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3D Ensemble-Based Online Oceanic Flow Field Estimation
for Underwater Glider Path Planning
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Abstract— Estimating ocean flow fields in 3D is a critical
step in enabling the reliable operation of underwater gliders
and other small, low-powered autonomous marine vehicles.
Existing methods produce depth-averaged 2D layers arranged
at discrete vertical intervals, but this type of estimation can
lead to severe navigation errors. Based on the observation
that real-world ocean currents exhibit relatively low vertical
velocity components, we propose an accurate 3D estimator
that extends our previous work in estimating 2D flow fields as
a linear combination of basis flows. The proposed algorithm
uses data from ensemble forecasting to build a set of 3D
basis flows, and then iteratively updates basis coefficients using
point measurements of underwater currents. We report results
from experiments using actual ensemble forecasts and synthetic
measurements to compare the performance of our method to
the direct 3D extension of the previous work. These results
show that our method produces estimates with dramatically
lower error metrics, with and without measurement noise.

I. INTRODUCTION

Oceanic flow field estimation is an important precursor
to path planning for autonomous marine vehicles. Underwa-
ter gliders are particularly dependent on accurate estimates
because of their comparatively limited thrust, requiring the
aid of ocean currents to reach an intended destination.
Conversely, the advantage of underwater gliders is that
they consume little power and can achieve months-long
deployments relevant to applications in ocean science [1],
defence [2], and other industries.

While 3D flow field estimation has long been a topic
of study in oceanography, obtaining and digesting meteo-
rological flow field estimates in a form useful for practical
robotics applications is less well understood. The goal of this
paper is to develop a 3D estimator that builds on the idea
of augmenting available forecasts with online measurement
data.

The standard tool in meteorological forecasting is the
ensemble forecast, a collection of multiple predictions of
future oceanic flow fields generated by simulation of ocean
models. Our previous work showed how data from an en-
semble forecasting can be used to build a continuous flow
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(a) 3D view

(b) Top view

Fig. 1. Simulated glider trajectories when path-planning is performed
using various flow field estimates. True flow field (black) is downsampled
for ease of visualization. Departure location (at surface) marked by an ‘x’,
target destination (at 500m depth) marked by circle.

field estimate in 2D [3]. However, for the purpose of path-
planning for underwater gliders, which oscillate through a
wide depth range, 2D estimates appear to be insufficient.
As an illustration, Figure 1 shows glider trajectories planned
based on various estimation approaches, including the com-
mon “depth-averaged” approach. Even when using the depth-
averaged true flow field for path planning, the error to the de-
sired destination is visibly worse than the planning over our
3D-aware estimate generated by noisy measurement. This
is due to the inability of the depth-averaged representation
to account for depth-varying variations in the flow field.
Hence accurate 3D flow field estimates are crucial to reliable
performance of underwater gliders.



Our existing algorithm [3] attempts to estimate an un-
known 2D flow field as a linear combination of 2D “basis
flow fields” generated from the ensemble forecast. The direct
extension to the 3D case would result in 3D basis flow
fields, which are limited to the span of the ensemble forecast.
Crucially, the true flow field is unlikely to lie entirely within
the span of the ensemble, which is a source of estimation
error. To address this, a useful insight we make use of in this
paper comes from noticing that 3D ocean flow sufficiently
far from the coastline has negligible vertical velocity [4–6].
This fact allows 3D flow fields to be seen as collections of
2D horizontal flow fields. Roughly speaking, building the
basis directly from existing 3D flow fields would enforce
the existing correlations in depth. By breaking them apart
into 2D flow fields and sharing these 2D flow fields between
depths, the number of degrees of freedom increase, and
greater expressivity of the basis is achieved. The contribution
of this paper is to not only to simply extend [3] to 3D, but to
adjust the “naive” 3D extension using the fact of negligible
vertical velocity in order to increase the span of the basis,
and hence improve estimation accuracy.

We describe the resulting algorithm in detail in Sections III
and IV, and evaluate its performance using ensemble forecast
data produced by the Australian Bureau of Meteorology
for an area of the Tasman Sea between Australia and New
Zealand. We report results from experiments that compare
the output of our algorithm with the “naive” 3D extension
of [3], with and without measurement noise, and illustrate the
accuracy of our method in Section V. In several cases, the
root-mean-square (RMS) error of the achieved error of the
proposed algorithm fell below the RMS of the lower bound
of the “naive” 3D extension.

The algorithms and results we contribute are a promising
step forward in understanding how forecasts of underwater
current can be used to produce useful flow field estimates for
planning. Although this work focuses on the case of time-
invariant flows, it lays a foundation to begin to address the
challenges of the time-varying case.

II. RELATED WORK

As stated previously, this work is an extension of a
previous paper [3], which is the closest related work. This
paper builds upon [3] by extending to the case of 3D flow
fields, and more importantly, by altering the “naive” 3D
extension of algorithm to take advantage of the layered
structure of 3D flow fields, resulting in improved accuracy.

This paper also joins a large body of work in the algo-
rithmic estimation of flow fields. A standard tool for the
estimation of flow fields in meteorology is the ensemble
Kalman filter (e.g. [7–9]). Similar to this algorithm, the
ensemble Kalman filter takes as input an ensemble fore-
cast [10, 11], and makes use of the well-known Kalman filter
for prediction. However, the proposed algorithm in this paper
is lightweight enough to directly use the Kalman filter update
equations, instead of requiring a still-expensive Monte Carlo
approximation of the covariance matrix update.

Another class of flow field estimation techniques rely on
direct simulation of a dynamical model of the ocean (e.g. [12,
13]). Many such models result in accurate estimates, not just
of ocean currents, but also salinity, sea surface temperature,
and many other important physical quantities. In fact, these
methods are used to produce the very ensembles the present
work considers as an input. However, they are especially
computationally intensive, and may be unsuitable for robotics
applications that require relatively fast, up-to-date estimates.

In contrast to the above model-based techniques, some
data-driven techniques have also previously been used for
flow field estimation. The “incompressible Gaussian Pro-
cess (GP)” was introduced in [14], where a novel kernel
was developed to enforce incompressibility of 2D flow
field estimates. Though it was developed independently, the
incompressible GP was in fact an example of a linearly
constrained GP [15]. Another related method, the kernel
observer, combines a kernel embedding with an observer
such as a Kalman filter [16–18]. While the present work
makes use of a kernel embedding and a Kalman filter, it
additionally uses an ensemble forecast and a singular value
decomposition (SVD). The use of the SVD allow intuitive
interpretability; also, these methods are not directly compat-
ible with the ensemble format of meteorological forecasts.

Another class of data-driven methods used in estima-
tion of fluid flows is the Dynamic Mode Decomposi-
tion (DMD) [19–21], and its extensions (e.g. [22, 23]). These
methods are based on a clever use of the SVD to obtain
an approximate linear system model for fluid flows. The
use of observers has also been proposed in conjunction
with DMD [24, 25]. However, in these methods, the SVD is
computed across samples in time, while in our method, the
SVD is computed across ensemble members. Additionally,
DMD only estimates fluid flow at the grid points (i.e.
data locations); our method uses a kernel embedding to
“interpolate” between grid points in a physically consistent
way.

III. PROBLEM FORMULATION

We consider the problem of producing the “best” estimate
of an unknown 3D time-invariant flow field. The inputs to
our problem are an ensemble forecast, and a sequence of
point measurements of the unknown flow field.

Suppose the ensemble forecast E is composed of E
“members”. Each ensemble member ei, with i ∈ {1, . . . , E}
is a flow field on a grid G ⊂ R3 with X×Y×Z points, so that
E = {ei|i = 1, . . . , E}. Within each ei, associated with each
grid point xg ∈ G is a 2D velocity vector ui(xg) representing
the ocean’s current in the horizontal direction, and assume
the vertical velocity is negligible. Indeed, measurements and
best estimates place the vertical velocity of the ocean’s
current on the order of 10−5 m/s or less [4–6]. In contrast,
the horizontal current in our dataset is on the order 10−1

to 100 m/s. Notice that the ensemble members ei are not
measurements of the true flow field, but predictions based
on simulations of ocean models.



The data from the true flow field takes the form of point
measurements of the ocean current. The true flow field is
modeled as a continuous flow field ftrue : R3 → R2. Then,
the point measurements take the form:

z(x) = ftrue(x) + n, (1)

where x ∈ R3 is a position in 3D space, n ∈ R2 is a random
variable representing sensor noise drawn from some sensor
model, e.g. n∼ N(0,Σn) for some covariance Σn. Let the
set of all measurements be written Z . Notice that z(x) ∈ R2

describes the horizontal velocity at a 3D point x in the ocean,
since the vertical component of the velocity is negligible.

Additionally, a common assumption when modeling ocean
flow is that the flow field should be incompressible [13, 26],
often referred to as the Boussinesq approximation (e.g. [27,
§7.7]). Hence, a desirable property of a flow field esti-
mate f̂(x) is ∇ · f̂(x) = 0, i.e. f̂(x) is incompressible.

Then, given a sequence of measurements z(xk) ∈ Z
at locations xk, we would like to find “the” flow field
function f̂?(x) : R3 → R2 such that

f?(x) = arg min
f̂(x)∈C∞

|Z|∑
k=1

‖z(xk)− f̂(xk)‖22, (2)

subject to ∇ · f̂(x) = 0 for all x ∈ R2

where ‖ ·‖2 is the Euclidean norm of a vector, C∞(x) is the
set of smooth 2-vector valued functions on x, and |Z| is the
number of elements in the set Z .

However, it is apparent that the optimisation problem (2)
is severely underconstrained, as there are infinitely many
smooth, nondivergent vector fields that can fit a finite number
of measurements Z . To address this, our previous work [3]
imposed the form

f̂(x) = H(x)w, (3)

where H(x) is a 2×N matrix function and a weight vector
w ∈ RN . That paper constructed the basis of incompressible
flow fields H(x) from ensemble data, so that f̂?(x) is
constrained to the span of H(x).

However, the choice of H(x) in [3] restricts its span to
be equal to the span of E , which can result in “out-of-span”
error since the true flow field is unlikely to lie in the span
of E . Hence the problem in this paper is to choose H(x) to
have an increased span compared to the method in [3] in a
physically meaningful way in order to reduce “out-of-span”
error.

Judicious selection of the basis H(x) is critical; it is
certainly possible to add random basis vectors to increase the
span of H(x), but this would be inefficient. Our approach is
to share flow field information across depths in the ensemble
data as a source of likely useful basis flows.

IV. APPROACH

In this section we describe the proposed algorithm, which
is summarised in Figure 2. As in [3], H(x) is computed
offline based on ensemble data, and w is updated recursively
based on online measurements of the true flow field.

Fig. 2. A sketch of the different components of f̂(x), showing the
case of the thin SVD and where S = ZE. The key algorithmic contri-
bution of this paper is the reshape, which allows many more modes
(i.e. left singular vectors) in U , resulting in a large span of the basis
H(x) = K(x,xdata)U . Shaded gray boxes indicate mathematical objects
that are fixed at each stage.

In the proposed algorithm, H(x) is selected offline based
on the ensemble E , while the weight vector w is recursively
estimated online based on the measurements Z .

A. Offline step 1: Kernel embedding

Kernel methods are a common machine learning tool to
allow linear methods to be applied to nonlinear patterns
in data, and have previously been used to represent flow
fields [3, 14, 16]. Kernels can be used to build a continuous
spatial model of the flow field from data samples at discrete
locations. The incompressible kernel allows this “interpola-
tion” to respect incompressibility [14] in 2D; in this work
we apply the incompressible kernel to describe 3D oceanic
flow fields.

Given any kernel k(x, x′) : R3×R3 → R, the correspond-
ing incompressible kernel is given by the following:

K(x, x′) = D(x)k(x, x′)D(x′)>, (4)

where D(x) = [ ∂
∂x2

,− ∂
∂x1

]>, and x1, x2 are the first and
second coordinate in the 3-dimensional vector x. Notice
that while x, x′ ∈ R3, K(x, x′) ∈ R2×2, as it describes the
similarity between two-dimensional flow vector components,
and enforces 2D incompressibility. Due to the assumption of
negligible vertical velocity, 2D incompressibility is sufficient
for 3D incompressibility.



(a) Singular values of A (b) Top view of the first mode from H(x)

(c) The 30th mode from H(x) (d) The 401st mode from H(x)

(e) 3D view of the first mode from H(x)

Fig. 3. Example SVD of A. (a) shows the singular values corresponding to the modes of H(x). Notice there are S = 760 modes, which is many more
than E = 95 (the number that would have been produced by the “naive 3D” method, which is the direct 3D extension of [3]). (b-e) shows some examples
of the “2.5D” basis flow fields, corresponding to singular values of 1.0× 107, 1.16× 105, and 2.09× 101, respectively.

The matrix K(x, x′) can be used to infer, or “query”, the
flow at x. This can be done en masse by concatenating many
K(x, x′) with varying x, x′. Let xq be a vector of coordinates
of Q “query locations” xq in R3 with total length 3Q, and
xdata be the vector of all grid points xdata ∈ G. Then, we
write the kernel matrix

K(xq,xdata) = [K(xq, xdata)] ∈ R2Q×2|G| (5)

for all xq in xq and xdata in xdata. The number of query
points Q is not required to match the number of points in G.

Using this kernel matrix K, inference can be performed.
For any β ∈ R2|G|, the flow field

f̂(x) = K(x,xdata)β (6)

has the property that ∇ · f̂(x) = 0 for all x ∈ R3, i.e. it is
incompressible.

Each ensemble member ei can be represented by a latent
representation βi by setting xq = xdata and performing the
following linear regression:

βi = arg min
β

‖ui(xdata)−K(xdata,xdata)β‖22, (7)

where ui(xdata) is the vector containing all the 2D ve-
locity vectors u(xdata) for all xdata ∈ G in the i-th
ensemble member ei. Then, the set of (finite) flow vectors
K(xdata,xdata)βi is the incompressible flow field that best
fits ei at the grid points in a least-squares sense.

In preparation for the next subsection, let B be the 2|G|×E
matrix

B =
[
β1 β2 · · · βE

]
. (8)

B. Offline step 2: Singular value decomposition (SVD)

The other major component of H(x) comes from per-
forming a singular value decomposition (SVD), which allow
the columns of H(x) to be easily interpretable as basis

flow fields, which we call modes. The major contribution
of this paper is to exploit the fact that 3D flow fields can
be seen as a collection of depth-varying 2D flow fields,
or equivalently, their 2D latent representations. Then, each
2D latent representation is used to generate a 3D flow field
via K(x,xdata) that is self-similar in the depth dimension,
which is added to the set of basis flow fields (Figure 3e
shows an example of one such basis flow field). This results
in up to Z times the basis flow fields compared to using the
3D flow fields in the ensemble directly, thereby increasing
the span, and hence the expressiveness of H(x).

To do this, we collect the horizontal slices of each βi in
B for the SVD for a shared “library” of basis vectors. Each
βi is a 2XY Z × 1 vector of latent variables (recall that the
grid G has size X × Y × Z), which can be reshaped into
columns of horizontal slices

αi =
[
βi,z1 · · · βi,zZ

]
∈ R2XY×Z , (9)

where βi,z is the 2XY × 1 vector containing the elements
of βi that correspond to a depth of z, and {z1, . . . , zZ} are
the depth values present in the grid points G. Then, let the
matrix A be:

A =
[
α1 α2 · · · αE

]
∈ R2XY×ZE . (10)

Throughout this paper we refer exclusively to the thin
SVD, where only the entries corresponding to nonzero
singular values are calculated. The SVD of A is:

A = UΣV >, (11)

since ei, K(x, x′), and hence also A are real-valued. Notice
that the number of columns in U is S = min(ZE, 2XY ).
Typically, E is limited, since producing ensemble forecasts
is computationally expensive, but they are often computed
over large grids, resulting in large XY and Z. Hence



in many cases, both 2XY and ZE will be greater than
min(E, 2XY Z), the number of columns of U resulting from
the SVD of B.

Importantly, the SVD induces an ordering of the left
singular vectors according to their singular values. In some
cases, it can be advantageous to truncate U , Σ, and V to
reduce the data required to store U by removing elements
associated with small singular values. Let Ũ , Σ̃, and Ṽ be
the rank r truncations of U , Σ, and V , respectively, with
r ≤ S. Then, let U be:

U =


Ũ

Ũ
. . .

Ũ

 ∈ R2XY Z×rZ , (12)

with blank elements being equal to the appropriately sized
zero matrices.

Finally, as in [3], the basis H(x) is constructed in the
following way:

H(x) = K(x,xdata)U . (13)

Then, the weight vector w ∈ RrZ selects a linear combi-
nation of the columns of H(x), which can be seen as 3D
basis flow fields “generated” from a 2D flow field at a certain
depth. Figure 3e shows a visualization of H(x)w1, where
w1 = [1, 0, . . . , 0]>. The rest of Figure 3 shows visualiza-
tions of several examples of the modes (i.e. columns) of
H(x), and Figure 3a shows the relative contribution of each
of these modes to the ensemble.

However, in cases where the number of modes is relatively
high, significant truncation can be performed with surpris-
ingly small loss in expressive power of H(x). Obviously,
choosing r < S results in a reduction of the span of U , and
hence H(x), so there is a tradeoff between compactness and
expressibility.

Importantly, at each depth in G, each Ũ will contain basis
flow fields constructed using flow field information from all
depths. In addition, the 2D flow field at each depth has its
own set of weights, which may be distinct from other depths.
This results in an increased span compared to the naive 3D
extension of [3], where U is the left singular vectors of B,
which would only have E modes.

C. Online update of w via Kalman Filtering

We now address the remaining part of (3), finding w?,
which we determine based on online measurement data. For
the case of time-invariant flow fields considered in this paper,
the Kalman Filter (KF) is not strictly necessary; however, it
will be an invaluable tool when extending to the time-varying
case.

The well-known Kalman Filter recursively estimates the
maximum likelihood state w of a linear dynamical system,
given a sequence of measurements zk ∈ Z experiencing
Gaussian sensor noise. In the case of time-invariant flow
fields, the process model F is simply the identity, and the

predict step is:

wk+1 = Fwk, (14)
ẑk = H(xk)wk + nk, (15)

where the subscript k refers to the iteration number of the
KF. The correction step equations are standard and omitted
for brevity.

In the proposed algorithm, the initial state and covariance
matrix of KF is initialised with the mean and variance of
W = Σ̃Ṽ > ∈ RS×ZE across the ensemble members. More
verbosely, contiguous Z columns of W should be reshaped
into new columns of SZ values in the matrix W ′ ∈ RSZ×E .
The initial state w0 is then computed as the row-wise mean
of W ′. The initial covariance matrix P0 is set to be a
diagonal matrix with diagonal elements equal to the row-wise
variances of W ′. Initialising the KF in this way expediently
assumes that the estimated flow field is a random variable
described by the same probability distribution from which
the ensemble members are sampled.

V. SIMULATION RESULTS AND DISCUSSION

In this section, the proposed algorithm is applied to an
example flow field estimation problem, and the ramifications
for underwater glider path-planning are illustrated.

A. Flow field estimation error comparison

We first demonstrate the proposed algorithm on dataset
provided by the Australian Bureau of Meteorology (BOM).
The ensemble forecast data provided by the BOM consists
of 96 ensemble member flow fields forecasting conditions
in the Tasman Sea between Australia and New Zealand on
16th of November 2018. Notably, the forecast itself does not
include data for the vertical velocity of the currents. The flow
field data covers a vast volume of ocean; we consider only
a small region from 39.2◦ to 40.8◦ S, 151◦ to 154◦ E, and
2.5 m to 685 m deep.

The data is provided in geographic coordinates (latitude,
longitude, and depth); an azimuthal projection about the
center of the region was used to produce a Cartesian coor-
dinate grid. To reduce computation time, this grid was then
downsampled by a factor of 5 in the depth direction, resulting
in a grid of size G is 31 × 17 × 8, with grid points about
10 km apart horizontally, and about 85 m in depth.

Since high-resolution sensor measurements of the region
are unavailable, we extract one of the ensemble members
and consider it to be the true unknown flow field. In the
real world, the true flow field is unlikely to be one of the
ensemble members, and may be significantly different. In
an attempt to capture this, the “true” ensemble member was
hand-picked through visual inspection to be qualitatively dif-
ferent from the rest of the ensemble members. The remaining
95 ensemble member flow fields form E .

Simulated measurements were performed based on the true
flow field ftrue(x), estimated via cubic interpolation. The
way measurements were simulated was inspired by acoustic
Doppler current profilers (ADCP), which are sensors that
can measure ocean current in a column of water at regular



(a) 3D view of the environment with one ADCP ping

(b) Top view of the environment with multiple ADCP pings

Fig. 4. Visualisation of measurements in the true flow field in black,
downsampled by a factor of 2. A single ADCP “ping” results in 22
measurements (in green), only 12 of 450 are shown in (b) for readability.
The location of a simulated ADCP-equipped surface vessel is shown in blue.
Note the large noise on measurements.

depth intervals. The simulated ADCP in our experiments
has a vertical resolution of 32 m and a precision standard
deviation of 9 cm/s. It is worth noting that 9 cm/s standard
deviation is quite large compared to the average speed of the
current in the dataset, which was 22.8 cm/s (see the spread
of the green arrows in Figure 4).

A radial basis function (RBF) is chosen as the kernel to
reflect the property that in viscous fluid flow, motion on one
“layer” of the fluid will exert an influence on nearby “layers”:

k(x, x′) = σ2
k exp(〈x− x′, [`−2x , `−2y , `−2z ]〉). (16)

The hyperparameters were tuned by hand, with
`x = `y = 104 m, `z = 100 m, and σk = µ/`x =
1718.9 m2/s. The symbol µ is the average flow vector
magnitude at the surface, where the flow is usually fastest.

Three methods were compared in simulated experiments:
the proposed method, the “naive 3D” method, and the
“nearest” ensemble member. Briefly, the naive 3D method

TABLE I
ERROR PERFORMANCE AND SIZE OF DIFFERENT METHODS

IN IDEAL CONDITIONS

No.
modes

Rel error
(%)

RMSE
(cm/s)

RMSE of
bound
(cm/s)

3D basis 95 8.30 2.33 2.33

2.5D bases

760 1.42 0.39 0.077
400 1.78 0.50 0.34
300 2.46 0.69 0.57
200 4.18 1.17 1.14
95 11.00 3.08 3.07

Nearest ei
(i = 82)

— 45.6 12.80 —

TABLE II
ERROR PERFORMANCE AND SIZE OF DIFFERENT METHODS WITH NOISE

AND RANDOM MEASUREMENT LOCATION

No.
modes

Rel error
(%)

RMSE
(cm/s)

RMSE of
bound
(cm/s)

3D basis 95 11.11 3.11 2.33

2.5D bases

760 9.81 2.75 0.077
400 9.91 2.78 0.34
300 10.64 2.98 0.57
200 11.96 3.35 1.14
95 17.15 4.81 3.07

is the direct extension of [3] to the 3D case, performing the
SVD on B instead of on A, resulting in E = 95 modes, each
representing a 3D flow field. The nearest ensemble member
was the member whose estimated current at the measurement
locations was the closest to the noisy measurements in a
least-squares sense.

Two sets of simulation experiments were performed. To
show the potential performance of the algorithm, the first
set experienced ‘ideal’ conditions with no measurement
noise and measurement locations exactly at grid points. The
Kalman filter noise covariance was set to R = 0.012I ,
since there is no noise. The second set encountered Gaussian
noise with standard deviation 9 cm/s, and measurements
were taken from approximately 450 randomly uniformly
distributed surface locations for a total of 10,000 measure-
ments. The Kalman filter noise covariance was increased to
R = 0.122I to account for both the sensor noise model and
the additional noise incurred from cubic interpolation during
simulation of measurements between grid points.

Table I and Table II show the results the first and second
set of experiments, respectively. The error shown in the
tables is the error between the estimated and true flow
fields evaluate at the grid points, irrespective of where the
measurements were taken. The lower bound of the RMS error
of each method was obtained as the RMS error of w?, where

w? = arg min
w∈RrZ

∑
xg∈G

‖utrue(xg)−H(xg)w‖22, (17)

where utrue(xg) is the 2D flow velocity vector of the true
flow field at xg ∈ G, which would be unknown in realistic
situations. The RMS error of w? serves as a measure of the
error due to the true flow field being out of the span of H(x).



Immediately obvious from Table I is that the proposed
method (see rows labeled “2.5D bases”) have consistently
lower error bounds than the “naive 3D” method. This is
evidence that the proposed method increases the span of
H(x) beyond the span of E in a meaningful way, allowing
reduced out-of-span error.

Not only are the bounds of the proposed method lower
than the bound of the naive 3D method, but so is the actual
achieved RMS error when 200 or more modes were used.
This illustrates that improved estimation performance can be
achieved due to the increased expressiveness of H(x) in the
proposed method.

Figure 3a clarifies the reason why so many modes can
be discarded during truncation while still retaining good
representational ability of H(x). Noticing the logarithmic
scaling of the y-axis, it can be seen that the last few hundred
modes have a much smaller contribution compared to the first
few. For example, Figure 3d appears to be mostly noise,
and its contribution in Figure 3a is approximately 10−4

the dominant mode; hence the 401st mode can be omitted
without much loss in representational power. However, there
does come a point where too many “useful” modes are
truncated; we see in both Table I and II that the estimation
performance deteriorates as the number of modes drops to
200 or below. Still, in both Tables I and II, a significant
number of entries in H(x) can be discarded while suffering
only a small loss in estimation performance (see rows with
760 and 400 modes).

B. Effect on glider planning performance

In this subsection we show additional simulations which
highlight the importance of accurate flow field estimation in
path planning applications.

A simulated underwater glider mission was conducted
in a sub-region of the region considered in the previous
subsection. Inspired by mesopelagic ocean science mis-
sions (e.g. [28, 29]), we consider an example glider mission
where it is released from the surface and attempts to pass
through a point at a depth of 500 m. A constant glider
velocity relative to flow is chosen by minimising the distance
of the resulting path to the target in each flow estimation
method, constrained to a fixed glider speed of 0.3 m/s. Under
the influence of the true flow field and this velocity, the
motion of the glider was simulated using Euler integration
with fixed spatial step size.

The resulting glider path for each flow field estimation
method is shown in Figure 5. A glider trajectory generated
by planning over the true flow field is given to show the
ideal performance of the planner. “Our method” refers to the
untruncated 2.5D method generated with noise and uncon-
strained measurements, while the “naive” case is the naive
3D case under the same noise and measurement conditions.
It is clear that planning using the estimate generated by the
proposed method is closest to ideal performance, followed by
the naive 3D method. We can see that a small difference of
about 2% in relative error between the 2.5D and 3D methods

(a) Overview

(b) Top view

Fig. 5. Simulated glider trajectories with path-planning based on various
flow field estimates. “Our method” refers the proposed approach without
truncation, and “naive” refers to the “naive 3D” case.

TABLE III
GLIDER PATH RESULTS USING CONTROLS PLANNED WITH DIFFERENT

METHODS

Closest approach (m)
True 16

Nearest ensemble 29858
Depth-averaged true 6192

Naive 1808
Our method 505

shown in Table II) results in a significant difference in error
of 1303 m.

Figure 5 also reinforces the idea that existing methods,
i.e. depth-averaging, and choosing the nearest ensemble, are
insufficient. For the purpose of glider path planning, depth-
averaged flow fields are often used; its resulting trajectory
suggests that even the depth-averaged true flow field per-
forms significantly worse than the 2.5D or 3D estimates.
In practical situations, the true flow field will be unavail-
able; depth-averaging will further reduce the accuracy of
any estimate it is performed on, negatively affecting glider
performance.



Finally, another possible source of flow field data for glider
path-planning is to simply use the nearest ensemble mem-
ber e82, which provides a 3D flow field. However, it performs
the worst of all, suggesting that for the purpose glider path-
planning, using the nearest ensemble is insufficient.

VI. CONCLUSION AND FUTURE WORK

We have presented an algorithm for estimating 3D oceanic
flow fields that exploits the property of negligible vertical
velocity to produce highly accurate results. The most impor-
tant avenue of future work is to further extend these ideas to
address the time-varying case, which arises in long-duration
deployments and planning long-distance paths. Another im-
portant direction for future work is to perform real-world
validation of our algorithm using online observations.
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