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Abstract— Autonomous Micro Aerial Vehicles (MAVs) have
the potential to be employed for surveillance and monitoring
tasks. By perching and staring on one or multiple locations
aerial robots can save energy while concurrently increasing
their overall mission time without actively flying. In this paper,
we address the estimation, planning, and control problems
for autonomous perching on inclined surfaces with small
quadrotors using visual and inertial sensing. We focus on
planning and executing dynamically feasible trajectories to
navigate and perch to a desired target location with on board
sensing and computation. Our planner also supports certain
classes of nonlinear global constraints by leveraging an efficient
algorithm that we have mathematically verified. The on board
cameras and IMU are concurrently used for state estimation
and to infer the relative robot/target localization. The proposed
solution runs in real-time on board a limited computational
unit. Experimental results validate the proposed approach by
tackling aggressive perching maneuvers with flight envelopes
that include large excursions from the hover position on
inclined surfaces up to 90◦, angular rates up to 600 deg/s,
and accelerations up to 10 m/s2.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) have great speed and
maneuverability however they tend to have very low flight
time. Current solutions limit battery life to around 10-20 min-
utes. Fortunately for many missions such as environmental
monitoring, it is unnecessary to remain in hover for the whole
mission duration. In general, by perching and staring on one
or multiple location, a MAV can greatly extend its mission
time saving power without the need to frequently replace
batteries. This motivates the need of autonomous perching
solutions to conserve energy and extend the mission time.

In this paper, we tackle the autonomous perching problem
on inclined surfaces with quadrotors solely using on board
cameras and Inertial Measurement Unit (IMU) as shown
in Fig. 1. Inclined flat surfaces like walls and rooftops are
plentiful especially in urban environments and by focusing
on this avenue, we can aim to greatly reduce the energy
consumption of multiple types of mission. The proposed
autonomous perching problem is challenging for several
reasons. The maneuver, to intercept the target, requires large
excursions from the hover position. In addition, the vehicle
must generate and execute dynamically feasible trajectories
respecting the actuator and sensor constraints despite the
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Fig. 1: Aggressive visual perching sequence maneuver for a
90◦ inclined surface.

presence of nonholonomic and underactuation constraints.
Finally, in our case, the maneuver has to be accomplished
relying exclusively on on board minimalist sensor data (cam-
era and IMU) and limited computational unit. The ability to
execute these challenging maneuvers can be leveraged as
well in several other scenarios including reaction to sudden
changes in the operational conditions for obstacle avoidance
or navigation in constrained environments.

This paper presents multiple contributions. First, we show
how to generate and execute dynamically and physically
feasible trajectories for perching on inclined surfaces. Our
planning solution efficiently supports certain classes of non-
linear constraints such as maximum thrust limit through
the use of an efficient bound checking algorithm that we
have mathematically verified. The planner versatility to in-
corporate a diverse set of constraints makes it potentially
able to support different perching or adhesion mechanisms.
Second, our approach relies solely on on board sensing
and computation for navigation and to infer the relative
robot/target configuration. Finally, this is the first time that a
fully autonomous quadrotor system can perch on any flat
inclined surface with minimum mechanical modifications.
Other works either assume the availability of a motion
capture system [1] or require the landing point to be in the
field of view at the starting location based on visual servoing
approaches [2], [3].

II. RELATED WORKS

Prior works on perching with quadrotors on inclined
surfaces focus on solving the trajectory generation and/or
control problems [4], [1] relying exclusively on motion
capture systems. These solutions do not address the de-
sign challenges and requirements when deploying robots
equipped with embedded on board sensors and computa-
tionally limited units. Furthermore, the approach presented
in [4] relies on composition of multiple control modes with
linearized controllers without guaranteeing feasibility of the
maneuver. Other works focus on the perching mechanism
design. The approach proposed in [5] [6] use claws which
limits perching to cylindrical objects of the appropriate
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Fig. 2: System architecture for the perching task

width to fit the claw’s grip. Other solutions rely on dry
adhesives [7], [8], [9], suction gripper solutions [10], [11]
mechanisms, or active perching mechanisms solutions [10].
However, the use of active perching mechanism solutions
further increases the vehicle’s payload and energy require-
ments, while concurrently decreasing the overall flight time.
Finally, in [6] a bio-inspired trajectory planning approach is
presented. However, the work relies on an actuated gripper
for specific cylindrical objects and relies on a heavy 3D
camera to localize perching targets. Finally, visual servoing
approaches [2], [3] have shown autonomous perching results
without the use of motions capture but are highly dependent
on objects’ shapes and require the object to initially be in
the field of view.

Other works employ fixed wing solutions and focus on
perching mechanism designs [12], [13]. Fixed wing solutions
have lower maneuverability with respect to quadrotor solu-
tions. Moreover, a quadrotor can hover in place and navigate
in confined environments with both slow and fast agile
movements. The flight time is more restricted with respect
to fixed wing solutions further motivating the usefulness to
provide autonomous perching solutions for quadrotors.

Compared to the aforementioned solutions, we concur-
rently guarantee dynamical and physical feasibility of the
planned trajectories. Furthermore, our approach relies ex-
clusively on on board sensing and estimation with a small
computational unit. In the presented case, we focus on guar-
anteeing on board autonomous perching with dynamically
and physically feasible trajectories. We leverage the differ-
ential flatness property and develop an efficient planning
algorithm to generate trajectories for a quadrotor without
the limitation to first order systems [14] or composition of
multiple control modes relying on linearized controllers [4].
The proposed approach is agnostic with respect to the type
of active/passive perching mechanism, due to the ability to
support a diverse set of constraints which could conform to
different attachment/adhesion mechanisms.

III. SYSTEM OVERVIEW

The proposed system architecture is shown in Fig. 2 is a
quadrotor running with a Qualcomm® SnapdragonTM board
and 4 brushless motors. The Qualcomm® SnapdragonTM

has a Qualcomm® HexagonTM DSP, Wi-Fi, Bluetooth, GPS,
one core processor along with a downward and front-facing
camera with a 160◦ field of view along with an IMU. For

perching, we employ VELCRO® material mounted in the
ventral part of the vehicle.

The software framework has been developed in ROS1 on
a Linux kernel and includes a state estimation algorithm
running at 500 Hz composed of a Unscented Kalman Filter
(UKF) and Visual Inertial Odometry (VIO) [15] which
processes images at 30 Hz. The downward facing camera
is solely devoted to state estimation of the quadrotor and
the front-facing camera is used to detect the perch target’s
position and orientation. Furthermore, the system runs on
board a position and attitude controllers plus a trajectory
planner to generate and execute planned path.

IV. APPROACH

Let the inertial frame I be represented by the following
three axes

[
e1 e2 e3

]
. The quadrotor body frame B is

represented by
[
b1 b2 b3

]
. This frame origin is located

at the center of mass of the vehicle. Consequently, we denote
the relative position of the quadrotor with respect to the I
frame as x =

[
x y z

]>
and the relative orientation as

R =
[
b1 b2 b3

]
∈ SO(3). The perching target frame is

denoted with S and is represented by the axes
[
s1 s2 s3

]
.

The relevant frames and configuration settings are depicted
in Fig. 3. The perching problem from time t = t0 to
t = tf requires the vehicles to navigate by planning and
executing a feasible trajectory (i.e., generating a sequence
of R (t) ∈ SO(3) and x (t) ∈ R3) such that B ≡ S
at t = tf . The problem is decomposed in several steps.
First, the vehicle visually locates the target and estimates
the relative configurations from the B to S frames (i.e,
relative position pBS ∈ R3 and orientation RBS ∈ SO(3)).
Second, the relative configuration information is incorporated
at the planning and control levels to generate and execute
trajectories that are dynamically and physically feasible.

In Section IV-A, we briefly review the vehicle’s system
dynamics and control. Section IV-B describes the proposed
perception pipeline including autonomous navigation and
target localization. Section IV-C details our trajectory plan-
ning approach and how we leverage in this context the
system dynamics and the relative configuration constraint to
guarantee the correct plan and execution.

1www.ros.org



Fig. 3: Setup overview and frame convention definitions.

A. Modeling and Control

The system dynamic model in the inertial frame I is

ẋ = v, v̇ = a,ma = Rτe3 −mge3,

Ṙ = RΩ̂,JΩ̇ + Ω× JΩ = M,
(1)

where x,v,a ∈ R3 are the position, velocity, acceleration of
the quadrotor’s center of mass in Cartesian coordinates with
respect to the inertial frame I, R represents the orientation
of the quadrotor with respect to I. Ω ∈ R3 is the angular
velocity of the quadrotor with respect to B, m ∈ R denotes
the mass of the quadrotor, J ∈ R3×3 represents its inertial
matrix with respect to B, g = 9.81m/s2 is the standard
gravitational acceleration, M ∈ R3 is the total moment
with respect to B, τ ∈ R represents the total thrust to
the quadrotor, and the ·̂ represents the mapping such that
âb = a× b,∀a,b ∈ R3.

To achieve aggressive maneuvers, we apply a nonlinear
geometric controller that was leveraged in our previous
work [16] to achieve agile flight in indoor environments.
First, kR,kΩ,kx,kv ∈ R3×3 are positive definite diagonal
matrix representing the feedback gains for the errors in ori-
entation, angular velocity, position and velocity respectively.
Based on those feedbacks, the control inputs are thrust τ and
moment M selected as

τ = (−kxex − kvev +mge3 +mẍ) ·Re3 = f ·Re3,

M = −kReR − kΩeΩ + Ω× JΩ

− J
(
Ω̂R>RCΩC −R>RCΩ̇C

)
.

(2)

eR, eΩ, ex, ev ∈ R3 are the orientation, angular velocity, po-
sition and velocity errors this is detailed in works [17], [18],
and the ∗C are the values obtained from the differentially flat
outputs. ∗des represents the differential flat outputs of the
quadrotor system computed using the planning algorithm.

B. State Estimation and Perching Target Localization

For quadrotor autonomous navigation, we leverage our
previous work [15], where we showed aggressive maneuvers

combining visual and inertial data via VIO and UKF.
The perching localization method is unimportant for our

system as long as it gives both position and orientation. For
our experiments perching localization is achieved through
the use of four Apriltags [19] placed on the four corners
of the target. By placing these Apriltags on the corners, we
can easily calculate the exact center of the landing pad by
averaging these position while also leaving a large portion
of VELCRO® to land on. Our software perception pipeline
polls images from the front camera and runs an Apriltag
localization algorithm. The quadrotor polls the front-facing
camera till it recognizes all 4 Apriltags Ids, and takes the
first sample image as the target configuration location pBS and
orientation RBS . These target configurations are represented
in the I frame. To reduce sensitivity to the noise from the
detection process, we average the tags’ position and quater-
nions to obtain the target center position and orientation.

C. Planning for Aggressive Perching

After acquiring the target location and orientation, we plan
a differentially smooth and dynamically feasible trajectory to
satisfy the end goal of reaching the target and perching by
exploiting the differential flatness property of the quadrotor.
This allows us to shift the planning problem defined at the
beginning of this Section to the flat space of the vehicle
{x, ψ} = {x, y, z, ψ}, where ψ is the yaw angle. We employ
a set of polynomial splines Pd to represent the quadrotor
trajectory

Pd(t) =


p1d (t− t0) if t ∈ [t0, t1]

p2d (t− t1) if t ∈ [t2, t1]
...

pfd (t− tf−1) if t ∈ [tf−1, tf ]

,

pid(t) =

N∑
n=0

cnidt
n , i = 1, · · · , f

(3)

where f is the number of splines, N is the polynomial order,
and d ∈ {1, 2, 3, 4} corresponds to the dimensions of the flat
space of the quadrotor system composed by the flat outputs
{x, y, z, ψ}, pid represents the ith polynomial making up the
full trajectory of Pd, cnid ∈ R is the nth coefficient of pid.
Polynomials are ideal because the function and its derivatives
can be written as matrix multiplication.

In the following, we formulate the trajectory planning
problem as a Quadratic Programming (QP). The trajectory
optimization must satisfy perching, actuators, and sensing
constraints globally in a time efficient manner. We first
declare a cost function as the squared norm of the jth order
derivative summed in all dimensions. We formulate the case
for one polynomial spline in the form

min
cid

c>id

(∫ ti

ti−1

djti
dtj

djti
dtj

>

dt

)
cid = min

cid
c>idQicid

(4)
where ti =

[
1, (t− ti−1), (t− ti−1)

2, · · · (, t− ti−1)
N
]> ∈

RN represents the time vector and and cid ∈ RN is the



vector that consists of all the coefficients of pid. The term
Qi ∈ RN×N is the cost matrix formed from the center
integral in eq. (4). It should be noted that Qi is identical
for all dimensions, d, so it has no subscript d. We can
then convert eq. (4) into one unified cost for dimension
d in the form cTd Qcd by stacking the matrices diagonally
Diag(Q1, · · · ,Qi, · · · ,Qf ) = Q and forming cd ∈ RNf

as a vector of all the cid stacked vertically. We can then
formulate an equality constraint for endpoints of each spline
in the form bid = Aidcid. The term bid is a vector consisting
of all the user defined constraints for dimension d that are
imposed at time, ti. Aid is defined by transposing ti into a
row vector then stacking ti and its derivatives vertically aspid (ti)ṗid (ti)

...

 =
[
ti (ti) ṫi (ti) . . .

]> ∗ cid. (5)

The constraints on higher order terms like velocity
and accelerations are optional to declare in eq. (5).
We can simply stack matrices in eq. (5) diagonally,
Diag(A1d, · · · ,Aid, · · · ,Afd), to create the combined con-
straint for all trajectories in a dimension. Additionally, a
continuity constraint between the endpoints of all splines is
enforced for all derivatives. The first order derivative case is

0
0
...
0

 =


ṫ1(t1) −ṫ2(t1) 0 ...
0 ṫ2(t2) −ṫ3(t2) ...
...

. . . . . .
...

0 ... ṫf−1(tf−1) −ṫf (tf−1)




c1d

c2d

...
cfd

 . (6)

Eq. (6) constraint is replicated to the fourth order and
combined with eq. (5) constraints by stacking the matrices
vertically creating a unified equality constraint matrix Ad.

We can add additional inequality constraints formatted the
same as eq. (5) Aid for each spline and combine them in
the same way to get Gd. The combined constraint and cost
are solved as 4 separate QP optimization in parallel for each
dimension to speed up the overall solution time. For each
QP dimension the optimization problem is detailed below

min
cd

cTd Qcd

s.t. Adcd = bd

yd ≤ Gdcd ≤ zd

(7)

where the inequality constraint are between a lower bound
yd and upper bound zd respectively. In the following section,
we will discuss the perception, state and actuator constraints
specific to executing perching tasks.

1) Perching Perception and Physical Constraints: In-
spired by [15], we exploit the differential flatness property
of our model to derive a relationship between the vehicle’s
center of mass acceleration, ẍ and rotation matrix R. First
we look at the dynamical model established in eq. (1). We
can derive that the nominal thrust as

τ = m||ẍ+ ge3||. (8)

Based on the nonholonomic property of a quadrotor system,
the generated force is along the b3 axis of the body frame

of a quadrotor; therefore, the b3 should satisfy

b3 =
ẍ+ ge3

||ẍ+ ge3||
. (9)

Using eq. (9), we can define b3 at the end of the perching
at tf through an acceleration constraint as

ẍ(tf ) = αs3 − ge3, (10)

where α = ||ẍ(tf )+ge3||∈ R corresponds to the pre-defined
thrust of the quadrotor selected by the user. The planned ẍ
is then injected in the thrust in eq. (2). The s3 direction on
the inclined surfaces is extracted from the last column of the
matrix RS . This orientation RS is obtained combining the
outcome of the state estimation algorithm with the target
detector, which also provides pS . These quantities allow
us to fully define the target configuration with respect to
the inertial frame and provide the constraints required to
accomplish the perching maneuver. To enforce this maneuver
at control level, the rotation matrix, we impose that in eq. (2),
RC should be chosen according to

RC =
[
b1,C b2,C b3,C

]
(11)

b1,C =
b2,des × b3

||b2,des × b3||
, b2,C = b3 × b1,

b2,des =
[
− sinψdes, cosψdes, 0

]>
, b3,C =

f

||f ||
.

The desired yaw angle ψdes can be chosen by the user.
Generally, we select it such that b2,des is parallel to s2, which
can be know from RS . The commanded angular rate is then

Ω̂C = R>CṘC . (12)

Next, additional constraints have to be placed on the
impact velocity to ensure that the quadrotor is neither moving
too quickly nor too slowly so that it does not properly
adheres to the perching mechanism. We take this aspect into
account by imposing additional velocity constraints in the
target proximity

vmin ≤ ẋ(tf ) · s3 ≤ vmax, (13)

where vmin is the minimum impact velocity and vmax is
the maximum. Finally, the vehicle must complete most of
its rotation before its impact with the surface rather than
try to pivot at the target. This is to avoid the rim of the
vehicle impacting the target surface. Should the vehicle
begin rotating too late in its trajectory, the front end will
collide with the landing pad before reaching the desired
attitude. This aspect is expressed by enforcing an additional
acceleration range by a given q tolerance in proximity of
the target. In order to apply the inequality constraint to our
optimization, we discretize the equation as

(1− q) (αs3 − ge3) ≤ ẍ(t) ≤ (1 + q) (αs3 − ge3) ,

∀t ∈ {tf − tk + j ∗ dt} j ∈ Z & 0 ≤ j < tk
dt
,

(14)

where dt is the sampling time of our trajectory planner and
tk is the time prior to the impact which is user defined.



Algorithm 1 GLOBAL BOUND CHECKING (GBC)
Returns true if H (t) < b ∀ t ∈ [t0, tf ]. H(t) is any polyno-
mial. b ∈ R is an upper bound

1: Let F (t) = H(t)− b;
2: if F (t0) > 0 or F (tf ) > 0 then
3: return FALSE
4: end if
5: if STURM(F (t), t0, tf ) > 0 then
6: return FALSE
7: end if
8: return TRUE

2) Actuators Constraints: Our planner must respect the
actuator constraints. If we refer to eq. (8), then it follows that
there are lower and upper bounds τmin and τmax respectively
that the vehicle’s thrust τ should respect. We can then
incorporate the actuator constraint formulated as

τ2
min ≤ ‖mẍ+mge3‖22 ≤ τ

2
max. (15)

Since this constraint is nonlinear, it cannot be formulated
in the QP optimization. We will describe how our system
satisfies this condition in the next section.

3) Optimization Procedure: For our planner, we use the
QP to solve the constraints described in eqs. (10), (13),
and (14). Next, we use Algorithm 1 to verify if the constraint
described in eq. (15) is met. We do not apply Algorithm 1 to
the inequality constraints in eqs. (13) and (14) because they
are linear constraints and can be efficiently resolved within
the QP optimization. Should the global bounds be violated,
we increase the trajectories’ time iteratively and recursively
solve the QP until eq. (15) is met. We visualize this process
in Fig. 4 whereby increasing the allotted time for a minimum
snap trajectory, the constraint from eq. (15) is met through
iteratively expanding the time and checking the bounds.

Inspired by [20], Algorithm 1 checks if given any poly-
nomial, H(t), then is H(t) < b ∀ t ∈ [to, tf ] true. For
our algorithm, H(t) is set to the squared norm of the thrust
described in eq. (15). Algorithm 1 works by leveraging the
function STURM [21] which returns the number of roots of
any arbitrary polynomial, H(t), in a bound t ∈ [t0, tf ]. A
proof of algorithm 1 is included in the appendix along with a
more detailed description of STURM’s implementation. Us-
ing algorithm 1, we can ensure that our generated trajectory
does not violate eq. (15) without checking each point of our
trajectory. This time reduction is quantified in Table. I.

V. EXPERIMENTAL RESULTS

The experiments are conducted in the new indoor testbed
with a flying space of 10×5×4 m3 at the ARPL lab at New
York University. The ground truth data is collected using
a Vicon2 motion capture system at 100 Hz. Navigation is
performed solely based on the on board VIO system running
at 500 Hz. Our landing pad is mounted on an adjustable
desk that allows us to control height. Also, the adhesive is

2www.vicon.com

Optimizer Num. Waypoints Computation Time (ms)

QP+GBC 3 4
10 18

NLOPT 3 527
10 1253

TABLE I: Computation time of our approach as a function
of the number of waypoints.

Fig. 4: Iterations through the GBC reducing thrust for
perching trajectory.

attached to an adjustable stand which allows us to control the
surface angle along a specific axis. We selected a tolerance,
q = 0.1, sampling time, dt = 0.01 s, time before impact,
tk = 0.15 s and α = 3.3 m/s2 as the hyperparameters of
eqs. (10) and (14). We choose to minimize the j = 4 ,snap
norm, for eq. (4). Finally, we set the impact velocity bound
of eq. (13) as the minimum impact velocity, vmin = 0.4m/s,
and maximum impact velocity, vmax = 0.6m/s.

First, we verify that our optimization procedure respects
the maximum thrust bound in addition to the linear inequality
constraints. This trajectory times spanned an initial t0 = 0 s
and end tf = 1 s. We then apply a bound on the maximum
thrust, τmax = 4.5 N. Visualized in Fig. 4, the thrust shrinks
for each iteration as time increases. This process repeats till
our condition is respected, where tf = 1.4 s.

Next, we evaluate the computational time and scalability
of our trajectory generator by analyzing the time taken to
resolve a 3 and 10 spline problem. Computational results
are reported in Table I. To ensure consistency of our results,
we obtained the results by re-running the optimizer 5 times
and averaging the outcome. We leverage the C++ OOQP
library [22] to solve our QP formulation. For the following
experiment, we compared whether using one iteration of
the nonlinear optimizer package NLOPT [23] to guarantee
thrust, or checking and reformulating multiple iterations of
the QP problem was faster. The following experiments all
use a polynomial order N = 14. We provide results for
this specific scenario in Table I. The nonlinear optimization
takes on the order of a 100 times longer to solve than
performing a QP algorithm and repeating a check afterwards.
This indicates that our current approach of doing multiple
QP optimizations is better than trying to solve a single more
complex nonlinear optimization.

We then proceed to evaluate our approach for perching
on an inclined surface as shown in Fig. 1 considering two
challenging inclination angles of 60◦ and 90◦. In Fig. 5, we



Component 1.7 m 3 m
Tracking Estimation Tracking Estimation

60◦ x (m) 0.0500 0.0145 0.0378 0.0401
y (m) 0.0325 0.0851 0.0732 0.0714
z (m) 0.1509 0.0714 0.1321 0.0452

90◦ x (m) 0.0503 0.0314 0.0948 0.0660
y (m) 0.0539 0.0533 0.0360 0.0045
z (m) 0.1081 0.0405 0.0911 0.0485

TABLE II: Tracking and Estimation RMSE for different
surface inclinations and distances.

present the trajectory planning, control tracking, and local-
ization results for the most challenging perching maneuver
at 90◦. We do not report the results on y-axis in Fig. 5
because the motion along that axis does not have significant
variations during the perching task. We also plot the thrust
vector b3 in Fig. 5 (right) to further show that the constraint
during perching is correctly enforced during the execution
of the maneuver. As demonstrated, our additional constraints
imposed through the eqs. (10) and (14) enforce the rotation to
complete slightly before reaching the target. To further show
that the proposed maneuver is aggressive and challenging, we
present the angular rates achieved during 90◦ perching on the
three Cartesian axes in Fig 6. Our vehicle achieves angular
rates close to 600 deg/s, which to the best of our knowledge
has never been achieved in the past for a small scale vehicle
using on board computation and visual perception for both
state estimation and target localization.

Finally to validate the consistency, performance, and
robustness of our algorithm, we use 2 different surface
inclinations at two target distances of 1.7 m and 3 m
respectively. 3 m is the maximum distance to reliably detect
the Apriltags on our quadrotor. Table II shows the relevant
trajectory tracking and state estimation RMSE metrics of
these experiments. Furthermore, we repeat the procedure 5
times for each distance and surface inclinations and record
the successful perching rate as seen in Table III. A successful
perching is defined as the quadrotor adheres to the target and
remains attached. The lower success rate at 60◦ is due to
the Apriltag accuracy falling for a worse viewing angle and
further target. The tracking error is mostly located toward the
end of the trajectory as depicted in Fig. 5. Once the vehicle
has angular velocity prior to perching, it is very difficult
to control its position. However, we still see our controller
succeeding in the perch in these conditions. Overall, we see
that our approach can generate reliable perching maneuver
based on on board perception with cm level accuracy both
in term of localization and control tracking of the maneuver.
Furthermore, these success rates and tracking errors are
agnostic with respect to the tested starting positions as well
as surface inclination.

VI. CONCLUSION

In this paper, we presented the planning, control, and
perception methodologies to achieve autonomous visual
perching with small quadrotors relying exclusively on on
board computation and sensing. Our results show that we can
generate aggressive and challenging perching maneuvers up

Target Surface Success
Distance (m) Angle rate

1.7
60◦ 4/5
90◦ 4/5

3
60◦ 3/5
90◦ 4/5

TABLE III: Success rate statistics as a function of the
inclined surface and the target distance.

to 90◦ inclined surfaces, angular rates up to 600 deg/s, and
accelerations up to 10 m/s2. These results show the agility
and robustness of our real-time autonomous perching.

Future works will focus on two research directions. First,
we aim to leverage consecutive target detection across the
entire planned maneuver to have a receding-horizon plan-
ning strategy. Continuous target information introduces the
possibility to refine the trajectory in real-time to compensate
for possible drifts or unmodelled effects during flight and
consequently increases the resilience and precision for target
interception. In this context, it is interesting to study the
trade-off among the dynamic feasibility, aggressive behavior
of the perching maneuver, and maximizing the visibility of
the target. Second, we will work on enforcing the planning
objectives and constraints at the control level by formulating
a nonlinear model predictive control problem where the sen-
sors and actuator constraints can be embedded as additional
terms in the optimization cost function or as constraints.

APPENDIX

A. Sturm’s Theorem

Sturm’s theorem [21] states that the number of roots for
a polynomial, H (t) in an interval [t0, tf ] is equal to the
difference in sign changes of the Sturm’s sequence, eq. (16),
between S (t0) and S (tf )

S (t) =



S0 (t) = H (t)

S1 (t) = Ḣ (t)

Si+1 (t) = −Rm (Si−1, Si)
...
SN (t) = −Rm (SN−2, SN−1) ∈ R

, (16)

where Rm(Si−1, Si) gives the algebraic remainder of
Si−1

Si
.

B. Proof of Algorithm 1

First, we leverage the intermediate value theorem. The
intermediate value theorem state that given a continuous
function H (t) whose domain contains the values [t0, tf ]
then ∀ i ∈ [H(t0), H(tf )] there must exist a corresponding
ti ∈ [t0, tf ] such that i = H(ti). Since our trajectory is
continuous, this theorem holds in our case. Now let’s prove
that our algorithm works by contradiction. Assume, there
exists a ti ∈ [t0, t1] such that H (ti) > b where b is the
global bound, and all conditions of Algorithm 1, H (t0) < b,
H (tf ) < b, and H (ti)− b 6= 0 ∀ ti ∈ [t0, tf ] are true.

If this is the case, then we can apply the intermediate
value theorem and construct a domain [t0, ti] and a range



Fig. 5: Trajectory tracking and localization results for 90◦ surface inclination from a distance of 1.7 m. The blue crosses
represent the quadrotor position, whereas the arrows represent the thrust vector.

Fig. 6: Angular rate during a 90◦ perching maneuver.

[H (t0) , H (ti)]. We know that H (t0) < b and H (ti) > b,
then b ∈ [H (t0) , H (ti)]. Therefore, based on the interme-
diate value theorem, there must exist a tj ∈ [t0, ti] such that
H (tj) = b. However, we see H (tj) = b is a contradiction
with respect to the condition H (tj)− b 6= 0 ∀ tj ∈ [t0, tf ].
As [t0, ti] ⊂ [t0, tf ] by construction, this condition also holds
true for all tj ∈ [t0, ti]. Since, this is a contradiction there
can exist no such number ti ∈ [t0, t1] such that H (ti) > b
if our algorithm returns true.
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