
Loosely Synchronized Search for Multi-agent Path Finding with
Asynchronous Actions

Zhongqiang Ren1, Sivakumar Rathinam2 and Howie Choset1

Abstract— Multi-agent path finding (MAPF) determines an
ensemble of collision-free paths for multiple agents between
their respective start and goal locations. Among the available
MAPF planners for workspace modeled as a graph, A*-
based approaches have been widely investigated due to their
guarantees on completeness and solution optimality, and have
demonstrated their efficiency in many scenarios. However,
almost all of these A*-based methods assume that each agent
executes an action concurrently in that all agents start and stop
together. This article presents a natural generalization of MAPF
with asynchronous actions (MAPF-AA) where agents do not
necessarily start and stop concurrently. The main contribution
of the work is a proposed approach called Loosely Synchronized
Search (LSS) that extends A*-based MAPF planners to handle
asynchronous actions. We show LSS is complete and finds an
optimal solution if one exists. We also combine LSS with other
existing MAPF methods that aims to trade-off optimality for
computational efficiency. Numerical results are presented to
corroborate the performance of LSS and the applicability of
the proposed method is verified in the Robotarium, a remotely
accessible swarm robotics research platform.

I. INTRODUCTION

Multi-agent path finding (MAPF), as its name suggests,
computes a set of collision-free paths for multiple agents
from their respective starts to goal locations. Most MAPF
methods [21] describe the workspace as a graph, where
vertices represent possible locations of agents and edges
are actions that move agents between locations. Conven-
tional MAPF planners [5], [21], including our own [23],
typically consider the case where each agent executes an
action concurrently in that all agents start and stop together.
The requirement of such synchronized actions among agents
limits the application of MAPF planners to scenarios where
agents move with different speeds. This paper considers a
natural generalization of the MAPF with the agents’ actions
running asynchronously, meaning they do not necessarily
start and stop concurrently. We refer to this generalization as
MAPF with asynchronous actions (MAPF-AA). In MAPF-
AA, different actions by agents may require different time
durations to complete. See Fig. 1 for a toy example.

Among MAPF planners, A*-based ones, such as
HCA* [19], EPEA* [6], M* [23], have been extensively
investigated. These planners provide guarantees on solution
completeness and optimality, and outperforms other types of
MAPF planners in certain scenarios [5]. However, existing
A*-based methods rely on the assumption of synchronous

1 Zhongqiang Ren and Howie Choset are with Carnegie Mellon Univer-
sity, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.

2Sivakumar Rathinam is with Texas A&M University, College Station,
TX 77843-3123.

Fig. 1. A toy example that illustrates the problem. Blue and yellow numbers
indicate the durations required for blue and yellow agents to move through
the edges respectively. The goal locations are marked with stars.

actions to easily identify “planning steps” for all agents
and run A*-like search. For MAPF-AA problem, a naive
application of conventional A*-based planners may require
too fine a discretization of the time dimension so that a
common unit time can be found for planners to identify
planning steps. This work aims to overcome the challenge.

The main contribution of this work is a proposed method
called Loosely Synchronized Search (LSS) that extends
A*-based MAPF planners to handle asynchronous actions.
In this approach, we introduce a new state space which
combines the spatial and temporal information of agents for
the purpose of describing asynchronous actions. The standard
state expansion used in A*-based planners is then generalized
to also account for the temporal information. Finally, we use
dominance principles from the multi-objective optimization
literature [13], [4] to compare and prune states that cannot
lead to an optimal solution. We also prove that LSS is
complete and finds an optimal solution if one exists (Sec. V).

To show the generality of LSS, we fuse it with M* and
recursive M*, which results in LS-M*, LS-rM* (Sec. VI).
We also fuse LS-rM* with Meta-agent Conflict-based Search
(MA-CBS) [16], which is an algorithm that combines both
Conflict-based Search (CBS) [17] and A*-based planners
to achieve better performance. We test the algorithms in
maps from [21] and our results (Sec. VII) show: (1) LS-
A* expands far fewer states than a naive adoption of A*
for MAPF-AA; (2) LSS can be fused with M* and rM*,
resulting in LS-M* and LS-rM* and inflated heuristics im-
prove the computational efficiency while providing bounded
sub-optimal solutions; (3) The extension of MA-CBS by
leveraging LS-rM* improves the success rates and run time
on average when comparing it with the existing CBS-based
algorithm [1], which is, to our limited knowledge, the state-
of-the-art search-based planner that can solve MAPF-AA.
Finally, to verify the applicability of our approach to real
multi-robot systems, we also execute the paths computed by
our planner (LS-rM*) in the Robotarium [25], a remotely
accessible swarm robotics research platform.

ar
X

iv
:2

10
3.

04
51

6v
2

 [
cs

.R
O

]
 2

 A
ug

 2
02

1

II. PRIOR WORK

MAPF algorithms tend to fall on a spectrum from decen-
tralized to centralized, trading off completeness and optimal-
ity for scalability. Finding an optimal solution for MAPF is
NP-hard [26]. On one side of this spectrum, decentralized
methods such as [22], [9], plan paths for agents in their
individual search spaces and can be leveraged to solve similar
problems to MAPF-AA. These approaches scale well but
can hardly guarantee completeness and optimality. On the
other side of the spectrum, centralized methods [20] plan
in the joint configuration space of agents, which guarantees
optimality but scales poorly. In the middle of the spectrum,
methods like M* [23], Conflict-based Search (CBS) [17],
etc, begin by planning each agent an individual optimal path
in a decoupled manner and couples agents for planning only
when needed to resolve collisions. These methods guarantee
optimality while bound the search space and thus scale
relatively well. This work limits its focus to planners with
solution optimality guarantees.

In recent years, many variants of MAPF have been
proposed, which span another spectrum from conventional
MAPF [21] to multi-agent motion planning (MAMP) [3],
[18], a generalized version of MAPF where the motion of
agents are planned in continuous space and time. While being
general to many applications, MAMP can be computationally
expensive due to motion constraints, high degree-of-freedom
of each agent, etc. Within the spectrum, many different vari-
ants of MAPF have been proposed, each focus on relaxing
different aspects of MAPF, such as shape of agents [8],
different moving speeds [24], [1], multiple objectives [14],
motion delays [10], etc. A similar problem of MAPF-AA
has been considered in [24], [1]. In this work, we choose
continuous-time CBS (CCBS) [1] as a baseline for our
experiments.

Among planners that solve conventional MAPF to opti-
mality, there is no single planner that outperforms all others
in all settings [5]. To fuse the benefits of different MAPF
planners, Meta-agent CBS (MA-CBS) [16] combines CBS
with A*-based methods and has been shown to improve
the performance. However, due to the lack of any A*-based
planner for MAPF-AA, we are not aware of any extension of
MA-CBS for MAPF-AA that combines the benefits of both
A*-based and CBS-based methods. This work also fills this
gap and our numerical results show that such fusion enhances
the success rates of CCBS, the state-of-the-art, up to 12%.

III. PROBLEM DESCRIPTION

Let index set I = {1, 2, . . . , N} denote a set of N agents.
All agents move in a workspace represented as a finite graph
G = (V,E) where the vertex set V represents the possible
locations of agents and the edge set E = V ×V denotes the
set of all possible actions that can move an agent i between
any two adjacent vertices in V . An edge between u, v ∈ V
is denoted as (u, v) ∈ E. In this work, we use a superscript
i ∈ I over a variable to represent the agent to which the
variable belongs (e.g. vi ∈ V means a vertex corresponding

to agent i). Let vio, v
i
f ∈ V denote the start and goal vertices

of agent i respectively.
All agents share a global clock and start their motion at

vio from time t = 0. For each edge e ∈ E, let Di(e) ∈
R+ denote the duration for agent i to go through edge e.
Note that, for the same edge e ∈ E, durations Di(e), Dj(e)
for two different agents i, j ∈ I can be different. When
agent i goes through (v1, v2) ∈ E between times (t1, t1 +
Di(v1, v2)), agent i occupies: (1) vertex v1 at time t = t1,
(2) vertex v2 at time t = t1 + Di(v1, v2) and (3) both v1
and v2 for any time point within the open interval (t1, t1 +
Di(v1, v2)).1 Any two agents i, j ∈ I are in conflict if they
both occupy a same vertex at any time.

Let πi(vi1, v
i
`) denote a path that connects vertices vi1

and vi` via a sequence of vertices (vi1, v
i
2, . . . , v

i
`) in G,

where any two vertices vik and vik+1 are connected by an
edge (vik, v

i
k+1) ∈ E. Let g(πi(vi1, v

i
`)) denote the cost

value associated with the path, which is defined as the sum
of duration of edges along the path, i.e. g(πi(vi1, v

i
`)) =

Σk=1,2,...,`−1D
i(vik, v

i
k+1). Without loss of generality, to

simplify the notations, we also refer to a path πi(vio, v
i
f)

for agent i between its start and goal as simply πi. Let
π = (π1, π2, . . . , πN) represent a joint path for all the agents.
Its cost is defined as the sum of the individual path costs over
all the agents, i.e., g(π) = Σig

i(πi).
The objective of the multi-agent path finding with asyn-

chronous actions (MAPF-AA) is to find a conflict-free joint
path π connecting vio, v

i
f for all agents i ∈ I such that g(π)

is minimum.

IV. LOOSELY SYNCHRONIZED SEARCH

A. Notation and State Definition

Let G = (V, E) = G×G× · · · ×G︸ ︷︷ ︸
N times

denote the joint graph

which is the Cartesian product of N copies of G, where
each v ∈ V represents a joint vertex and e ∈ E represents
a joint edge that connects a pair of joint vertices. The joint
vertex corresponding to the starts and goals of agents is vo =
(v1o , v

2
o , · · · , vNo) and vf = (v1f , v

2
f , · · · , vNf) respectively.

In this work, a search state s = (s1, s2, . . . , sN) is defined
to be a set of individual states si,∀i ∈ I where each si is a
tuple of four components
• v(si) ∈ V , an (individual) vertex in G;
• p(si) ∈ V , the parent vertex of v(si), from which v(si)

is reached;
• t(si), the timestamp of v(si), representing the arrival

time at v(si) from p(si);
• t(p(si)), the individual timestamp of p(si), representing

the departure time from p(si) to v(si).
Intuitively, si = {v(si), p(si), t(si), t(p(si))} describes the
location of agent i within time interval [t(p(si)), t(si)] with a
pair of vertices (p(si), v(si)). For the initial state, we define
p(sio) = v(sio) = vio and t(sio) = t(p(sio)) = 0,∀i ∈ I . Given

1We do not consider the case where edges criss-cross each other since
this case can be handled by adding an additional vertex at the location where
two edges criss-cross.

two individual states si1, s
i
2 of agent i, we say si1 = si2 if

each of the four elements in si1 is equal to the counterpart
in si2. For two states s1 and s2, s1 = s2 if and only if
si1 = si2,∀i ∈ I; otherwise, s1 and s2 are different states.

Following the definition of a conflict in Sec. III, given a
state s, let Ψ(s) ⊆ I represent a conflict checking function
that checks the state s for all pairs of agents i, j ∈ I and
returns a set of agents that are in conflict. Ψ(s) returns an
empty set if no agent is in conflict in state s.

B. Algorithm Overview

As in the well-known A* algorithm [7], every state s
identifies a partial solution (path) π(vo, v(s)) from vo to v(s)
and let g(s) represent the cost of that partial solution. At
any time of the search, let OPEN denote the priority queue
containing candidate states, which are prioritized by their f -
values f(s) := h(s)+g(s), where h(s) is the heuristic value
that underestimates the cost-to-goal at s.

Algorithm 1 Pseudocode for A*, LS-A*
1: add initial state so to OPEN
2: while OPEN not empty do . Main search loop
3: sk ← OPEN.pop()
4: if v(sk) = vf then
5: return Reconstruct(sk)
6: Sngh ← GetNgh(sk)
7: // LS-A* differs from A* in GetNgh(sk)
8: for all sl ∈ Sngh do
9: if Ψ(sl) 6= ∅

10: continue
11: if Compare(sl) then . false = discard sl
12: // LS-A* differs from A* in Compare(sl)
13: f(sl)← g(sl) + h(sl)
14: add sl to OPEN
15: parent(sl) ← sk

16: return Failure

As shown in Algorithm 1, Loosely Synchronized A* (LS-
A*) begins by adding initial state so to OPEN. In each
iteration (from line 2), the state sk with the minimum f -
value is popped from OPEN. Then v(sk) is compared with
vf and if sk visits vf (i.e. v(sk) = vf), then a conflict-free
solution is identified and reconstructed by iteratively tracking
the parent of states from sk to so. Otherwise, neighbors
are generated from sk (line 6) by GetNgh(sk), a procedure
that generates a set of neighboring states (successors) of sk
(Sec. IV-C). For each generated neighbor sl, if sl leads to
conflicts (line 8), sl is discarded. Otherwise, sl is verified
in Compare(sk) (Sec. IV-D), to decide whether sl should be
kept. If sl is kept, then the corresponding f, g, h values of
sl are updated and sl is inserted into OPEN. When OPEN
depletes, the algorithm reports failure and there is no solution
for the problem.

C. Neighbor Generation

The first key difference between LS-A* and A* is that,
instead of letting all agents plan their next actions in each

planning step as in A*, LS-A* uses timestamps of agents in
a state to decide which agent(s) should plan the next action.
The entire procedure can be described in four steps.
Step (1) The minimum timestamp tmin(sk) and the second
minimum timestamps among all agents within sk are com-
puted:

tmin(sk) = mini∈I t(s
i
k). (1)

tmin 2(sk) = min{t(sik) | t(sik) 6= tmin(sk), i ∈ I}. (2)

Note that, for any state sk, tmin(sk) always exists but
tmin 2(sk) may not exist (if all timestamps are the same).
Step (2) The subset of agent(s) Itmin

(sk) ⊆ I with times-
tamp(s) equal to tmin(sk) is computed:

Itmin
(sk) = arg min

i∈I
t(sik). (3)

Itmin
(sk) describes the subset of agents in sk that is allowed

to plan their next actions.
Step (3) We call an individual state sil generated from sik
an individual neighbor of sik and let Si

ngh(sik) represent a
set of individual neighbors of sik. In this step, Si

ngh(sik) is
computed for each agent i ∈ I , given state sk:
• For i /∈ Itmin

(sk), agent i is not allowed to plan actions
and Si

ngh(sik) contains only a copy of sik.
• For i ∈ Itmin

(sk), agent i plans actions, including both
wait action and move actions, and Si

ngh(sik) contains
totally (|Adj(v(sik))| + 1) individual neighbors, where
Adj(u), u ∈ V represents the set of adjacent (individ-
ual) vertices of u in graph G.

Specifically, for action that moves agent i, for each vertex
u ∈ Adj(vik) , a corresponding individual state sil =
{v(sil), p(s

i
l), t(s

i
l), t(p(s

i
l))} is generated by

v(sil) = u (4)
p(sil) = v(sik) (5)
t(sil) = t(sik) +Di(v(sik), v(sil)) (6)

t(p(sil)) = t(sik) (7)

where Di(v(sik), v(sil)) denote the duration for agent i to
move through edge (v(sik), v(sil)). Then, the generated sil is
added to Si

ngh(sik). For action that makes agent i wait, an
individual state sil is generated by

v(sil) = v(sik) (8)
t(sil) = t(sik) +Di

wait (9)

while p(sil) and t(p(sil)) are generated by Equation (5) and
(7) respectively. Here Di

wait denotes the amount of wait time
and is computed as:
• If tmin 2(sk) exists

Di
wait = tmin 2(sk)− tmin(sk), (10)

• Otherwise (all agents in sk have the same timestamps
and tmin 2(sk) does not exist),

Di
wait = min

i∈I,e∈E
Di(e). (11)

Step (4) Sngh is computed by taking combination of Si
ngh

over all agents i ∈ I:

Sngh = {(s1l , s2l , . . . , sNl) | sil ∈ Si
ngh,∀i ∈ I}. (12)

Remarks In GetNgh, wait action plays a key role in “synchro-
nizing” subset of agents with Equation (10). The wait action
guarantees that, for each joint vertex u ∈ V , after rounds of
neighbor generation, there exists a state s with v(s) = u and
Itmin

(s) = I (Lemma 1 in Sec. V). In such a state s, all
timestamps of agents are the same and the algorithm needs
to consider the actions of all agents together. We term such
a state a synchronized state:

Definition 1: A state s is a synchronized state, if t(si) =
t(sj),∀i, j ∈ I, i 6= j.
In LSS, a state is either synchronized or asynchronized. As
we will see in Sec. V, the existence of synchronized states
guarantees the completeness (not the optimality) of LS-A*.

D. State Comparison

Different from A*, where a scalar g-value is used to
compare states, in LS-A*, comparing states based solely on
their g-values may not be enough: timestamps of agents in a
state sk are relevant to potential conflicts along future paths
from sk. Thus, the timestamps of all agents in a state, which
can be formulated as a vector, need to be properly handled
for state comparison. This leads to the usage of dominance
[4] that compares two vectors.

Definition 2 (Strict Dominance): For any two states s1
and s2 with the same joint vertex (i.e. v(s1) = v(s2)),
s1 strictly dominates s2, (notationally sk � sl), if t(si1) <
t(si2),∀i ∈ I .

In Sec. VI, we discuss the usage of other types of domi-
nance. For now, with strict dominance in hand, we introduce
the Compare procedure, as shown in Algorithm 2. At each
joint vertex v ∈ V , a set of non-dominated states α(v) at v
is maintained. Initially, α(v) = ∅,∀v ∈ V\{vo} and α(vo)
contains only the initial state so. During the search, when
a state sl is generated, to decide if sl should be pruned or
not, sl is compared with every states in α(v(sl)). If sl is
strictly dominated, sl is discarded. Otherwise, sl is added to
α(v(sl)) and added to OPEN.

Algorithm 2 Pseudocode for compare(sl)
1: for all sk ∈ α(v(sl)) do
2: if sk � sl or sk = sl then
3: return false . should be discarded
4: add sl to α(v(sl))
5: return true . should be added to open list

V. ANALYSIS

In this section, we show LS-A* is complete and optimal:
LS-A* either computes an optimal solution or reports failure
if no one exists.

Corollary 1: Let sl represent a neighbor state generated
from sk, then tmin(sl) > tmin(sk).
This corollary comes from the construction of GetNgh(sk)
(In Eqn. 6, 9, durations are always strict positive).

Lemma 1: For a state s, there exists a descendent state sl
from s with v(sl) = v(s) and sl is a synchronized state.

Proof: In GetNgh(s), for every agent i ∈ Itmin
(s),

the wait action makes agent i stay at the same vertex while
increase the timestamp to tmin 2(s) (If tmin 2(s) does not
exists, then s is itself a synchronized state and the Lemma
holds). Let tmax(s) = maxi∈I(t(si)) represent the maximum
timestamps over agents in state s. Now, consider the neighbor
state sk ∈ Sngh generated from s by letting all agents
i ∈ Itmin

(s) choose the wait action, then v(sk) = v(s) and
tmin(s) < tmin(sk) ≤ tmax(s) = tmax(sk). In addition, state
sk is not strictly dominated by s and is thus not pruned.
Repeating the above process results in a descendant state
sl with v(sl) = v(s) and tmin(sl) = tmax(s) = tmax(sl).
As tmin(sl) ≤ t(sil) = t(sjl) ≤ tmax(sl),∀i, j ∈ I , sl is a
synchronized state.

Corollary 2: If state s is a synchronized state, then
GetNgh(s) expands2 joint vertex v(s) in G: let Sngh(s)
denote the set of neighbor states returned by GetNgh(s), for
every adjacent joint vertex u of v(s) in G, there exists a
neighbor state sl ∈ Sngh(s) such that v(sl) = u.

Lemma 2: For each joint vertex vk ∈ V , there exists only
a finite number of states s with v(s) = vk.

Proof: Joint graph G is finite and there exists only
a finite number of partial solutions from start to a joint
vertex vk ∈ V unless agent wait infinitely at vk. From
lemma 1, for every joint vertex vk ∈ V , there exists a
corresponding synchronized state sk generated by LS-A*
with v(sk) = vk. From lemma 1 and strict dominance
pruning rules in Algorithm 2, any descendant state s′k from
sk with v(s′k) = v(sk) are pruned. In addition, any states
sl with v(sl) = v(sk) and tmin(sl) > tmin(sk) ared pruned.
Therefore, agents cannot wait infinitely at a joint vertex.

Theorem 1: LS-A* is complete.
Proof: From Lemma 2, if there is no solution, LS-

A* terminates in finite time when OPEN depletes and report
failure. If there is a solution, from Lemma 1 and Corollary 2,
every joint vertex in graph G is expanded until LS-A* finds
a solution.

Corollary 3: For two states sk and sl with v(sk) = v(sl),
if sk strictly dominates sl, sl can not leads to a solution with
smaller cost than sk.

Corollary 4: Given a state sk and a neighbor state sl
generated from GetNgh(sk), agent i ∈ I occupies both v(sik)
and p(sik) for any time between tmin(sk) and tmin(sl).

This corollary follows from the conflict definition in the
problem description and the state definition in Sec. IV. Given
si = {vi, p(si), t(si), t(p(si))}, the vertices occupied by
agent i does not change at any time between (t(p(si)), t(si)).
In other word, the vertices occupied by agents changes
only at timestamps t(p(si)) and t(si). For state sk and its
neighbor sl ∈ Sngh(sk), there is no timestamps between
(tmin(sk), tmin(sl)) and therefore there is no change in
vertices occupied by agents.

Lemma 3: When generating neighbors for a state s, for
any agent i ∈ Itmin

(s), waiting for an amount of time in
(0, Di

wait) does not leads to any solution with smaller cost.

2A node in a graph is expanded if all of its neighbor nodes are generated
(visited). See [11] for more details.

Proof: Let s′ be a state that is generated from s
by letting an agent i ∈ Itmin

(s) wait for an amount of
time in (0, Di

wait). Based on Corollary 4, if a joint vertex
cannot be reached from s because of agent-agent conflicts,
then this joint vertex cannot be reached from s′ as well.
Therefore, for every state s′l generated from s′, there must be
a corresponding state sl generated from s with v(sl) = v(s′l)
and g(sl) < g(s′l). Thus, for any solution that goes through
s′, there exists a corresponding solution via s with a smaller
g-value.

Theorem 2: If there are solutions, LS-A* finds the one
with the minimum g-value.

Proof: From Corollary 3, GetNgh procedure generates
all possible neighbors of a state that can be part of an optimal
solution. From Lemma 3, frontier set α(v) keeps track of all
possible states at joint vertex v that can be part of an optimal
solution. All states in α(v) for any v ∈ V are inserted into
OPEN. LS-A* selects candidate state from OPEN with the
minimum g-value (same as A*) and therefore identifies the
solution with the minimum cost.

VI. DISCUSSION AND EXTENSIONS

A. Switch Between Dominance Rules

The aforementioned GetNgh procedure and strict domi-
nance guarantee the existence of a synchronized state at
each joint vertex. After a synchronized state s at v(s) is
generated and added into OPEN, for any descendant states
sl with v(sl) = v(s), however, the algorithm can switch
to a pruning rule with relaxed conditions instead on relying
on strict dominance. This is helpful since more states, that
are not part of an optimal solution, can be pruned. The
relaxed conditions are defined through weak dominance [13]
as follows:

Definition 3 (Weak Dominance): For any two states s1
and s2 with the same joint vertex (i.e. v(s1) = v(s2)), s1
weakly dominates s2, if t(si1) ≤ t(si2),∀i ∈ I .
With both the dominance rules, the algorithm can switch
between them to decide whether a state sk should be pruned
or not. If a synchronized state sl with v(sl) = v(sk) has
already been generated and inserted into OPEN during the
search, then sk is compared with every state in α(v(sk)) with
weak dominance. Otherwise (which means no synchronized
state has been generated at v(sk)), sk is compared with every
state in α(v(sk)) with strict dominance. Switching between
the two dominance rules do not affect the proof, and thus
the properties of LS-A* still hold.

B. Relationship to A*

With the problem definition in Sec. III, if all actions for
all agents take the same amount of time, i.e. Di(ek) =
Dj(el),∀i, j ∈ I, ∀ek, el ∈ E, the MAPF-AA problem is
then equivalent to a conventional MAPF problem. In this
case, LS-A* is equivalent to regular A* for the following
two reasons.
• The timestamps of all agents in every state are the same

(and every state is thus a synchronized state). As a

result, in GetNgh procedure, all agents always plan their
actions together.

• Since every state is synchronized, all agents share the
same timestamp in each state, which can be described
as a scalar; Besides, the algorithm always uses weak
dominance, which is equavalent to “≤” (no larger than)
relationship between two scalar values as in regular A*.

Those two statements also explain how A* is extended to
LS-A* with the two aforementioned procedures to handle
asynchronous actions.

C. Relationship to Operator Decomposition

When applying A* to conventional MAPF (without asyn-
chronous actions), the number of neighbors generated in each
iteration grows exponentially with respect to the number
of agents. Operator decomposition (OD) [20] mitigates this
challenge by generating intermediate states, where an order
between agents is established and only one agent is allowed
to plan its next actions for each iteration. This order is, in
general, established by the f -value of states. When all agents
have chosen their actions following the order, a standard
state is generated. Both intermediate and standard states are
treated in the same best-first search manner as in A*: both
types of states are inserted into OPEN and selected based
on f -values for expansion. By doing so, OD avoids the
generation of high cost states which may never be expanded.

From the perspective of OD, LSS is similar by allowing
only a subset of agents to plan their next actions each
time. Additionally, the aforementioned synchronized states
are equivalent to standard states in OD in a sense that all
agents have planned their actions. However, in LSS, the order
between agents is established by timestamps of agents.

D. Extension with M*

To demonstrate the generality of the proposed LSS, we
combine LSS with M*, an A*-based algorithm for conven-
tional MAPF, and propose LS-M* for MAPF-AA. Specifi-
cally, M* uses two concepts: the individual policy and the
collision set. The individual policy of agent i maps a vertex
vi ∈ V to the next vertex along an optimal path connecting vi

and vif ignoring any other agents. With an individual policy,
an agent is constrained to a one-dimensional search space
from any vertex to its goal. The collision set IC(v), v ∈ V
describes the subset of agents that are in conflict along paths
through joint vertex v. Collision sets are initially all empty
sets for all joint vertices and are enlarged during the search
via (1) conflict detection, which detects collision between
agents at joint vertices, and (2) back-propagation: when
IC(v) of some joint vertex v is enlarged, the collision sets
of all joint vertices that are relevant to v are also enlarged.
To expand a joint vertex v, M* let agents i /∈ IC(v) follow
their individual policies and let agents i ∈ IC(v) consider all
possible actions at vi. By doing so, M* plans in a “compact”
search space with varying dimensionality embedded in G.

To combine LSS with M* to handle MAPF-AA, similar
procedures, as presented in LS-A*, is required. First of all,
we define the same search state as the one presented in the

aforementioned LS-A* and a collision set IC(s) is defined
for every state. Secondly, when generating neighbors of a
given state s, Steps (1), (2) and (4) , as stated in LS-A*,
remain the same. Step (3) needs some adaption to consider
collision set IC(s): for agents i ∈ Itmin

(s), if i /∈ IC(s),
agent i is only allowed to follow its individual policy;
otherwise, individual neighbors are generated in the same
way as in LS-A*. Finally, states are also compared and
pruned by (strict and weak) dominance rules as in LS-A*,
and when a state sk is dominated by sl, IC(sl) need to be
back-propagated to sk so that the low dimensional search
space embedded in G are properly maintained [15].

E. Extension with Recursive M*

As M* perform coupled planning for all agents in a
collision set, recursive M* (rM*), a variant of M*, further
extend the idea by (1) identifying spatially separated subsets
of agents within a collision set and (2) performing coupled
planning for each of these spatially separated subsets. During
the search, rM* finds optimal paths for each of those subsets
via a recursive call to rM* and, when expanding agents
within each subset, agents are only allowed to follow those
planned paths [23]. Extending rM* to LS-rM* takes exactly
the same procedures as extending M* to LS-M*.

F. Extension with MA-CBS

Among algorithms that solve conventional MAPF, meta-
agent conflict-based search (MA-CBS) [16] and its improved
version [2] combines the advantages of both CBS and A*-
based planners. The search space of CBS grows exponen-
tially with the number of conflicts detected [17]. MA-CBS
mitigates this burden by tracking the number of conflicts
between any pair of agents and merging those agents as an
meta-agent if the number of conflicts between them exceed
some pre-defined threshold B. For each meta-agent, MA-
CBS leverages A*-based algorithms to plan (joint) path. MA-
CBS thus fuses A*-based approach and CBS approach: when
B = 0, all agents are always merged as a single meta-agent
and MA-CBS is equivalent to a pure A*-based approach;
when B = ∞, agents are never merged and MA-CBS is
equivalent to a pure CBS approach; when 0 < B <∞, MA-
CBS combines both. The test results [16] explores different
threshold B and show that MA-CBS outperforms CBS in
many different scenarios.

In this work, we also consider extending MA-CBS for
MAPF-AA by combining the proposed LSS approaches,
such as LS-rM*, with the continuous-time CBS (CCBS)
algorithm [1], which extends CBS and handles MAPF-AA by
using SIPP [12] algorithm as the low level planner in CBS.
With B ∈ [0,∞], MA-CBS algorithm varies between LS-
rM* and CCBS. Our experiments (Sec. VII) show that such
combination improves CCBS under different scenarios.

VII. NUMERICAL RESULTS

All the algorithms were implemented in Python and tested
on a computer with an Intel Core i7 CPU and 16 GB RAM.

We selected maps (grids) from [21] and generated an un-
directed graph by making each grid four-connected. The run
time limit for each test instance is five minutes. We report the
performance of the proposed LSS approach with the follow-
ing experiments. First, we compare LS-A* and “naive-A*”
(explained in Sec. VII-A) with different durations to verify
whether LS-A* saves computational effort when actions are
asynchronous. Second, we verify the performance of MA-
CBS, using LS-rM* as the underlying meta-agent planner, by
varying the merging threshold B. Finally, we tested LS-rM*
with varying heuristic inflation rates to learn how LS-rM*
trades off between optimality and search efficiency.

A. Naive A* and LS-A*

Naive-A* assumes the existence of a common time unit
τ and a maximum possible time T , and discretizes the time
dimension into a finite number of time steps {0, 1, . . . , T/τ}.
This discretization guarantees that the actions of all agents
begin/end concurrently. Naive-A* conducts A* search in a
time-augmented graph by visiting all possible time steps.
In our tests, the durations of edges were implemented as
Di(e) = di,∀e ∈ E, where di is a random integer sampled
from [1,K], with K = 10, 100, 1000, representing the
“degree” of asynchronous actions. Note that, different agents
i, j can have di 6= dj . We fixed the number of agents with
N = 2 and ran tests in a 16× 16 obstacle-free grid.

From Table II, LS-A* outperforms naive-A* in terms of
number of states expanded as well as run time on average
regardless of K. Additionally, when K varies, LS-A* re-
mains steady against those two metrics. The results show
the benefits of LS-A* as it avoids too fine a discretization
of the time dimension.

B. Meta-agent Conflict-based Search

Table I shows the results of the improved MA-CBS [2],
which uses SIPP and LS-rM* as low level planners, with a
merging threshold B ∈ {0, 1, 10, 100,∞}. When the number
of “internal” conflicts between a pair of agents exceeds B,
those two agents are merged as a meta-agent. Note that
when B = 0, MA-CBS is the same as LS-rM* since all
agents are always merged as one meta-agent, and when
B =∞, MA-CBS is the same as CCBS [1] since all agents
are never merged. Here, durations are set in the same way
as in VII-A with K = 100. We select three grids from
different categories (room, maze, game map) from [21] and
report the success rates of finding a solution within the
time limit, as well as average run times (over all instances,
both solved and unsolved) for a different number of agents
N ∈ {2, 4, 8, 12, 16, 20}. The best performance for each N
is highlighted in bold text.

MA-CBS shows its benefits over CCBS and the maximum
improvement is achieved in room and maze-like grids (the
first and second maps) with N = 8, B = 100, where success
rates are both enhanced by 12% and the average run time is
shortened. It is also worthwhile to note that the selection of
B remains an open question, as different B can affect the
performance of the algorithm in various environments.

Success Rates (Avg. Run Time in Seconds)
Grids B N=2 N=4 N=8 N=12 N=16 N=20

0 (LS-rM*) 1.00 (0.17) 0.84 (50.9) 0.40 (183.3) 0.04 (288.3) 0 (-) 0 (-)
1 1.00 (0.20) 0.84 (53.0) 0.44 (170.6) 0.08 (276.11) 0 (-) 0 (-)
10 1.00 (0.019) 0.92 (28.9) 0.60 (122.5) 0.20 (241.1) 0 (-) 0 (-)
100 1.00 (0.019) 0.92 (29.3) 0.68 (99.0) 0.28 (227.3) 0.04 (294.3) 0 (-)

(32x32) ∞ (CCBS) 1.00 (0.005) 0.88 (36.0) 0.56 (138.5) 0.24 (232.3) 0.04 (290.6) 0 (-)
0 (LS-rM*) 1.00 (0.11) 0.84 (78.9) 0.08 (278.8) 0 (-) 0 (-) 0 (-)
1 1.00 (0.15) 0.84 (57.9) 0.08 (278.7) 0 (-) 0 (-) 0 (-)
10 1.00 (0.08) 0.88 (45.6) 0.12 (265.8) 0 (-) 0 (-) 0 (-)
100 1.00 (0.06) 0.92 (25.2) 0.32 (217.3) 0.04 (293.7) 0 (-) 0 (-)

(32x32) ∞ (CCBS) 1.00 (0.03) 0.92 (24.5) 0.24 (241.9) 0 (-) 0 (-) 0 (-)
0 (LS-rM*) 0.92 (14.7) 0.80 (65.1) 0.60 (137.1) 0.04 (288.0) 0 (-) 0 (-)
1 0.96 (19.9) 0.80 (60.4) 0.60 (127.9) 0.04 (297.1) 0 (-) 0 (-)
10 0.96 (20.2) 0.92 (24.3) 0.68 (99.5) 0.20 (245.0) 0 (-) 0 (-)
100 0.96 (20.1) 0.92 (24.2) 0.88 (45.4) 0.48 (185.1) 0.16 (277.9) 0.04 (295.9)

(65x81) ∞ (CCBS) 0.92 (24.0) 0.92 (24.1) 0.84 (54.3) 0.44 (184.2) 0.16 (270.0) 0.04 (290.5)

TABLE I
NUMERICAL RESULTS OF MA-CBS WITH DIFFERENT MERGING THRESHOLD B.

Fig. 2. Average success rates of A*-based algorithms for finding optimal solution within one minute.

Avg. No. States Expanded (Avg. Run Time in Seconds)
K 10 100 1000

Naive-A* 542.9 (0.15) 3148.3 (3.20) 10839.0 (55.16)
LS-A* 365.8 (0.09) 453.3 (0.08) 449.9 (0.08)

TABLE II
AVERAGE NUMBER OF STATES EXPANDED AND RUN TIME FOR

NAIVE-A* AND LS-A* WITH DIFFERENT DURATION FUNCTIONS.

C. Heuristic Inflation

For A*-based algorithms, a well-known technique that
trades off between bounded sub-optimality and search ef-
ficiency is using inflated heuristics [11]: f = g + w · h,
where w ≥ 1 is the inflation rate. In general, w > 1 makes
A* find a bounded sub-optimal solution faster. As shown in
Fig. 2, we plotted the success rates and run time of LS-rM*
by varying the inflation rate w ∈ {1.1, 1.2, 1.5}. We also
show the results of LS-M* and LS-rM* without inflation
i.e. w = 1.0 as baselines. It is obvious that heuristic inflation
helps in improving success rates and average run times in all
grids tested.

D. Real Robot Test

We verify the proposed inflated LS-rM* in the Robo-
tarium [25], a remotely accessible swarm robotics research
platform, by simulating and executing the planned paths, as

shown in the video3.

VIII. CONCLUSION

We proposed an approach named Loosely Synchronized
Search that can convert A*-based planners to a version that
can solve the multi-agent path finding (MAPF) problem with
asynchronous actions. We proved the theoretical properties
of LSS and presented extensive numerical results to verify
its performance against the state of the art MAPF algorithms.
Possible future work includes applying LSS with other A*-
based algorithms, such as EPEA* [6], or further extend LSS
to other variants of MAPF.

REFERENCES

[1] Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, and Roni
Stern. Multi-agent pathfinding with continuous time. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 39–45, 2019.

[2] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin,
Oded Betzalel, and Eyal Shimony. Icbs: improved conflict-based
search algorithm for multi-agent pathfinding. In Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, 2015.

[3] Liron Cohen, Tansel Uras, TK Satish Kumar, and Sven Koenig.
Optimal and bounded-suboptimal multi-agent motion planning. In
Twelfth Annual Symposium on Combinatorial Search, 2019.

[4] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer
Science & Business Media, 2005.

3https://drive.google.com/file/d/
1EX5CcOA6oUCmYX3BD3Zdi2iADoA9sMuH/view?usp=sharing

https://drive.google.com/file/d/1EX5CcOA6oUCmYX3BD3Zdi2iADoA9sMuH/view?usp=sharing
https://drive.google.com/file/d/1EX5CcOA6oUCmYX3BD3Zdi2iADoA9sMuH/view?usp=sharing

[5] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir
Goldenberg, Guni Sharon, Nathan Sturtevant, Glenn Wagner, and
Pavel Surynek. Search-based optimal solvers for the multi-agent
pathfinding problem: Summary and challenges. In Tenth Annual
Symposium on Combinatorial Search, 2017.

[6] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan
Sturtevant, Robert C Holte, and Jonathan Schaeffer. Enhanced partial
expansion a. Journal of Artificial Intelligence Research, 50:141–187,
2014.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[8] Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, TK Satish
Kumar, and Sven Koenig. Multi-agent path finding for large agents.
In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7627–7634, 2019.

[9] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven
Koenig. Searching with consistent prioritization for multi-agent
path finding. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7643–7650, 2019.

[10] Hang Ma, TK Satish Kumar, and Sven Koenig. Multi-agent path find-
ing with delay probabilities. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

[11] Judea Pearl. Intelligent search strategies for computer problem solving.
Addision Wesley, 1984.

[12] Mike Phillips and Maxim Likhachev. Sipp: Safe interval path planning
for dynamic environments. In 2011 IEEE International Conference on
Robotics and Automation, pages 5628–5635. IEEE, 2011.

[13] Anthony Przybylski and Xavier Gandibleux. Multi-objective branch
and bound. European Journal of Operational Research, 260(3):856–
872, 2017.

[14] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Multi-
objective conflict-based search for multi-agent path finding. In 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

[15] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Subdimen-
sional expansion for multi-objective multi-agent path finding. IEEE
Robotics and Automation Letters, 6(4):7153–7160, 2021.

[16] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Meta-
agent conflict-based search for optimal multi-agent path finding. SoCS,
1:39–40, 2012.

[17] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant.
Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40–66, 2015.

[18] Rahul Shome, Kiril Solovey, Andrew Dobson, Dan Halperin, and
Kostas E Bekris. drrt*: Scalable and informed asymptotically-optimal
multi-robot motion planning. Autonomous Robots, 44(3):443–467,
2020.

[19] David Silver. Cooperative pathfinding. pages 117–122, 01 2005.
[20] Trevor Scott Standley. Finding optimal solutions to cooperative

pathfinding problems. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[21] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar,
et al. Multi-agent pathfinding: Definitions, variants, and benchmarks.
arXiv preprint arXiv:1906.08291, 2019.

[22] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal
velocity obstacles for real-time multi-agent navigation. In 2008 IEEE
International Conference on Robotics and Automation, pages 1928–
1935. IEEE, 2008.

[23] Glenn Wagner and Howie Choset. Subdimensional expansion for
multirobot path planning. Artificial Intelligence, 219:1–24, 2015.

[24] Thayne T Walker, Nathan R Sturtevant, and Ariel Felner. Extended
increasing cost tree search for non-unit cost domains. In IJCAI, pages
534–540, 2018.

[25] Sean Wilson, Paul Glotfelter, Li Wang, Siddharth Mayya, Gennaro
Notomista, Mark Mote, and Magnus Egerstedt. The robotarium:
Globally impactful opportunities, challenges, and lessons learned in
remote-access, distributed control of multirobot systems. IEEE Control
Systems Magazine, 40(1):26–44, 2020.

[26] Jingjin Yu and Steven M LaValle. Structure and intractability of
optimal multi-robot path planning on graphs. In Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

	I Introduction
	II Prior Work
	III Problem Description
	IV Loosely Synchronized Search
	IV-A Notation and State Definition
	IV-B Algorithm Overview
	IV-C Neighbor Generation
	IV-D State Comparison

	V Analysis
	VI Discussion and Extensions
	VI-A Switch Between Dominance Rules
	VI-B Relationship to A*
	VI-C Relationship to Operator Decomposition
	VI-D Extension with M*
	VI-E Extension with Recursive M*
	VI-F Extension with MA-CBS

	VII Numerical Results
	VII-A Naive A* and LS-A*
	VII-B Meta-agent Conflict-based Search
	VII-C Heuristic Inflation
	VII-D Real Robot Test

	VIII Conclusion
	References

