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Abstract—To realize effective heterogeneous multi-robot
teams, researchers must leverage individual robots’ relative
strengths and coordinate their individual behaviors. Specif-
ically, heterogeneous multi-robot systems must answer three
important questions: who (task allocation), when (scheduling),
and how (motion planning). While specific variants of each of
these problems are known to be NP-Hard, their interdepen-
dence only exacerbates the challenges involved in solving them
together. In this paper, we present a novel framework that
interleaves task allocation, scheduling, and motion planning.
We introduce a search-based approach for trait-based time-
extended task allocation named Incremental Task Allocation
Graph Search (ITAGS). In contrast to approaches that solve
the three problems in sequence, ITAGS’s interleaved approach
enables efficient search for allocations while simultaneously
satisfying scheduling constraints and accounting for the time
taken to execute motion plans. To enable effective interleaving,
we develop a convex combination of two search heuristics
that optimizes the satisfaction of task requirements as well
as the makespan of the associated schedule. We demonstrate
the efficacy of ITAGS using detailed ablation studies and com-
parisons against two state-of-the-art algorithms in a simulated
emergency response domain.

I. INTRODUCTION

Heterogeneous multi-robot systems offer the potential to
solve large-scale problems that involve multiple interdepen-
dent tasks and require a diverse set of capabilities. As such,
multi-robot systems (MRSs) have proved useful in several
domains, including agriculture [1], military [2], assembly
[3], and warehouse automation [4]. However, it is not trivial
to efficiently solve complex MRS problems, e.g. coalition
formation, due to the combinatorial complexities of coor-
dinating a team of heterogeneous robots. Indeed, problems
associated with optimally allocating heterogeneous robots to
tasks are known to be strongly NP-hard [5], [6].

In this work, we present an approach to simultaneously
address coalition formation and scheduling for heterogeneous
multi-robot systems. The coalition formation problem is
concerned with identifying which subset of robots should
perform each task, and the scheduling problem involves
identifying when each task should be performed. As such,
we solve a particularly challenging variant of the multi-
robot task allocation (MRTA) problem targeting single-task
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robots, multi-robot tasks, and time-extended allocation (ST-
MR-TA) [5], [6]. Further, our approach can account for inter-
task dependencies (expressed in the form of ordering and
non-concurrency constraints) and satisfy temporal constraints
imposed by motion planning.

We contribute a novel framework consisting of three
interconnected modules — task allocation, scheduling, and
motion planning. A key attribute of our framework is the
effective information exchange among the different modules
(see Figure [I). In contrast to solving these problems in
sequence, our interleaved approach enables efficient genera-
tion of allocations, schedules, and motion plans that do not
conflict with each other. We demonstrate that our interleaved
approach improves allocation quality, scheduling efficiency,
and overall computational efficiency.

In addition, we make specific contributions to task allo-
cation for heterogeneous multi-robot teams. Specifically, we
introduce a search-based approach to task allocation, named
Incremental Task Allocation Graph Search (ITAGS). ITAGS
computes an allocation of robots to tasks while simultane-
ously optimizing the satisfaction of task requirements and the
makespan (i.e. execution time) of the associated schedule.

We leverage recent advances in instantaneous task allo-
cation [7], [8], and model our task requirements in terms
of the traits (i.e. capabilities) required for each task. Such
trait-based specifications do not require the user to explic-
itly specify the relationships between each task and robot,
allowing for generalization to different types of robots.

We enable effective interleaving of task allocation,
scheduling, and motion planning by introducing a convex
combination of two heuristics in our iterative search algo-
rithm. The first heuristic measures how well the current al-
location satisfies the specified trait requirements. The second
heuristic measures the efficiency of the schedule associated
with the current allocation. We note that our second heuristic
accounts for both the feasibility and duration of all motion
plans when evaluating a schedule.

Combined, our two heuristics allow ITAGS to prune
branches of the incremental task allocation graph that are
infeasible to execute due to constraint violations either in
scheduling or motion planning. Such pruning allows ITAGS
to prefer satisficing incremental allocations, resulting in
significant improvements in overall computational efficiency
and solution quality. Further, we provide practical insights
into the relative influence of each of the two heuristics on
ITAG’s performance.



In summary, we contribute:

1) a unified framework that interleaves task allocation,
scheduling, and motion planning for heterogeneous
multi-robot systems,

2) a novel graph-based search algorithm for trait-based
task allocation, and

3) two complementary heuristic functions that help effi-
ciently search the task allocation graph while account-
ing for scheduling and motion planning constraints.

To illustrate the impact of our contributions to the robotics
community, we evaluate our framework using experiments in
a simulated emergency response domain. Firstly, our exper-
iments systematically investigate both individual and com-
bined effects of the two heuristics in terms of convergence,
computational cost, makespan, and search efficiency. Sec-
ondly, we compare the proposed framework against a base-
line approach that does not interleave allocation, scheduling,
and motion planning. Thirdly, we compare the proposed
framework against two recent state-of-the-art task allocation
algorithms. The results of these evaluations conclusively
demonstrate the efficacy and necessity of our framework.

II. RELATED WORKS

A rich body of work has addressed the multi-robot task
allocation (MRTA) problem [6], [9] and the closely-related
scheduling problem [10]. Our work addresses a variant of
the MRTA problem that involves single-task (ST) robots,
multi-robot (MR) tasks, and time-extended allocation (TA).
As such, we limit our discussion of related work to methods
that address the ST-MR-TA variant of MRTA.

A popular approach to solve the ST-MR-TA problem has
been the use of auction-based methods in which robots
and tasks are matched using a bidding process based on
models of how well each robot can perform each task [11]—
[14]. However, these methods require that each multi-robot
task be decomposed into multiple single-robot tasks or that
the user specifies the distribution of robots for each task.
Additionally, they either schedule tasks then allocate them
or vise versa. ITAGS, on the other hand, does not require
decomposition of tasks nor a specification on the number of
robots needed for each task, and it interleaves task allocation
and scheduling, which allows it to create more efficient
schedules than possible when operating sequentially.

Optimization methods, while primarily used for solving
scheduling and ST-SR-TA variant of the MRTA problem
(see [9] for more information on the ST-SR-TA problem),
have also been utilized to solve the ST-MR-TA problem
[15]-[17]. Optimization-based approaches typically cast task
allocation as a mixed-integer linear program. However, each
of these approaches either does not require all tasks to be
completed or requires decomposition of multi-robot tasks. In
comparison, ITAGS requires that all tasks be accomplished
and does not require the decomposition of tasks.

Recent efforts have formulated the ST-MR-TA problem
as tree and graph-search problems [18], [19]. Both of the
approaches in [18] and [19] first schedule tasks into a
sequence of temporal windows and then allocate robots to

these tasks. ITAGS also conducts a tree search, however, does
not use temporal windows, which allows for a higher amount
of concurrency between tasks, and simultaneously considers
both scheduling and allocation through its heuristics.

Some authors have proposed using processor scheduling
techniques to solve the ST-MR-TA problem [20], [21].
Recently, Capezzuto et al. [21] proposed Coalition For-
mation with Improved Look-Ahead (CFLA2) and Cluster-
based Coalition Formation (CCF), two algorithms based on
processor scheduling techniques, to solve what they call the
Coalition Formation with Spatial and Temporal Constraints
Problem (CFSTP). These approaches do not require all tasks
to be completed when they allocate. On the other hand,
ITAGS ensures that all tasks are executed.

While the methods discussed thus far have numerous
advantages, a common limitation is that they assume that the
desired behavior is specified in terms of an optimal robot
distribution or a utility function describing how well each
robot can perform each task. In contrast, recent advances
have enabled modeling of task requirements in terms of
desired trait distributions [7], [8], [22]. These trait-based
models are more robust to changes in the number of robots.
However, the existing approaches presented in [8], [22]
are limited to binary traits. These binary traits are less
expressive than continuous traits and lead to less robust
models of the agents in a multi-agent team. In addition, the
approaches presented in [7], [8] are limited to the ST-MR-
IA (instantaneous allocation) problem. They do not consider
scheduling, making these solutions unable to handle the time-
extended domain of our problems. We take inspiration from
these methods and propose an approach for continuous trait-
based ST-MR-TA that simultaneously solves task allocation,
scheduling, and motion planning.

III. PROBLEM DESCRIPTION

Assigning tasks to the different robots and coalitions
requires reasoning about their complementary traits and
the team’s limited resources. These assignments must also
respect robot motion planning and scheduling. In this section,
we discuss the formulation of a trait-based time-extended al-
location problem in two parts. First, we present the elements
of the problem domain. Second, we describe the format of
a solution in this domain.

A. Problem Domain

Consider a heterogeneous team of IN robots, where each
robot is defined by its abilities or traits, which are modeled
as continuous variables. Each robot’s traits are defined as

¢ = [qii)7 @, - @9}
(i)

where ¢,/ € R, corresponds to the u!" trait for the i*" robot.
If the i*" robot does not have the u!" trait (e.g. firetrucks have
a water capacity, but other robots may not) then q,,(f) =0,
otherwise it is a positive value. The traits of the entire team
are defined by the robot trait matrix
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with each row corresponding to one robot and each column
corresponding to one trait.

A Task Network is a directed graph G = (&,V). The
vertices ) represent a set of tasks. The edges £ connect
tasks such that an edge e = [t;,t;] t;,t; € V represents
a precedence constraint (f; < t;), or a relationship that
ensures that ¢; concludes before t; starts [23].

Given the robot trait matrix @, the team is required to
accomplish M tasks from a task network 7. Each task
in T is defined by the traits required to accomplish it,
a static duration, and its initial and terminal configuration
(e.g., to move a box, one or more robots need to be at the
box’s location to start the task and will be at the terminal
location of the move upon finishing it). Robots can either
complete tasks individually or collaborate on tasks as part
of a coalition, depending on their traits. The desired traits
for a task are defined as follows:

y(z) = [ gi)vyéi)a"' 7y§]t)}
(4)

where y,,” € R, is the u'" trait requirement for the itﬁ task.

If the u!" trait is not required by the it" task then y{) = 0,

otherwise it is a positive value. The tasks required by the

entire task network is defined by the desired trait matrix
v* — [y(l)T e, T Te RMxU

)

with each row corresponding to one task and each column
corresponding to one trait.

For a robot to participate in completing a task, it needs
a collision-free path through its configuration space C [24]
from its current configuration to the initial configuration of
the task, and then it needs a collision-free path to the terminal
configuration of the task. Each type of robot can have a
different free configuration space (e.g. a quadcopter can fly
over obstacles that a ground vehicle cannot).

We define the domain as the tuple D =
(T, Q, Y* I., X) where T 1is a task network, Q
is the robot trait matrix, Y* is the desired trait matrix, I,
is a set of the initial configurations with one for each robot,
and X is a set of free configuration spaces with one for
each type of robot.

B. Solution Specification

Given the above problem domain, we now introduce the
various parts of the solution.

An allocation A for N robots and M tasks is a M x N
matrix where
1 if the n*" robot is assigned to the m'" task.

n
Am = 0 otherwise.

Given the problem domain D, we wish to compute the
solution S = (A, M, o) where A is an allocation that
satisfies the desired traits of T~, M is a finite set of motion
plans containing the motion plans for each robot to arrive
at the initial configuration for each task it is assigned to
complete as well as the motion plans needed for completing
each task in 7, and o is a schedule with the minimum
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Fig. 1: High-level architecture of the hierarchical framework.

makespan. The schedule o also includes the time to execute
the motion plans in M and is temporally consistent (i.e.
respects all temporal constraints, such as ordering and mutex
constraints).

IV. APPROACH

This section outlines the high-level algorithmic architec-
ture that we use for trait-based time-extended task allocation
for groups of heterogeneous robots. After introducing the
high-level architecture, the following subsections will explain
individual layers of the hierarchy.

It is assumed that the task network 7T, desired trait matrix
Y *, the robot trait matrix @, a set of the initial configurations
I., and a set of configuration spaces for each type of robot
X are provided as presented in the previous section.

The task allocation layer conducts a heuristic graph search
through an incremental task allocation space to find an
allocation that satisfies the desired trait requirements of the
task network. During the search, it provides allocations to
the scheduling layer, which informs the heuristic that guides
its search and allows it to prune areas of the incremental
task allocation space that are not feasible to schedule. The
scheduling layer computes the schedule with the minimum
makespan for each allocation. The motion planning layer
uses a generic motion planner to determine if there is a
feasible motion plan between two configurations for a robot
or coalition based on provided configuration spaces as well
as the execution time for the motion plan.

This hierarchical method iterates between the layers until
it finds an allocation that satisfies the trait requirements of
the task network and is feasible to schedule while respecting
the execution times for the motion plans (see Figure [I). It
then outputs the task allocation A, the associated schedule
o, and required motion plans M needed for the schedule.
Algorithm [I| contains the pseudo-code for ITAGS.

A. Task Allocation

The task allocation layer performs a greedy best-first
search through the incremental task allocation space. In
this space, nodes represent an allocation of robots to tasks.
Nodes are connected to other nodes that differ only by the
assignment of a single robot (see Figure [2)). This graphical
representation allows our search to start from an initial node
with no allocated robots and to incrementally add robots until



Agent allocated

to task
Ao
000 0) ksl ~ © a
0000 X ¥ ¥ X
0000 F S
Lo 000
Agent1 (1 0 0 0
Agent2 [0 0 0 O
0010 Agent3 [0 0 1 0
0000
Agent 4 0 0 0 0

Fig. 2: An example incremental task allocation graph.

an allocation that satisfies the desired trait requirements of
the task network is found.

To guide the search, we have developed two heuristics:
Allocation Percentage Remaining, which guides the search
based on the quality of the allocation, and Normalized Sched-
ule Quality, which guides the search based on the quality of
the makespan of the schedule associated with the allocation.
We use a convex combination of the two heuristics, which
we call Time-Extended Task Allocation Quality.

1) Allocation Percentage Remaining (APR): APR is de-
fined as the percentage trait mismatch error. Specifically,
APR is calculated as

—  ||max(E(A), 0)[]1,1
fap?"(A) - ||Y*||1$1

where A is the allocation that the heuristic is evaluating,
E(A) = Y*— A Q, and || - |[11 is the element-wise Iy
norm. In this equation, (AQ);; is the summation of the
4" trait from each of the robots assigned to the i*" task.
By taking the difference between the desired trait matrix
Y™ and ZQ, we get the trait mismatch matrix E. When
E; j < 0 then the coalition assigned to the i task exceeds
the required trait value for the j** trait. An element-wise max
operation is performed between E and the zero matrix. This
removes all the values in £ which represent that an allocated
coalition exceeds a required trait value and leaves the values
that represent that a required trait value has not yet been
met. An element-wise summation is then performed on the
resulting matrix to compute the trait mismatch error. This
error is then normalized by the element-wise summation of
the desired trait matrix Y* to compute the percentage trait
mismatch error. When the error is zero, then the allocation
satisfies the desired traits matrix.

APR does not use any information from the scheduling
layer and, as such, tends to search the graph deeply. This
is caused by nodes deeper in the graph having more robots
assigned and a smaller desired trait mismatch error. This
leads APR to find an allocation that satisfies the desired trait
requirements quickly at the expense of ignoring schedules
with considerably shorter makespan.

2) Normalized Schedule Quality (NSQ): NSQ is a mea-
sure of how much an allocation minimizes the makespan of
its accompanying schedule. Specifically, NSQ is calcuated as

Cs — Co'bcst
fusaCo) = ——— 7 — 2

T worst Obest
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Algorithm 1: ITAGS
Input: (7, Q, Y*, I., X, «)
Output: (A, M, o)

1 root < empty allocation

2 pq ¢ PriorityQueue({root})

3 while pq is not empty do

// 1dentify the node with lowest tetaq value
4 node <+ pq.pop()
/I Check if the node is a solution
5 if node.apr == 0 and node.nsq < oo then
L return node. A, node.M node.c
/I Compute heuristics for each successor
7 for child € generateSuccessors(node) do
// Compute using Equation
8 child.apr <~ APR(child, Q, Y™*)
// Compute schedule and motion plan
9 O, Opest, Oworsts M < schedule(child, T)
/I Compute using Equation H
10 child.nsq < NSQ(o, Gpest; Tworst)
// Compute using Equation
1 child.tetaq = o  child.apr + (1 — «) *
child.nsq
12 pq.push(child)

13 return Null

where C, is the makespan, or completion time, of the
schedule o, & is the schedule based on T~ and A, o pest is
the schedule without any constraints placed on the schedule
from the allocation and motion planning, and & .s: 1S the
schedule where the task network is totally-ordered and all
motion plans are assumed to be the longest possible length.

The three variables &, O pest, and o5t are all computed
by the scheduling layer. As NSQ only considers the schedule
and not the allocation, it tends to favor a broader search. This
is caused by nodes closer to the root having fewer constraints
and, therefore, lower makespans. This leads to NSQ finding
an allocation that satisfies the desired trait requirements with
the minimum makespan at the expense of searching a much
larger area of the graph.

3) Time-Extended Task Allocation Quality (TETAQ):
Using a convex combination of APR and NSQ, we create a
heuristic that considers both the quality of the allocation as
well as the quality of the schedule generated from it. TETAQ
is calculated as

ftetaq (X; C?) = afapT (X) + (1 - a)fnsq(cﬁ) (3)

where o € [0, 1] is a user-specified parameter that controls
each heuristic’s relative influence. If o = 0 then this heuristic
is APR, and if o = 1 then the heuristic is NSQ. TETAQ takes
qualities from both to perform a search, which allows it to
balance finding an allocation that satisfies the desired traits
quickly with finding one that minimizes the makespan of the
assigned robots’ schedule.



B. Scheduling and Motion Planning

The scheduling layer determines if it is feasible to schedule
for a task network and an allocation and provides the
makespan used by the heuristics. This layer builds the
schedule based on three temporal components: the static
duration of each task, the time needed for each robot to
travel to the task’s initial configuration, and the time needed
for the assigned coalition of robots to execute the movements
required to complete the task. To this end, the scheduling
layer provides each task’s initial and terminal configurations
to the motion planning layer.

The motion planning layer uses the information received
from the scheduling layer to determine if there is a feasi-
ble motion plan between the two configurations. If it can
construct a motion plan, then the motion plan is sent back
to the scheduling layer. To reduce computational costs and
reuse motion plans, this layer memoizes the path for each
specific pair of configurations and specific robot or coalition.

The scheduling layer then uses the coalition’s speed to
determine the time needed to execute the motion plan. If a
feasible schedule can be found then it calculates &, opest,
and T worst-

For a time-extended task allocation, a schedule has two
different types of temporal constraints: precedence con-
straints and disjunctive constraints. The precedence con-
straints come from the task network. A Disjunctive con-
straint is a temporal relationship between two tasks, ¢, and
tp, that ensures that either ¢; must finish before ¢, starts or
t, must finish before t; starts [25]. A disjunctive constraint
is created when a robot is assigned to a task ¢, making it
unable to perform another task ¢; at the same time as ¢,.

To find a schedule that adheres to both of these types of
constraints, the scheduling layer uses a three-part scheduling
approach. The first part converts the task network into a
simple temporal network (STN) [26], which provides a
graphical representation of the start and end times for each
task, where tasks are separated by precedence constraints.
STNs are commonly used for scheduling due to their ability
to be updated and checked for consistency in polynomial
time [27]. We use a variant of the single-source shortest path
algorithm [26] to compute the minimum makespan schedule
from this STN. This schedule does not yet include the
durations of any motion plans nor considers the disjunctive
constraints imposed by the allocation, and so this schedule
iS Opest as used by NSQ.

The second part of this approach adds in the disjunctive
constraints from the allocation. In order to create a schedule,
the disjunctive constraints need to be converted into prece-
dence constraints by selecting one of their two orderings
(i.e. for a disjunctive constraint between two tasks ¢, and ¢,
selecting that either ¢, must finish before ¢; starts (¢, < ) or
vise versa). We perform a tabu search [28] over the possible
orderings for each disjunctive constraint while minimizing
the makespan of the schedule. Each node in this search
is the STN for opes¢ With additional edges added for the
precedence constraints created from the ordering selection

of the disjunctive constraints. The resulting STN from this
part of the approach is called STN,.

The third part of this approach adds in the execution du-
rations of the motion plans to the STN. During this step, the
motion planning layer determines if every required motion
plan is feasible. If feasible, the length of each motion plan
is used by the scheduling layer to determine the execution
duration of the motion plan.

If it is not feasible to find a schedule for an allocation,
then the task allocation layer is alerted, and the allocation is
pruned from the search. Finding a schedule is infeasible if:

e the STN for o4 is temporally inconsistent

e no temporally consistent STN can be found during the

tabu search

e the motion planner times out

Finally, we compute the makespan of o5t For com-
putational efficiency, we approximate an over-estimation of
the makespan of the worst possible schedule without having
any robots slow down or wait,

where M is the number of tasks in 7, dur(t,,) is the static
duration of task ¢,,, z is the length of the longest possible
path in X, and w is the speed of the slowest robot.

V. EVALUATION

We evaluated ITAGS using three sets of experiments in
a simulated emergency response domain [29]-[33]. In this
domain, a diverse set of robots with different traits need to
work together to rescue wounded survivors, deliver medicine
to hospitals, put out fires, and rebuild damaged infrastructure.

For the first two experiments, we generated a set of
105 problems from this domain by randomly sampling the
number of robots, survivors, fires, and damaged buildings.
Each problem had between 6-12 robots and 12-45 tasks. We
also randomized the locations of the survivors, fires, damaged
buildings, hospitals, and the robots’ initial location. In the
first set of experiments, we evaluated the effectiveness and
the relative influence of our heuristics. In the second set
of experiments, we evaluated the effectiveness of ITAGS’s
interleaved allocation and scheduling by comparing it to
a baseline that uses a sequential version of ITAGS. For
both experiments, we report computation time, the number
of nodes expanded and visited, and the makespan of the
generated schedule as metrics.

For the third experiment, we generated a set of 50 prob-
lems from this domain. Each problem had 20 robots and
40 tasks. The problems were randomized similarly to the
problems for the first two experiments. For this experiment,
we compared ITAGS against two state-of-the-art ST-MR-
TA task allocation algorithms: CFLA2 and CCF [21]. These
algorithms represent the most recent efforts in solving the
ST-MR-TA task allocation problem.

For all of the experiments, maps from the Robocup Rescue
Competition [29] were used. For the motion planning layer,
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we used a Lazy PRM [34] implementation from the Open
Motion Planning Library [35]. We ran all experiments on an
i7-8565 CPU with 16GB of RAM.

A. Relative Influence of APR and NSQ on Performance

The first experiment involved ablation studies to investi-
gate the relative influence of APR and NSQ on performance.
To this end, we generated five variants of ITAGS, each with
different values for « (0, 0.25, 0.5, 0.75, and 1) from
Equation (3). Note that these values for « indicate different
relative weightings of NSQ and APR. The results of these
tests can be seen in Figure [3] To make the relationship
between the weighting of the heuristics and the performance
clear, Figure (3| displays the results normalized to an equal
weighting of both heuristics (« 0.5). As such, the
horizontal line for y = 0 represents the results of o = 0.5.
Anything above y = 0 represents a result that was larger
than the o = 0.5 baseline (e.g. took more time to compute or
expanded more nodes), and anything below y = 0 represents
a result that was smaller than the o = 0.5 baseline (e.g. took
less time to compute or expanded fewer nodes).

All « values were capable of solving all 105 problems
except a = 1.0, which only solved 7.5% of the problems.
As a — 1, it causes the search to focus more on minimizing
the makespan, thereby mimicking a breadth-first search. This
is because adding more robots increases the number of
constraints and, subsequently, the makespan. As a result of
these broader searches, ITAGS,—; is more likely to run out
of memory and fail to solve the problem.

We performed a Kruskal-Wallis test followed by a post-
hoc Dunn’s test to show the statistical significance of each
of the tested o values. These tests’ results are shown in
Figure 3| with ‘*’ denoting p-values < 0.5. These results
indicate that o changes have a statistically significant effect
on the computation time, makespan, the number of nodes
expanded, and the number of nodes explored.

We find that as « increased, computation time increased,
and makespan decreased. Specifically, as a — 1, the search
tends to produce solutions with lower makespans. However,
it also tends to require higher computation times as a
result of visiting and exploring more nodes. Conversely, as
a — 0, the search tends to visit and explore fewer nodes,
leading to lower computation times. However, this comes
at the expense of a longer makespan. These experiments

show that there is a balance between minimizing makespan
and minimizing computation time. Our combined heuristic
TETAQ merges the effects of the two heuristics to balance
both computational efficiency and solution quality.

B. Effects of Interleaving on Performance

In this experiment, we created a sequential version of
ITAGS, known as ITAGSg. Instead of using scheduling and
motion planning to guide the search for task allocation,
ITAGSs completes each operation in sequence. It searches
the allocation graph until an allocation that satisfies the trait
requirements is found. If possible, ITAGSg schedules the
found allocation and updates the schedule with the execution
times of motion plans. If either a schedule cannot be created
because the allocation is temporally inconsistent or one
of the motion planning queries is infeasible, then ITAGSg
continues the search until a satisficing allocation is found.

The results of the comparison can be found in Figure []
Similar to the first experiment, we normalized the metrics
with respect to ITAGS,—o.5. As can be seen, ITAGS,—¢ 5
consistently outperformed the sequential version ITAGSg in
terms of all of the metrics. On average, ITAGSg generated
an output with a 168% longer makespan while taking 17%
longer to compute a valid result. It also visited 99% more
nodes and explored 97% more nodes on average.

There are two notable reasons for ITAG’s superior per-
formance. First, ITAGS uses its heuristics to prune partial
allocations for which scheduling and motion planning are
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Fig. 4: The results of the sequential version of ITAGS
(ITAGSg) normalized with respect to ITAGS,—p5. y = 0
represents ITAGS,—¢.5. Anything above y = 0 is worse than
ITAGS,-0.5 and conversely anything below is better.



infeasible. In contrast, ITAGSg is likely to end up exploring
branches in the allocation graph that violate scheduling or
motion planning constraints. Second, ITAGS also minimizes
the makespan of the schedule. However, ITAGSs does not
consider the schedule while searching for an allocation. This
leads ITAGS to prefer allocating most tasks to robots with
higher trait values. As such, ITAGSg results in a reduced
number of concurrent tasks.

C. Comparison against CFLA2 and CCF

In the third experiment, we compared ITAGS against
two state-of-the-art ST-MR-TA task allocation algorithms in
CFLA2 and CCF [21]. Both of these algorithms operate on
a more-restricted problem structure that does not involve
trait-based agent/task modeling, ordering constraints, or non-
graph-based motion planning. Thus in order to benchmark
against these algorithms a preprocessing stage was added.

For each problem, the preprocessing stage first generates
a fully connected graph where each node is a location (i.e.
the hospital, survivor 1’s initial location, etc.) and each
edge is labeled with the time required to traverse for each
robot/coalition. In order to calculate the traversal times, the
motion planning module from ITAGS is queried for motion
plans between each pair of nodes. The length of each motion
plan and the speed of each robot/coalition is then used to
compute the traversal times for each edge.

Next, the preprocessing stage accommodates for the fact
that the baselines cannot handle trait-based models. The
baselines model each task ¢ as having a certain amount of
work that needs to be accomplished (w;). They also have a
utility function wu(¢,¢) which computes how fast a specific
coalition ¢ can work on a specific task ¢. The duration
of a task ¢ can be computed as dur(t,c) = w/u(t,c).
The preprocessing stage sets w; to a constant value for all
tasks. It then creates the utility function w(¢,c) such that
the dur(t,c) is the same as in the problem description for
all tasks. If a coalition’s collective traits do not satisfy the
task’s requirements then the utility function returns zero.

As shown in Figure [5a ITAGS is able to allocate and
schedule all tasks for each of the problems. This observation
is explained by the fact that, unlike CFLA2 and CCF, ITAGS
requires allocating and scheduling of all tasks. Indeed, both
baselines fail to fully allocate and schedule any of the
problems, with CFLA2 and CCF averaging 32.4% and 56.4%
of tasks allocated and scheduled, respectively. We observe
that baselines sometimes allocate agents to a task without
accounting for the task’s trait requirements. This leads to
incomplete tasks as robots can get stuck on certain tasks
without contributing to the tasks’ completion. Additionally,
without deadlines, CFLA2’s look-ahead phase effectively
results in a random choice and impedes its ability to allocate
robots to tasks. CCF assumes that every assignment improves
task progress irrespective of the current set of robots assigned
to the task. However, this assumption does not hold for
tasks in which robots cannot make progress without crossing
a minimum threshold in terms of aggregated traits. For
instance, consider a task that involves moving a 10 kg

— CFLA2 —— CCF  — ITAGS

100 -

80 1

401 \_,\/\/—\/_/\_/\/\/_/\/\/\a\/\/
0 10 20 30 40 50
Problem Number

% of Tasks Completed

(a) The percentage of tasks that each algorithm was able to allocate
for each problem.
—— CFLA2

— CCF  — ITAGS

N w
=} o
S o

TA Computation Time (s)
=
I
o

_— ~

0 10 20 30 40 50
Problem Number

o

(b) The amount of time spent by each algorithm on everything
except motion planning for each problem.

Fig. 5: Benchmark against CFLA2 and CCF

object. Assigning a single robot with a 5 kg payload will
not contribute to 50% task completion.

Figure [5b| shows the total computation time excluding the
time needed to generate the fully connected graph for CFLA2
and CCF and the time spent motion planning for ITAGS. This
ensures that we are comparing only the task allocation and
scheduling capabilities of the algorithms. As seen, ITAGS
allocates and schedules all tasks while taking less time to
compute a solution. On average, ITAGS spends 11.54s on
task allocation and scheduling when computing a solution,
while CFLA2 and CCF spend 153.61s and 34.27s, respec-
tively. There are a few reasons that ITAGS performs better
than both CFLA2 and CFF. First, ITAGS only considers the
start and end time-points for each task when scheduling,
whereas both CFLA2 and CCF step through time with dis-
crete timesteps and greedily allocate robots to tasks. Second,
ITAGS focuses on simultaneously minimizing the makespan
and trait mismatch error. Being able to consider the traits
allows ITAGS to model the relationship between agents and
task better, leading to more efficient searching of possible
allocations. On the other hand, CFLA2 and CCF focus on
allocating as many tasks at a time as possible without con-
sidering whether the robot’s traits contribute to satisfying the
trait requirements of a task. CCF specifically also prioritizes
allocating a robot to tasks such that travel time is minimized.
Third, ITAGS considers the entire schedule as it solves the
problem. This allows ITAGS to consider actions throughout
the schedule and how they affect the overall makespan. CCF
only considers a single timestep at a time, and as a result
some of its allocations inadvertently create a bottleneck for
future allocations. CFLA?2 does have a look-ahead process,
but with no deadlines, it effectively results in a random
choice. Furthermore, it creates considerable computational
burden for this result. The look-ahead process and making
allocations for only a single timestep have a detrimental



impact on computation time.

D. Summary

The first experiment empirically demonstrates the trade-
offs involved in prioritizing either Allocation Percentage
Remaining or Normalized Schedule Quality. Results from the
second experiment indicate that the hierarchical interleaved
approach of ITAGS consistently outperforms a baseline ap-
proach that sequentially performs allocation, scheduling, and
motion planning. In the third experiment, ITAGS is shown
to empirically outperform state-of-the-art ST-MR-TA task
allocation algorithms CFLA2 and CCF [21].

VI. CONCLUSIONS

We introduced a unified framework that interleaves task
allocation, scheduling, and motion planning for heteroge-
neous multi-robot systems. We also presented the itera-
tive search method for solving the trait-based time-extend
task allocation problem. To guide the search and enable
interleaving, we developed two heuristics, one based on
the quality of allocation and another based on the time
needed to execute the associated schedule and motion plans.
Further, we empirically demonstrated the trade-offs involved
in choosing the relative weighting of the two heuristics.
Our experiments in a simulated emergency response domain
conclusively demonstrate the effectiveness and the relative
advantages of our interleaved approach over a sequential
baseline and two state-of-the-art approaches.
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