experiments

RPVIO-Sim Dataset: For reasons explained in Sec. II-
C, we generate our own dataset in simulation with accurate
sensors and ground truth trajectories, and with sufficient IMU
excitation throughout the sequences. We progressively add
dynamic elements to these sequences and keep them visible
in all parts of the sequences, even during initialization.
This allows us to isolate their effect on the overall system
accuracy.

We build a custom indoor warehouse environment with
dynamic characters in Unreal Engine [40]. We borrow several
high-quality and feature-rich assets from the FlightGoggles
[41] project for photorealism. This environment is integrated
with AirSim [42] to spawn a quadrotor and collect visual-
inertial data. We collect monocular RGB images and their
plane instance masks at 20 Hz, IMU measurements and
ground truth poses at 1000 Hz. The IMU measurements are
sub-sampled to 200 Hz for our experiments. The camera
and IMU intrinsics, and the camera-IMU spatial transform
are obtained directly from AirSim. A time-offset of 0.03 s
between the camera and IMU measurements, introduced by
the recording process, is calibrated using Kalibr [43].

The quadrotor is controlled to move along a circle of
radius 15 m, while moving along a sine wave in the vertical
direction, resulting in a sinusoidal pattern. The sine excitation
along the height is to ensure a non-constant acceleration
and keep the scale observable [4]. We further command
it to accelerate vertically at the beginning of its motion,
before following the trajectory, to help the initialization.
The total trajectory is of 200 m length and 80 s duration,
with a maximum speed of 3 m/s. Within the circle formed
by the quadrotor, we introduce dynamic characters that
are performing a repetitive dance motion. We progressively
add more dynamic characters to each sequence, keeping
everything else fixed, starting from no characters (static) and
going up to 8 characters (C8), recording six sequences in
total. The yaw-direction of the quadrotor is also fixed to keep



−15 −10 −5 0 5 10 15

x [m]

−7.5

−5.0

−2.5

z
[m

]

(a) Side-view comparison between VINS-Mono — (green), RPVIO-
Single — (blue), and ground truth — (magenta) on the C2 sequence.
VINS-Mono accumulates error during its initialization (vertical mo-
tion), while RPVIO-Single tracks accurately throughout the sequence.

−15 −10 −5 0 5 10 15

x [m]

−15

−10

−5

0

5

10

15

y
[m

]

(b) Top-view comparison between Mask-VINS — (red), RPVIO-
Single — (blue), RPVIO-Multi — (green), and ground truth —
(magenta) on the C6 sequence. Original VINS-Mono fails to track
completely and is not included. Both RPVIO-Single and RPVIO-Multi
are closer to the ground truth than Mask-VINS.

Fig. 4: Trajectory comparisons from our simulated experiments.

the camera pointing towards the center of the circle, such that
the characters are in the FoV of the camera for the entire
sequence. The quadrotor and the characters are controlled
programmatically to ensure their motions are repeatable and
are in sync across all the sequences.

Evaluation: We evaluate VINS-Mono [12], and our pro-
posed method on these generated sequences. We use two
versions of our method, RPVIO-Single and RPVIO-Multi.
RPVIO-Single includes in the optimization only features
from the largest plane visible at any time, while RPVIO-
Multi includes features from all the visible planes. We also
create another version of VINS-Mono, called Mask-VINS,
that is modified to take as an additional input the same plane
instance masks as ours. It uses these masks to detect and
track all the features that belong to all the static planar re-
gions in the environment while avoiding features from all the
dynamic characters, similar to [10]. It uses the same feature
parameters as ours, and the masks are also eroded to avoid
tracking features along the mask edges which might belong
to dynamic characters. The back-end remains the same as
VINS-Mono. We use this additional version to investigate
the effect of the added planar homography residual term rH
in the optimization. We compute the RMSE of the estimated
trajectories of each method for every sequence, after SE(3)
alignment [44] with the ground truth trajectories, and report
them in Tab. I.

Discussion: The performance of VINS-Mono, Mask-
VINS, and RP-VIO on the static and one character sequences
are very similar. Since the number of static points are much
greater than the number of dynamic points, the effect of
RANSAC is the same as applying the mask. In the two

TABLE I: Results of the evaluation on our simulated dataset. We
report the median RMSE from five runs on each sequence. X
denotes complete tracking failure. Results which show a significant
improvement are underlined.

Absolute Trajectory RMSE (m)

Seq. VINS-Mono Mask-VINS RPVIO-Multi RPVIO-Single

Static 0.21 - 0.19 0.19

C1 0.24 0.23 0.28 0.23

C2 0.85 0.21 0.24 0.18

C4 X 0.68 0.76 0.56

C6 X 0.91 0.62 0.54

C8 X X 0.77 0.85

character sequence we note that VINS-Mono has a much
lower accuracy than Mask-VINS and RP-VIO, while the ac-
curacy of Mask-VINS and RP-VIO are again similar. VINS-
Mono accumulates most of the error during the initialization
as shown in 4a, when one of the characters is close to
the camera. In the four, six, and eight character sequences
however, VINS-Mono’s initialization error is too high and it
loses track completely. Mask-VINS and RP-VIO are still able
to track successfully in C4 and C6, but RPVIO-Single is the
most accurate (also shown in Fig. 4b) which alludes to the
role of the added homography constraints in the improved
robustness. In the C8 sequence ours is still able to track
successfully like the other sequences but Mask-VINS loses
track completely. This could be because the scene is very
cluttered and the few features that are left come only from a
single plane during initialization which is a degenerate case
for VINS-Mono’s fundamental matrix based SfM initializer.
RPVIO-Multi shows a better accuracy than RPVIO-Single in
this sequence which could be because unlike in the previous
sequences RPVIO-Single has fewer stable features to track
than RPVIO-Multi.

B. Experiments on Standard Datasets

Sequences: We evaluate the robustness of our system on
three more sequences from three diverse datasets. The first
sequence is from the newly released VIODE [10] dataset,
that was also generated using AirSim. This sequence was
captured in an outdoor city environment with many moving
vehicles, from a drone that is performing very aggressive
maneuvers including sharp rotations. We use their provided
segmentation masks to track features only along the road.
The second sequence is from the OpenLORIS-Scene [13]
dataset. This was captured in a real-world supermarket from
a floor-cleaning robot that contains many dynamic characters
in the form of moving people, trolleys, and bags. The third
sequence is from the ADVIO [14] dataset that was captured
from a hand-held smartphone in a real-world metro station.
This is the most visually challenging sequence out of the
three, with a narrow FoV and fast motions, and dynamic
characters in the form of a large moving train and people.
The total lengths of the three sequences are 166 m, 145 m,
and 136 m respectively.



Inputs PlaneRecover Modified PlaneRecover CRF Refinement

Fig. 5: Segmentation results for two challenging images in the OpenLORIS market-1 sequence, from the original model and the model
modified with our inter-plane loss are visualized. The output from our model is further refined with a dense-CRF, before being used by
our VIO system, and is also visualized here.

Evaluation: We use RPVIO-Single for all the three se-
quences since they contain predominantly only a single large
plane that can be tracked reliably at a time. We use the
same feature parameters that were used for the simulation
experiments without any tuning. We compute the RMSE ATE
of its estimated trajectories with respect to the ground truth
after SE(3) alignment and compare against VINS-Mono. The
median errors from five runs for each sequence are reported
in Tab. II. Since all the masked features predominantly
come from a single plane in all the three sequences, we
do not compare against Mask-VINS that was used in the
earlier evaluation since features from a single plane form a
degenerate configuration for the original VINS-Mono initial-
izer. Further, the unavailability of an off-the-shelf semantic
classifier that can accurately segment all the dynamic objects
present in both the real-world sequences also makes a fair
comparison with the Mask-VINS approach not possible. The
images in the ADVIO sequence are of a very high resolution
1280×720 and come at a high rate of 60 Hz which causes a
lot of frame drops in the VINS front-end. For this reason the
evaluation on this sequence alone is run on a 2 GHz 12-core
Intel Xeon CPU with 32GB RAM and an SSD.

TABLE II: Results of the evaluations on three diverse sequences.
We report the median RMSE from five runs on each sequence.

Absolute Trajectory RMSE (m)

Sequence VINS-Mono RPVIO-Single

VIODE-city-night-high 0.73 0.32

OpenLORIS-market-1 2.45 1.35

ADVIO-12 4.34 2.75

Discussion: Our method shows a significant improvement
over VINS-Mono on all three sequences. In the OpenLORIS
and VIODE sequences, our method used a lesser number of
features than VINS-Mono despite which it has shown greater
accuracy. This makes us believe that it might be sufficient
to track few stable features than tracking all possible fea-
tures, of which many can be noisy. On both the real-world
sequences, despite using a generic plane detection network
that has not been re-trained, the network and the CRF are
able to provide reliable plane segmentations that are still

−130 −120 −110 −100 −90 −80 −70

x [m]

−30

−25

−20

−15

−10

−5

y
[m

]

Fig. 6: Top-view comparison between RPVIO-Single — (blue),
VINS-Mono — (green), and ground truth — (magenta), on the
OpenLORIS market-1 sequence.

good enough for our method to track accurately. If scene-
specific training data is available, we expect more accurate
segmentations and a better overall trajectory estimate. For
scenes which can contain dynamic planar surfaces such as
from vehicles, specific ground or wall surface classifiers must
be trained and used instead. Training such specific surface
classifiers is still a more feasible approach than trying to
train semantic classifiers to segment all possible moving
objects. In the absence of clear planar structures however,
our method should be considered complimentary to general-
purpose point-based systems as and when planes become
visible, and not as a complete replacement.

V. CONCLUSION

We have proposed a monocular VIO system that uses only
one or more planes in the environment and their structural
regularity for an accurate motion estimation in dynamic
environments. We have validated its improved performance
in diverse simulated and real-world dynamic environments,
while showing the same baseline performance in static envi-
ronments. For real-world environments, using only a generic
plane segmentation model, we showed an improvement of
up to 45% over a state-of-the-art monocular VIO system.
We have also shown in our comparison with Mask-VINS
in simulation that our approach achieves better accuracy
than a simple dynamic-features masking approach which also
alludes to the role of the added structural constraints in the
improved robustness. The future scope of this work is to
extend RP-VIO into a full SLAM system to obtain clean and
consistent plane-based maps, without any off-the-plane noisy



features. Such an approach can also make use of additional
Manhattan constraints and even corresponding line features
for improved accuracy. Further, it can be investigated if the
predicted 3D plane parameters from the plane segmentation
model can be used for a faster initialization.

REFERENCES

[1] H. Oleynikova, C. Lanegger et al., “An open-source system for vision-
based micro-aerial vehicle mapping, planning, and flight in cluttered
environments,” Journal of Field Robotics, vol. 37, no. 4, pp. 642–666,
2020.

[2] Facebook, “Oculus vr,” https://oculus.com.
[3] Microsoft, “Hololens,” https://microsoft.com/en-us/hololens.
[4] K. J. Wu, C. X. Guo, G. Georgiou, and S. I. Roumeliotis, “VINS

on wheels,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 5155–5162.

[5] Y. Yang, P. Geneva, K. Eckenhoff, and G. Huang, “Degenerate
motion analysis for aided ins with online spatial and temporal sensor
calibration,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
2070–2077, 2019.

[6] Y. Yang, P. Geneva, X. Zuo, and G. Huang, “Online IMU intrinsic
calibration: Is it necessary?” in Robotics: Science and Systems XVI.
Robotics: Science and Systems Foundation, Jul. 2020.

[7] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-
d vision: from images to geometric models. Springer Science &
Business Media, 2012, vol. 26.

[8] A. Kundu, K. M. Krishna, and J. Sivaswamy, “Moving object detection
by multi-view geometric techniques from a single camera mounted
robot,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 4306–4312.

[9] J. Vertens, A. Valada, and W. Burgard, “SMSnet: Semantic motion
segmentation using deep convolutional neural networks,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2017, pp. 582–589.

[10] K. Minoda, F. Schilling et al., “Viode: A simulated dataset to address
the challenges of visual-inertial odometry in dynamic environments,”
IEEE Robotics and Automation Letters, pp. 1–1, 2021.

[11] C. Yu, Z. Liu et al., “DS-SLAM: A semantic visual SLAM towards
dynamic environments,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct. 2018, pp. 1168–1174.

[12] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile
monocular Visual-Inertial state estimator,” IEEE Trans. Rob., vol. 34,
no. 4, pp. 1004–1020, Aug. 2018.

[13] X. Shi, D. Li et al., “Are we ready for service robots? the OpenLORIS-
Scene datasets for lifelong SLAM,” in 2020 International Conference
on Robotics and Automation (ICRA), 2020, pp. 3139–3145.

[14] S. Cortés, A. Solin, E. Rahtu, and J. Kannala, “ADVIO: An authentic
dataset for visual-inertial odometry,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 419–434.

[15] G. Huang, “Visual-inertial navigation: A concise review,” in 2019
international conference on robotics and automation (ICRA). IEEE,
2019, pp. 9572–9582.

[16] C. Campos, R. Elvira et al., “ORB-SLAM3: An accurate open-source
library for visual, visual-inertial and multi-map SLAM,” arXiv preprint
arXiv:2007.11898, 2020.

[17] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an
open-source library for real-time metric-semantic localization and
mapping,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2020. [Online]. Available: https://github.com/MIT-SPARK/Kimera

[18] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[19] P. Geneva, K. Eckenhoff et al., “Openvins: A research platform
for visual-inertial estimation,” in Proc. of the IEEE International
Conference on Robotics and Automation, Paris, France, 2020.

[20] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Factor graph
based incremental smoothing in inertial navigation systems,” in 2012
15th International Conference on Information Fusion. IEEE, 2012,
pp. 2154–2161.

[21] M. Hsiao, E. Westman, and M. Kaess, “Dense planar-inertial slam
with structural constraints,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 6521–6528.

[22] S. Leutenegger, S. Lynen et al., “Keyframe-based visual–inertial
odometry using nonlinear optimization,” The International Journal of
Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.

[23] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
preintegration for Real-Time Visual-Inertial odometry,” IEEE Trans.
Rob., vol. 33, no. 1, pp. 1–21, Feb. 2017.

[24] A. Rosinol, T. Sattler, M. Pollefeys, and L. Carlone, “Incremental
visual-inertial 3d mesh generation with structural regularities,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 8220–8226.

[25] Y. Yang, P. Geneva et al., “Tightly-coupled aided inertial navigation
with point and plane features,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 6094–6100.

[26] G. Panahandeh, S. Hutchinson, P. Händel, and M. Jansson, “Planar-
Based visual inertial navigation: Observability analysis and motion
estimation,” J. Intell. Rob. Syst., vol. 82, no. 2, pp. 277–299, May
2016.

[27] B. Fu, K. S. Shankar, and N. Michael, “Rad-vio: Rangefinder-aided
downward visual-inertial odometry,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 1841–1847.

[28] X. Li, Y. Li et al., “Co-planar parametrization for stereo-slam and
visual-inertial odometry,” IEEE Robotics and Automation Letters,
vol. 5, no. 4, pp. 6972–6979, 2020.

[29] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual SLAM and
structure from motion in dynamic environments: A survey,” ACM
Comput. Surv., vol. 51, no. 2, pp. 1–36, Feb. 2018.

[30] Y. Sun, M. Liu, and M. Q. H. Meng, “Improving RGB-D SLAM
in dynamic environments: A motion removal approach,” Rob. Auton.
Syst., 2017.

[31] K. Eckenhoff, Y. Yang, P. Geneva, and G. Huang, “Tightly-Coupled
Visual-Inertial localization and 3-D Rigid-Body target tracking,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1541–1548, Apr.
2019.

[32] B. Bescos, C. Campos, J. D. Tardós, and J. Neira, “Dynaslam ii:
Tightly-coupled multi-object tracking and slam,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5191–5198, 2021.

[33] B. P. W. Babu, D. Cyganski, J. Duckworth, and S. Kim, “Detection
and resolution of motion conflict in visual inertial odometry,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
May 2018, pp. 996–1002.

[34] M. Bloesch, M. Burri et al., “Iterated extended kalman filter based
visual-inertial odometry using direct photometric feedback,” The Inter-
national Journal of Robotics Research, vol. 36, no. 10, pp. 1053–1072,
2017.

[35] E. Malis and M. Vargas, “Deeper understanding of the homography
decomposition for vision-based control,” INRIA, Tech. Rep. inria-
00174036, 2007.

[36] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[37] S. Agarwal, K. Mierle, and Others, “Ceres solver,” https://ceres-solver.
org.

[38] F. Yang and Z. Zhou, “Recovering 3d planes from a single image
via convolutional neural networks,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 85–100.

[39] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected
crfs with gaussian edge potentials,” arXiv preprint arXiv:1210.5644,
2012.

[40] E. Games, “Unreal engine,” http://unrealengine.com.
[41] W. Guerra, E. Tal et al., “FlightGoggles: Photorealistic sensor simula-

tion for perception-driven robotics using photogrammetry and virtual
reality,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, Nov. 2019, pp. 6941–6948.

[42] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
visual and physical simulation for autonomous vehicles,” in Field and
Service Robotics. Springer International Publishing, 2018, pp. 621–
635.

[43] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Nov. 2013, pp. 1280–
1286.

[44] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for Visual(-Inertial) odometry,” in 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Oct.
2018, pp. 7244–7251.

https://oculus.com
https://microsoft.com/en-us/hololens
https://github.com/MIT-SPARK/Kimera
https://ceres-solver.org
https://ceres-solver.org
http://unrealengine.com

	I Introduction
	II Related Work
	II-A Visual-Inertial Odometry
	II-B Monocular VIO using Planes
	II-C VIO in Dynamic Environments

	III Method
	III-A Definitions
	III-B Front-end
	III-C Initialization
	III-D Sliding-window Optimization
	III-E Plane Segmentation

	IV Experiments
	IV-A Simulation Experiments
	IV-B Experiments on Standard Datasets

	V Conclusion
	References

