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Abstract— Developing an agent in reinforcement learning
(RL) that is capable of performing complex control tasks
directly from high-dimensional observation such as raw pixels
is a challenge as efforts still need to be made towards improving
sample efficiency and generalization of RL algorithm. This pa-
per considers a learning framework for a Curiosity Contrastive
Forward Dynamics Model (CCFDM) to achieve a more sample-
efficient RL based directly on raw pixels. CCFDM incorporates
a forward dynamics model (FDM) and performs contrastive
learning to train its deep convolutional neural network-based
image encoder (IE) to extract conducive spatial and temporal
information to achieve a more sample efficiency for RL. In
addition, during training, CCFDM provides intrinsic rewards,
produced based on FDM prediction error, and encourages the
curiosity of the RL agent to improve exploration. The diverge
and less-repetitive observations provided by both our explo-
ration strategy and data augmentation available in contrastive
learning improve not only the sample efficiency but also the
generalization . Performance of existing model-free RL methods
such as Soft Actor-Critic built on top of CCFDM outperforms
prior state-of-the-art pixel-based RL methods on the DeepMind
Control Suite benchmark.

I. INTRODUCTION

In recent years, Reinforcement Learning (RL) has re-
ceived considerable attention for its achievements in games,
robotics, and autonomous driving. In particular, the Deep
Q-Network[1] outperforms human on Atari games [2]. The
AlphaGo[3] and AlphaZero [4] defeat professional Go play-
ers. Recent advances in deep RL has even enabled agents
to perform complex control tasks directly from visual obser-
vation of the environment: solving complex task from first-
person view observations [5], [6], autonomously performing
robotic tasks [7], [8], [9], [10].

Despite the aforementioned successes, sample efficiency
and generalization are two main challenges in performing
robotic tasks directly from visual observation. There has
been remarkable progress in improving sample efficiency and
generalization such as CURL [11], RAD [12], DrQ [13],
Planet [14], SAC-AE [15], SLAC [9]. Therein, combination
of contrastive learning and data augmentation techniques
from computer vision with model-free RL show certain im-
provements in sample efficiency on common RL benchmarks
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Fig. 1: Curiosity Contrastive Forward Dynamics Model (CCFDM)
uses data augmentation, contrastive learning and forward dynamics
model (FDM) to enhance visual-based reinforcement learning (RL).
CCFDM trains an image encoder (a.k.a query encoder-QE) by
ensuring the extracted features of data-augmented observation of the
current and next observation in the same transition are matched and
far apart from other data-augmented observation features in other
transitions using a contrastive loss. Here, q is the query observation
feature. Query q′ is generated by FDM from the query observation
feature and action feature. Key k′ is generated by the momentum
encoder (a moving average version of QE). The k′ consists of
the positive key and negative keys. The query is forced to match
with the positive key and far apart from the negative keys using
contrastive learning objective. The RL algorithm is built on top of
the query observation features and uses additional intrinsic reward
signals from the curiosity module for better exploration. The whole
framework is trained in an end-to-end manner.

such as Atari [2], DeepMind control [16], ProcGen [17], and
OpenAI gym [18]. However, these methods do not utilize
temporal information of consecutive observations and strong
exploration strategies, leading to limited performance.

This paper proposes Curiosity Contrastive Forward
Dynamics Model (CCFDM), a framework that provides
efficient image encoder learning for most of RL algorithms.
CCFDM consists of an image encoder, a momentum encoder,
a forward dynamics model (FDM), and a curiosity module.
The connections of all modules are shown in Fig 1.

CCFDM wisely incorporates data augmentation and the
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FDM (a model that predicts next observation given current
observation and action) to force the image encoder to capture
both spatial and temporal information of visual observations
by unsupervised contrastive learning. Consecutive obser-
vations potentially complement information each other or
provide physics features. Image encoder has to utilize all
information from provided transitions to extract meaningful
features in order to satisfy both the FDM (temporal predic-
tion) and the data augmentation (spatial disturbances) under
CCFDM. In addition, contrastive learning helps extracted
features more discriminative which is easier for training RL.

During training, the curiosity module provides intrinsic re-
wards in addition to extrinsic rewards from the environment.
The intrinsic rewards encourage the curiosity of the RL agent
to explore novel observations. The prediction error of the
FDM is used as the intrinsic reward. Generating intrinsic
rewards in this manner is efficient since it utilizes existing
FDM and does not introduce extra models. Intuitively, the
FDM prediction error (intrinsic reward) is high for novel
observations, so that the agent is encouraged to explore these
observations. Providing a more diverse and less repetitive set
of observation not only makes the image encoder learning
efficient but also improves generalization.

The whole framework CCFDM is trained in an end-to-
end manner with the RL algorithm is built on top of the
query encoder and uses additional intrinsic reward signals
from the curiosity module. CCFDM is evaluated on a diverse
set of image-based continuous control tasks from DeepMind
Control Suite [16]. Empirical results showed that CCFDM
improves feature representation learning in terms of data-
efficiency and generalization, indicated by RL performance,
compared to recent state-of-the-art methods.

The contributions of this paper are threefold: (i) in-
corporate FDM, augmentation, and contrastive learning to
force the image encoder to capture meaningful features
of visual observation, (ii) introduce simple but effective
curiosity module which can utilize existing FDM to achieve
better exploration, and (iii) provide an end-to-end framework
which is compatible with most of RL algorithm and easy to
implement. We thoroughly analyze the results and show that
CCFDM improves feature representation learning in terms of
data-efficiency and generalization compared to recent state-
of-the-art methods.

II. RELATED WORK

Reinforcement Learning (RL). RL is a research field in
machine learning that aims to form a software agent that
can perform actions in an environment so as to maximize
some notion of cumulative reward. RL algorithms can be
classified into model-based RL (e.g: [20], [21], [22], [23])
and model-free RL (e.g: [24], [25]). Model-based RL has
access to (or learns) a model of the environment and it
provides better sample efficiency than model-free RL. In case
model-based RL has to learn the model of the environment,
it is extremely difficult to achieve performance better than
that of model-free RL: the learned model is usually less

Algorithm 1 Curiosity Contrastive Forward Dynamic Model
Input: Batch size K, training steps M , EMA factor τ , momentum
update frequency η , intrinsic weight C, intrinsic decay weight γ

1: Initialize: Replay Buffer D, QE fθq , KE fθk , FDM gφ, AE
hω

2: for k = 1,M do
3: Sample transitions B = {(oj , aj , o′j , rj)}Kj=1 from D
4: Augment B to get B̂ = {(ôj , aj , ô′j , rj)}Kj=1

5: Compute query observation feature, query, key:
q = fθq (ôj), q

′ = gφ(q, hω(a)), k
′ = fθk (ô

′
j)

6: Compute intrinsic reward ri by CM using Eq. 9
7: Update fθq , hω , and gφ by contrastive loss in Eq. 8
8: Update fθq , D by RL algorithm with intrinsic rewards ri
9: if k mod η = 0 then

10: Update momentum-based network fθk :
11: θk ← τθq + (1− τ)θk
12: end if
13: end for

accurate than that of model-free RL. By contrast, model-
free RL foregoes the potential gains in sample efficiency for
gaining convenience in design. These algorithms outperform
humans at board games [3], [4], computer games [26], [27],
and complex robotic tasks [28], [29]. CCFDM can be used
for most model-free reinforcement learning (RL).

Intrinsic Reward exploration. Intrinsic rewards as ex-
ploration bonuses are one of the well-known approaches
to better exploration, especially for solving hard-exploration
problems [30]. Intrinsic reward exploration is also known as
curiosity exploration and the methods are diverge ranging
from count-based exploration (counting by density model
[30], [31], [32], counting after hashing [33]) to prediction-
based exploration (forward dynamics [34], [35], [36] , ran-
dom networks [37], [38], physical properties [39]). Intrinsic
reward exploration has improved sample efficiency in con-
ventional RL. CCFDM utilizes prediction-based exploration
using a forward dynamics model and incorporates it to the
framework of contrastive learning for visual observation RL.

Dynamics Models for Sample-efficient RL. Modeling
the dynamics of the environment has proved effective in im-
proving sample efficiency. The dynamics model can be used
for generating more data for Atari games [40], planing ahead
[14], [41], shaping the representations using an auxiliary loss
[5], [42], [9]. CCFDM estimates a forward dynamics model
to force the image encoder to capture temporal information
and learn meaningful representation which is sufficient for
dynamics prediction.

Representation Learning for RL. Representation learn-
ing plays an important role in achieving high performance
in visual-based RL. Many methods have been proposed with
various approaches. [5] proposes representation auxiliary loss
for improving RL performance in the DeepMind Control
Suite [43]. Using a reconstruction-based task is also an
effective approach. Beta variation autoencoder (β-VAE) [44]
or deterministic autoencoder AE is leveraged for encoding
features. [45], [15] jointly learn VAE/AE objectives and RL
objectives while [46], [47] propose to train the two objectives
in an alternating fashion. Recently, contrastive learning in
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Fig. 2: CCFDM Framework: A batch of transitions is sampled from the replay buffer. Observations are augmented to form query
observations and next observations are augmented to form key observations. The query observations, the key observations, and the actions
are then encoded with the query encoder (image encoder), the key encoder, and the action embedding to form feature representations,
respectively. Action feature (ae) and query observation feature (q) are input to the forward dynamics model (FDM) to predict query (q′).
The query-key pairs (the query, the positive key, and negative keys) are passed to the contrastive learning objective. The query-positive
key pairs are passed to the curiosity module to calculate intrinsic rewards. The query observation features and the intrinsic rewards are
passed to RL algorithm. During the gradient update, CCFDM updates the query encoder, the action embedding, the FDM simultaneously.
The key encoder is the moving average version of the query encoder similar to MoCo [19]

.

computer vision [48], [19], [49] are leveraged to improve
representation learning for RL algorithms. [42] proposed a
variant of the noise-contrastive estimation loss on future steps
on top of the base model A2C [50]. [51] introduces a new
contrastive loss to improve sample efficiency in Atari bench-
mark. [11] proposed a general framework that is a combina-
tion of contrastive loss with image augmentation for learning
the features. [12], [13] proved that data augmentation can
significantly improve sample efficiency for learning directly
from visual observation. This paper incorporates contrastive
learning, data augmentation, and FDM in one framework
for improving both sample efficiency and generalization in
visual-based RL.

III. BACKGROUND

A. Reinforcement Learning with Intrinsic Reward
Reinforcement Learning (RL) considers solving a Markov

Decision Process (MDP). MDP is characterized by a set
of state O, a set of action A, a transition probability P
mapping from current observation o and action a to the future
observation o′, and the immediate reward R, also known as
extrinsic reward (denoted by re). Given the policy π ∈ Π:
O → A, the goal of RL is to learn an optimal policy that
maximizes the expected cumulative reward:

F (π) = Eat∼π

[ ∞∑
t=0

γtre(ot, at)

]
. (1)

RL algorithms that explicitly estimate (or are given) tran-
sition probability are considered model-based RL, the others
are considered model-free RL.

To obtain a good policy, the RL algorithm has to bal-
ance between exploration (discover novel observations) and
exploitation (follow the current best policy). An effective
approach is to provide exploration bonuses as rewards (a.k.a.
intrinsic reward ri) to encourage policy reaching novel
observation during training in order to provide a diverse set
of observations. This prevents the policy from getting stuck
in the local minimal. Thus, during training, the policy has to
maximize the new expected cumulative reward:

F (π) = E

[ ∞∑
t=0

γt(re (ot, at) + ri (ot, at))

]
. (2)

B. Soft Actor-Critic

Soft Actor-Critic (SAC) [53] is an effective RL algorithm
for learning robotics tasks. SAC learns a policy πθ (a.k.a ac-
tor) and critics Qφ1 and Qφ2 . φi are learning by minimizing
the Bellman error:

Eb∼D
[
(Qφi(o, a)− (re + γ(1− d)T ))

2
]
, (3)

where b = (o, a, o′, re, d), d is done signal, D is the replay
buffer, and T is defined as:

T = min
i=1,2

[
Q∗φi

(o′, a′)− α log πθ (a′ | o′)
]
. (4)

The Q∗φi
denotes the exponential moving average (EMA) of

the parameters of Qφi
and α is a positive entropy coefficient.

The actor is trained by maximizing the expected return of
its actions as in:

L(θ) = Ea∼π [Qπ(o, a)− α log πθ(a | o)] . (5)



(a) Cartpole (b) Reacher (c) Ball in cup (d) Cheetah (e) Finger (f) Walker

Fig. 3: CCFMD is benchmarked on image-based continuous control tasks from the DeepMind Control Suite (DMC) [52]. DMC offers
six excellent RL domains (physical model environments) which introduce challenges of sparse reward (e.g: ball in cup, finger, reacher),
dense reward (e.g: cart pole, cheetah, walker), complex dynamics (e.g: finger, cheetah), hard exploration (e.g: walker) and other traits.
Each domain consist of smaller tasks (e.g: walker walk, walker stand, walker run)

C. Contrastive Learning

Contrastive learning is an approach to improve represen-
tation learning by a teaching model whereby pairs of data
points are “similar” or “different”. To be specific, given a
query q and keys K = {k0, k1, ...} where K includes the
positive key k+ and the negative keys K\{k+}. The goal
of contrastive learning is to ensure that q matches with k+
and is far apart from K\{k+}. One example of contrastive
learning loss [19] is as below:

Lq = − log
exp (q · k+/τ)∑K
i=0 exp (q · ki/τ)

(6)

where τ is a temperature hyper-parameter.

IV. CCFDM IMPLEMENTATION

The proposed framework extends the model-free RL al-
gorithm by adding modules to aid image encoder parts.
The whole architecture of the framework is shown in Fig
2. There are five main modules: query encoder (QE), key
encoder (KE), action embedding (AE), forward dynamics
model (FDM), and curiosity module (CM). The QE is a deep
convolutional neural network that maps visual observation
to a feature vector. The KE is the moving average version
(EMA) of the QE similar to MoCo [19] which helps stabilize
the learning process of QE. The AE and the FDM is multi-
layer perceptron networks. Therein, AE encodes action to
form an appropriate action feature for FDM to predict the
next observation feature (a.k.a query). The curiosity module
is a non-learning module that provides intrinsic rewards.

Formally, we denote the QE is fθq the KE is fθk , the
AE is hω , the FDM is gφ and replay buffer is D. A work
flow of framework is as follow. A batch of transitions B
are sampled from D. Observations are augmented to form
query observations oq and next observations are augmented
to form key observations o′k. The query observations, the
key observations, and the actions a are then encoded with
the QE, the KE, and the AE to form feature representations:

q = fθq(oq); k
′ = fθk(o′k); ae = hω(a) (7)

Action feature (ae) and query observation feature (q) are
input to FDM to predict query (q′): q′ = gφ(q, ae). The
query-key pairs (the query, the positive key, negative keys)

are passed to the contrastive learning objective. Any con-
trastive learning objective can be used but we found that
infoNCE [54] showed the best performance. The formulation
is below:

L(q′, k′) = − log
exp (sim(q′, k′+))

exp (sim(q′, k′+)) +
∑K−1
j=1 exp (sim(q′, k′j))

, (8)

Where j is the sample index in B, K is the batch size
and sim(·) is the similarity measure function. It can be
Bilinear products sim(q′, k′) = (q′TWk′) or dot products
sim(q′, k′) = (q′T k′).

The query-positive key pairs are passed to the curiosity
module to calculate intrinsic rewards ri. The curiosity mod-
ule measures the similarity between the query and positive
key then gives intrinsic reward proportional to the dis-
similarity. The similarity is not bounded and differs from
task to task. We normalize the similarity to make it task-
agnostic. Furthermore, the intrinsic reward is decayed during
training to make agents converge to the optimal solutions.
The formulation for CM is below:

ri(q, k) = Ce(−γt)sim(q, k)
rmaxe

rmaxi

(9)

Therein, t is environment step, C is temperature weight, γ
is decay weight, rmaxe and rmaxi are the maximum extrinsic
reward value and intrinsic reward value over t, respectively.

Finally, the q and ri , B are passed to the RL algorithm.
During the gradient update, the CCFDM updates the query
encoder, action embedding, and FDM simultaneously. Note
that D is updated during RL training. The whole algorithm
is described the Alg. 1

V. EXPERIMENT AND RESULT

A. Experiment setup

The proposed framework is benchmarked on six continu-
ous control tasks from DeepMind Control suite (DMC) [16].
DMC is considered as a standard benchmark for evaluating
visual observation RL algorithms [11], [12], [13] in term
of sample efficiency and generalization. DMC provides ex-
cellent physical model environments referred to as domains.
Each domain has different tasks associated with a particular
MDP structure. Our experiments are conducted on six well-
known domains as shown in Figure 3. The following tasks



500K STEP SCORES CCFDM (OURS) DRQ SAC-CURL PLANET SAC-AE SLAC SAC-PIXEL SAC STATE

FINGER,SPIN 906±152 938±103 874±151 418±382 884±128 771±203 179±166 927±43
CARTPOLE,SWINGUP 875±38 868±10 861±30 464±50 735±63 - 419±40 870±7
REACHER,EASY 973±36 942±71 904±94 351±483 627±58 - 145±30 975±5
CHEETAH,RUN 552±130 660±96 500±91 321±104 550±34 629±74 197±15 772±60
WALKER,WALK 929±68 921±46 681±68 293±114 847±48 865±97 42±12 964±8
BALL IN CUP,CATCH 979±17 963±9 958±13 352±467 794±58 959±4 312±63 979±6

100K STEP SCORES

FINGER,SPIN 880±142 901±104 779±108 95±164 740±64 680±130 179±66 672±76
CARTPOLE,SWINGUP 785±87 759±92 592±170 303±71 311±11 - 419±40 812±45
REACHER,EASY 811±220 601±213 517±113 140±256 274±14 - 145±30 919±123
CHEETAH,RUN 274±98 344±67 307±48 165±123 267±24 391±47 197±15 228±95
WALKER,WALK 634±132 612±164 323±43 125±57 394±22 428±74 42±12 604±317
BALL IN CUP,CATCH 962±28 913±53 772±241 198±442 391±82 607±173 312±63 957±26

TABLE I: Scores achieved by CCFDM (mean & standard deviation) and baselines on DMC evaluated at 500k environment step and 100k
environment step. CCFDM achieves state-of-the-art performance on the 4 out of 6 environment and just below DRQ on Finger-Spin and
Cheetah-Run. The baseline are DrQ [13], SAC-CURL [11],PlaNet [14], SAC-AE [15], SLAC [9], SAC-Pixel and SAC State [53].

Fig. 4: Evaluation Score Performance of CCFDM averaged over
six tasks relative to DrQ, CURL, PlaNet, SAC-AE, SLAC, SAC
Pixel, and SAC state. CCFDM out-performs all the baselines and
nearly reaches the SAC state which is considered the upper bound
performance.

were chosen: Cartpole-Swingup, Ball in cup-Catch, Reacher-
Easy, Finger-Spin, Cheetah-Run, and Walker-Walk since they
provide a diverse set of challenges including sparse reward,
dense reward, complex dynamics, hard exploration, and other
traits [15]. The specific task setup is as follows [14], [12],
[11] for fair comparison.

CCFDM uses the same network model architectures for
all tasks to evaluate the robustness of the framework even
though carefully choosing network model architectures po-
tentially generates better results. In particular, the query
encoder (QE) architecture consists of four convolutional
layers with ReLU activation followed by a fully connected
projection layer which is similar to SAC-AE [15]. The
forward dynamics model (FDM) and action embedding (AE)

are modeled as Multi-Layer Perceptron with two hidden
layers of 50 ReLU units. The key encoder (KE) architecture
is identical to QE. The KE weights are the moving average
of the KE weights which are similar to MoCo [19]. The
EMA coefficient τ = 0.01. Soft Actor Critic (SAC) [53]
is used as a base RL algorithm similar to [12], [15]. The
actor and critic use the QE for feature extraction. As with
previous algorithms [15], [12], the batch size is set to 512,
the target critic and the target actor are updated every two
updates of the main critic. We use random cropping for data
augmentation throughout the experiments. The FDM is op-
timized using Adam optimizer [44] with default parameters
and initial learning rate 1e−3. Intrinsic reward decay weight
is set to 2e-5 and intrinsic weight is set to 0.2. All other
settings are the same as mentioned in Curl [11].

B. Experiment result

During training, we simultaneously evaluated the RL agent
every 10K environment steps with 10 episodes and logged
the average test returns. For each task, we trained our
algorithm five times with different seeds and report the result
as Table I. The result demonstrates CCFMD significantly
improved performance over the baselines: SAC-CURL [11],
PlaNet [14], SAC-AE [15], SAC-Pixel in all tasks. CCFDM
achieves state-of-the-art performance on four out of six tasks
and just below DrQ on the Finger-Spin and the Cheetah-
Run. Moreover, CCFDM nearly reaches the performance of
learning from the state indicated by performance of the SAC
State [53].

The sample-efficiency is evaluated by the performance
at 100k environment step and 500k environment step as
proposed in CURL [11]. The average result over six tasks
is shown in Fig 4. According to the result, at the 100K
environment step, CCFDM gains 3.3× higher median per-
formance than learning from pixel only (SAC Pixel), around
1.3× higher than SLAC and CURL. CCFDM converges close
to an optimal score of 1000 on all six tasks within 500k
steps. It also nearly matches the SAC State together with the
DrQ. The Fig 5 shows evaluation score curves throughout the
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Fig. 5: Comparison of the data-efficiency among recent state-of-the-art methods indicated by average evaluation score during the whole
training process 1. CCFDM matchs state-of-the-art performance of DrQ and significantly out-performs other baselines in five over six
environment.

whole training process. This clearly proves the effectiveness
of CCFDM compared to other methods.

C. Discussion

The SAC State is trained on hand-crafted features, consid-
ered the upper bound for performance and sample efficiency.
However, according to Fig 5, CCFDM even outperforms
SAC state in the Finger-Spin and Ball in Cup-Catch to some
extent. It implies that hand-crafted (human-made) features
are sometimes not the optimal features and thus learned
features are potentially better features and produce better
results without human effort.

The batch size has an important effect on our perfor-
mance. During training and fine-tuning hyper-parameters, we
realized that the larger batch size gives better performance.
This is reasonable since CCFDM uses contrastive learning.
However, a large batch size results in much lower training
wall time. Thus, we should use it wisely.

We tried to incorporate CURL [11] to CCFDM since
doing so is quite straight forward. Interestingly, we found
out that the performance remains the same while the training
wall time increases due to additional computational cost. We
argue that CCFDM contains all the CURL’s effects. However,
we need to work more to prove it with comprehensive
experiments. The authors leave this task for future research.

VI. CONCLUSION

This paper proposed a Curiosity Contrastive Forward
Dynamics Model (CCFDM) framework, a contrastive re-
inforcement learning (RL) based framework that provides

1Data and graph of baselines are referred from DrQ [13]

efficient image encoder (IE) learning for most RL algorithms.
CCFDM showed that incorporating a forward dynamics
model into contrastive learning framework helps IE capture
both spatial and temporal information in order to improve IE
learning. CCFDM also provides a smart exploration strategy
based on FDM error which is simple but effective to encour-
age agents to better explore novel observations. CCFDM has
proved effective in terms of improving sample efficiency and
generalization. CCFDM is easy to incorporate with different
modules to further improve RL performance. Future research
should focus on developing more efficient and lightweight
modules that can be integrated with CCFDM.
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