
Viewpoint Planning for Fruit Size and Position Estimation

Tobias Zaenker Claus Smitt Chris McCool Maren Bennewitz

Abstract— Modern agricultural applications require knowl-
edge about the position and size of fruits on plants. However,
occlusions from leaves typically make obtaining this information
difficult. We present a novel viewpoint planning approach
that builds up an octree of plants with labeled regions of
interest (ROIs), i.e., fruits. Our method uses this octree to
sample viewpoint candidates that increase the information
around the fruit regions and evaluates them using a heuristic
utility function that takes into account the expected information
gain. Our system automatically switches between ROI targeted
sampling and exploration sampling, which considers general
frontier voxels, depending on the estimated utility. When the
plants have been sufficiently covered with the RGB-D sensor,
our system clusters the ROI voxels and estimates the position
and size of the detected fruits. We evaluated our approach
in simulated scenarios and compared the resulting fruit esti-
mations with the ground truth. The results demonstrate that
our combined approach outperforms a sampling method that
does not explicitly consider the ROIs to generate viewpoints in
terms of the number of discovered ROI cells. Furthermore, we
show the real-world applicability by testing our framework on
a robotic arm equipped with an RGB-D camera installed on
an automated pipe-rail trolley in a capsicum glasshouse.

I. INTRODUCTION

Advanced automated agricultural applications such as fruit
picking or targeted crop spraying require spatial informa-
tion about plants. With a fixed sensor setup, generating a
3D model can be difficult, as parts of the plants are typically
occluded. Especially plants with a large number of leaves
are challenging. Therefore, having a mobile sensor placed
on a robotic arm to move it around and avoid occlusions is
a promising solution. However, in order to know where to
place the sensor, viewpoints have to be planned first.

Conventional viewpoint planning approaches usually aim
for building complete 3D models of the environment [1]–[3].
This can be difficult to achieve for plants due to their com-
plex structure with leaves that occlude fruits. However, often
spatial knowledge about certain regions of interest (ROIs) is
enough. For example, for fruit picking, accurate information
about the location and size of fruits is required, but the exact
shape of every leaf is not needed.

In this paper, we present a novel viewpoint planning
approach that detects objects, e.g., fruits, online during plan-
ning and marks ROIs in a 3D representation. The detected
ROIs are then used to sample viewpoints that increase the
information around them. We combine this method with an
exploration approach that samples viewpoints for frontier
voxels independently of the detected ROIs to also detect

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy – EXC
2070 – 390732324. All authors are with the University of Bonn, Germany.

(a) Detected fruits (b) Viewpoint selection

Fig. 1: Illustration of our approach. Left: Fruits are recognized in the
image but partially occluded, which makes size estimation difficult.
Right: Detected fruits (red boxes) marked in the 3D representation
are used to sample viewpoints (indicated by orange arrows) that
increase the information around the fruit regions. Additionally, we
also sample viewpoints for general frontier voxels independently
of the detected fruits to further explore the plant and detect new
fruits (green arrows). The red arrow corresponds to the viewpoint
with the highest utility, which is selected as the next viewpoint and
sent to the robot.

new ROIs in so far unexplored regions. Fig. 1 illustrates our
proposed approach. First, fruits are detected in the image,
and the corresponding ROIs are marked in the 3D represen-
tation. Note that some fruits are only partially visible due
to occlusions. Subsequently, our system samples viewpoints
that provide a view on the fruits from alternative directions
in order to increase the spatial knowledge about them.

We implemented a customized octree structure on top of
the OctoMap framework [4] that stores information about
occupancy and ROI probabilities. Our system automatically
switches between ROI targeted and exploration sampling de-
pending on the stage of plant coverage. For each viewpoint,
the planner computes a utility value based on the expected
information gain to determine the best view of the sampled
candidates. The source code of our system is available on
GitHub1. Our main contributions are the following:

• A novel next best view approach for viewpoint planning
that detects and uses regions of interest,

• A method to estimate the location and size of fruits,
• An evaluation of the planner in simulated scenarios,

comparing our combined view pose sampling approach
to a method that samples at frontiers to unknown space
without considering ROIs, and using two different utility
functions,

• Implementation of the approach on a real-world robot
platform and demonstration of its use in a commercial
glasshouse environment.

1https://github.com/Eruvae/roi_viewpoint_planner

ar
X

iv
:2

01
1.

00
27

5v
3

 [
cs

.R
O

]
 1

8
A

ug
 2

02
1

https://github.com/Eruvae/roi_viewpoint_planner

II. RELATED WORK

Viewpoint planning approaches can be divided into cov-
erage path planners (CPP), which compute a complete
viewpoint path covering the desired area of a known map,
and local next best view (NBV) planners, which are used
for unknown environments. Most CPP approaches hereby
assume a static environment. For example, Oßwald et al. [5]
generate viewpoints by casting rays from known object
voxels towards free space and evaluate them based on the
number of visible object voxels for randomly sampled direc-
tions. For all view poses that exceed a given utility threshold,
a robot configuration to obtain that pose with minimal cost
is computed. Finally, the authors apply a traveling salesman
problem solver to compute the smallest tour of viewing
poses that cover all observable object voxels. Jing et al. [6]
generate viewpoints based on the maximum sensor range and
compute viewing directions from the surface normals of all
target voxels within a certain range. The authors propose to
sample a random set of points and connect nearby points
to a graph with a local planner. Starting with the current
robot pose, the neighbors with the highest ratio of expected
information gain (IG) and move cost are added to the solution
path until the desired coverage is reached. CPP has a wide
variety of use-cases, from planning the path for cleaning
robots [7] to covering an agricultural field with machines
for crop farming [8]. However, CPP approaches require
a given representation of the environment, which is not
applicable for our agricultural use-case, as the environment
can change rapidly with the growth of the plants. Therefore,
our approach does not assume a map to be given but builds
it during operation.

NBV approaches either use only current sensor informa-
tion or build a map of the environment while traversing
it and use it to decide on the next view. An example for
the former approach was presented by Lehnert et al. [9]
who use an array of cameras and determine the size of a
target in each frame. The authors propose to compute a
gradient to determine the direction for which the visible
area of the target is increased. Wang et al. [10] use both
current sensor information and a built map for planning and
propose to combine an entropy-based hand-crafted metric,
which is computed by tracing rays through the generated
map, with a metric learned by a CNN that only takes the
current depth image as input. The two metrics are combined
to evaluate candidate poses generated in the vicinity of the
current camera position. While such approaches are useful
to avoid local occlusions, coverage of larger environments is
not straightforward.

In the approach proposed by Monica et al. [11], the task of
the robot is to explore the environment around a single object
of interest with a known pose while performing a 3D shape
reconstruction of the initially unknown environment. The
authors also apply an exploration behavior for unknown parts
of the environment, mainly to find new paths that may enable
observations of the object of interest. Viewpoints are sampled
either around the target or at the frontier to unknown space

and the viewpoint with the highest IG is then chosen as
the next best view. Similarly, Palazzolo et al. [2] sample
viewpoints on the hull of the currently known map and
select the best point based on the estimated utility taking into
account the expected IG. Bircher et al. [12] propose to use
a rapidly exploring random tree and estimate the exploration
potential based on the unmapped volume that can be explored
at the nodes along the branches of the tree. Only the first
segment of the best branch is then executed and the IG is
reevaluated based on the newly gathered data.

Monica et al. [3] presented an NBV method that samples
viewpoints from general frontiers to unknown space. We
use a similar technique to sample viewpoints for unexplored
regions independently of the detected ROIs when those have
been sufficiently explored, and provide a comparison to the
sampling based on [3] for our application.

Similar to the approach of Sukkar et al. [13] who detect
apples as ROIs through color thresholding, we also rely on
an automatic detection of the ROIs for viewpoint planning.
Sukkar et al. propose to evaluate viewpoints based on a
weighted sum of exploration information, which is calculated
from the number of visible voxels that have not been pre-
viously explored, and ROI information, which evaluates the
visibility of ROIs from the selected viewpoints. This evalua-
tion metric is then used to plan a sequence of viewpoints for
multiple robot arms by utilizing a decentralized Monte Carlo
tree search algorithm. This approach is the most similar one
to ours, however, instead of using the ROIs for evaluating
view poses in an integrated path planner, we sample view
candidates from the detected regions. While this may result
in a less accurately estimated IG, as only a single point
instead of a complete path is evaluated, the complexity is
lower, and it can easily be used as high-level goal planner
for any existing motion planner.

All NBV approaches heavily rely on metrics to eval-
uate the candidate views. In our evaluation, we utilize
and combine different metrics proposed and evaluated by
Delmerico et al. [14] to determine the best next view.

III. SYSTEM OVERVIEW

Our viewpoint planning approach aims at finding view-
points that improve the knowledge about specified regions of
interest (ROIs), i.e., the fruits of plants for our application. In
order to do that, the ROIs have to be detected in the current
field of view and marked in the planning map. The marked
ROIs are then taken into account for sampling and evaluation
of new viewpoint candidates and are used to estimate the size
and location of fruits in the final map.

Figure 2 shows an overview of our framework. The depth
and color image from an RGB-D sensor are used as input for
the planner. The color image is forwarded through an object
detection network, which outputs masks of the ROIs. The
detection module uses these masks in combination with the
depth image to generate a point cloud divided into ROI and
non-ROI regions (Sec. IV-A). The generated point cloud is
forwarded to the planner module, which uses the incoming
information to build up a 3D map of the environment in

Point cloud
with ROIs

ROI Detection ROI Viewpoint
Planner

Fruit location
and size estimation

Configuration

RQT plugin Rviz

Color image

Depth image

ROI masks
Object detector

ROI octree

Viewpoint
Moveit Robot controller

Planned path

Workspace & sampling octree

Fig. 2: Overview of our system. See text for a detailed description.

the form of an octree, which stores both occupancy and ROI
information (Sec. IV-B). From the generated map, targets and
viewpoints are sampled and evaluated (Section V). The ROI
octree is also used to evaluate the viewpoint selection and
estimate fruit locations and sizes. Furthermore, we provide
a sampling and a workspace octree as input to specify the
regions where valid targets and viewpoints can be sampled
respectively. An RQT plugin provides a graphical user inter-
face to configure planning parameters as well as to save and
load the generated octrees.

Using the MoveIt framework [15], our system plans a path
for the robot to the best found viewpoint. The planned path
is then executed by the robot controller.

IV. PRELIMINARIES

A. ROI Detection

To plan viewpoints that improve information around fruits
as well as to estimate their size and position, the fruits have
to be detected. Since the plants in our simulation experiments
only had red peppers, we employed a simple color detection.
The detection module first downsamples the colored point
cloud to the octree resolution using a voxel grid filter. Then,
it performs a color comparison in the HSI color space. Points
with a hue between -30° and 50° as well as saturation and
intensity values of at least 0.12 are considered as fruit points.

For the real-world experiments, peppers of multiple colors
were present, including green peppers. Since green peppers
cannot be detected using color filters due to the green leaves,
we used a different approach. The fruit detection is handled
by the neural network Yolact [16], which is an instance
segmentation network that predicts bounding boxes and
masks of objects in the color images. We trained the network
using a dataset recorded at the University of Bonn [17].

Next, the detections have to be transferred to 3D space
in order to build a map. Therefore, we use the point cloud
generated from the color-aligned depth images of the RGB-D
camera. The point cloud is downsampled to the resolution of
the octree using a voxel grid filter. Points within the masks
of a detected fruit are marked as ROI.

B. Octree for Viewpoint Planning

In order to build a 3D representation that is able to mark
and update ROIs, we use a custom octree, where each node
stores two values: an occupancy and a ROI probability, both
stored as log-odds. The octree is updated using a point cloud
with marked ROIs and the sensor origin of the point cloud.

The implementation is built on top of the popular OctoMap
framework [4].

First, the occupancy is updated by casting rays from the
sensor origin to each of the points in the point cloud. All
nodes that are traversed on the way to the points are added
to a set of free nodes, while the point itself is added to the
set of occupied nodes. After all points are processed, nodes
that are in both the free and the occupied set are removed
from the free set. Then, the occupancy log-odds of the free
nodes are reduced and the log-odds of the occupied nodes are
increased. We also use an upper and lower bound for the log-
odds to limit the confidence for a node. Nodes with positive
log-odds are considered as occupied, nodes with negative
log-odds as free.

The ROI probability is updated in a similar fashion. Here,
only nodes directly corresponding to points in the point cloud
are used. For all points marked as ROI, the corresponding
node is added to the set of ROI nodes. For all other points,
the nodes are added to the set of non-ROI nodes, if they are
not already part of the ROI node set. Then, the ROI log-
odds are increased for the ROI node set and decreased for
the non-ROI node set. Once the ROI log-odds surpass a set
threshold, the nodes are considered as ROI nodes.

V. VIEWPOINT PLANNING

We now describe our novel approach of viewpoint plan-
ning that takes into account ROIs for sampling viewpoint
candidates. In particular, we developed a method that uses
a combination of two sampling methods: a ROI targeted
method improving the information around already discovered
ROIs, and an exploration method targeting general frontier
voxels to find new ROIs in so far unexplored regions. We
hereby use two additional octrees to sample valid view poses,
a workspace tree and a sampling tree. Both our sampling
methods sample their targets from the region specified by the
sampling tree, while sampled viewpoints are only considered
if they lie within the workspace tree:
Workspace Octree To initially generate the workspace oc-

tree, we loop through a discrete set of joint configura-
tions and store possible view poses. For the used robot,
additional constraints can be taken into account, e.g.,
for the glasshouse experiments, our robotic arm should
only move within a specified corridor to not damage the
plants, so we consider the corresponding limits.

Sampling Octree For the sampling octree, we use two
different approaches in our experiments. For the simula-

tion, we simply use the workspace octree, as the plants
are within the workspace of the arm. For the real-world
experiments, the target plants were on one side of the
corridor, outside of the workspace. To adjust for that,
we inflated the workspace by 60 cm, and cut off the
parts outside of the plant row.

A. ROI Targeted Sampling

For the ROI targeted sampling, our system deter-
mines frontiers in the vicinity of detected ROIs, i.e., the
6-neighborhood of all ROI nodes of the planning octree
within the sampling octree is checked for free nodes. All
free nodes that additionally have an unknown neighbor are
considered as ROI frontiers, and therefore potential targets.

After all targets are generated, possible viewpoints are
sampled in all directions at random within a specified sensor
range. If these viewpoints lie within the workspace octree,
they are further processed, i.e., the orientation is determined
by rotating the camera pose so that the viewing direction
aligns with the vector from the viewpoint to the target.
Furthermore, a ray is cast between the viewpoint and the
target point. If the ray passes an occupied node, the viewpoint
is discarded, as the target is occluded.

B. Exploration Sampling

To be able to find new ROIs after all current ROIs have
been sufficiently explored, we implemented a second sam-
pling method that considers general frontier voxels. Similar
to Monica et al. [3], our approach looks for frontiers at the
border of occupied and unexplored space, instead of just the
frontiers of already detected ROIs. To find such voxels, we
check all free nodes of the planning octree that lie within
the sampling octree. If the 6-neighborhood contains both an
occupied and an unknown node, it is considered as a potential
target. After all targets are collected, potential viewpoints are
sampled and their directions are determined in the same way
as for the ROI targeted sampling.

C. Viewpoint Evaluation

For the sampled view poses, we need to estimate the
information gain (IG). To do so, we cast rays from the
view pose within a specified field of view of the sensor.
For each ray, we estimate the IG based on metrics presented
by Delmerico et al. [14]. First, we compute the Unobserved
Voxel IG, where all voxels that have not been encountered
so far contribute to the information gain. For each ray r, the
number of unknown voxels Nu,r is counted starting from the
origin, until either an occupied voxel is encountered or the
end of the specified sensor range is reached. The IG for this
ray is then computed as Nu,r divided by the total number
of nodes Nr on the ray. For the total IG of a view pose, the
average IG of all rays is computed:

IGU =
1

|R|
∑
r∈R

Nu,r

Nr
(1)

The second metric is similar to the Proximity Count
in [14], which was one of the metrics that performed best

Algorithm 1: Viewpoint planning

while True do
roiVps = sampleRoiVps(pose, nVps, utilType);
explVps = sampleExplVps(pose, nVps, utilType);
makeHeap(roiVps, explVps); // sorted by utility
if max(roiVps) > utilityThreshold then

chosenVps = roiVps;
else

chosenVps = explVps;
end
while max(chosenVps) > utilityThreshold do

vp = extractMax(chosenVps);
if moveToPose(vp) then

break;
end

end
end

in their comparison. In the original formulation, unobserved
voxels are weighted higher if they are close to an already
observed surface. For our approach, we slightly modified this
metric. Instead of increasing the weight for voxels close to
all surfaces, we only do so for voxels close to observed ROIs.
Each unknown voxel is given an initial weight of 0.5, and
if it is within a specified distance max dist from a known
ROI, the weight w is computed as follows:

w = 0.5 + 0.5 · max dist − dist

max dist
(2)

where dist is its distance to the ROI. Known voxels receive
a weight of 0. Considering the sum of the weights of all
voxels on a ray Wr, the computation of the information gain
changes to

IGP =
1

|R|
∑
r∈R

Wr

Nr
(3)

In addition to the IG, we compute the cost C for reaching
the viewpoint. Since computing the joint trajectory to reach
the viewpoint is too time-consuming to be done for every
viewpoint, we use the Euclidean distance of the camera to
the point as an approximation. Finally, the utility of a view
pose is computed as the weighted sum of IG and the cost
scaled by a factor α:

U = IG− α · C (4)

D. Viewpoint Selection

In our proposed approach, we combine both methods, ROI
targeted sampling and exploration sampling, for generating
candidates. Alg. 1 describes the basic structure of our view-
point planning approach. In the planner loop, we sample
viewpoints using ROI and exploration sampling, described
in Sec. V-A and Sec. V-B respectively. The planner then
generates a max heap from the sampled viewpoints, sorted
by a utility value, introduced in Sec. V-C. If the maximum
utility of the ROI viewpoints is above an empirically found

threshold, they are used. Otherwise, the planner switches
to the exploration viewpoints and checks whether their
maximum utility is above the threshold. The planner then
tries to plan a path to the viewpoint with the maximum utility.
If no collision-free path can be found, the next best viewpoint
is used, until either the planner is successful, or no viewpoint
above the utility threshold is left in the heap. In the latter
case, new view poses are sampled.

VI. EXPERIMENTS

We evaluated our planning approach with an RGB-D
camera placed on a robotic arm. We used a UR5e from
Universal Robots, both for the simulated scenarios and for
the real-world experiments. The arm has six degrees of
freedom and a reach of 85 cm. To compute the workspace
of the arm, the first 5 joints were sampled at a resolution
of 10◦. The 6th joint was ignored, as it only rotates the
camera and therefore does not change the viewpoint. The
collision-free poses were marked in the workspace octree
with a resolution of 2 cm. We set the planning tree resolution
to 1 cm, which provided the best compromise of planning
time and map resolution. In each planning iteration, 100 ROI
and 100 exploration viewpoints were sampled.

To identify individual fruits, we first cluster the identified
ROI nodes and then estimate their position and volume. We
sequentially process the identified ROI nodes and inspect
their complete 26-neighborhood of voxels. Any found ROI
node is added to the current cluster and pushed to a list of
voxels to be processed. The cluster is expanded until no more
neighbors are found. If any ROI nodes are left, a new cluster
is started. After all clusters are computed, they can be used
to estimate the fruit position and size. In our experiments,
we calculate the average coordinate of all nodes in a cluster
as fruit position, and the volume of the 3D bounding box as
an estimate for the size of the fruits.

A. Simulated Scenarios

Two environments with different workspaces were de-
signed for the simulated experiments. In the first scenario, the
arm is placed on top of a static 85 cm high pole (see Fig. 3a).
This allows the arm to exploit most of its workspace, except
for the part blocked by the pole. However, the movement
possibilities are limited, as the arm cannot move itself. To
be able to explore a larger workspace, the arm was placed
on a retractable, movable pole hanging from the ceiling for
the second scenario (see Fig. 3b). With this setup, the arm is
able to approach most of the potential poses in the simulated
room. The simulated environments are available on GitHub2.

We used simulated capsicum plants in the scenarios and
determined the bounding boxes of the fruits in the local plant
coordinate system to evaluate the results. Additionally, the
mesh of the fruits was converted into an octree to be able
to directly compare the ROI nodes. For the evaluation, we
used the following metrics:

2https://github.com/Eruvae/ur_with_cam_gazebo

(a) Scenario 1 (b) Scenario 2

Fig. 3: Scenario 1: Simulated environment with four plants, two
of which have seven fruits each and the other two do not have
any fruits. The arm is placed on a static pole. Scenario 2: More
complex simulated environment containing four plants with seven
fruits each. The arm is hanging from the ceiling and can move
within a 2× 2m square and extend up to 1.2m down.

• Number of detected ROIs: Number of found clusters
that can be matched with a ground truth cluster, which
means that their center distance is smaller than 20 cm.

• Cluster center distance: Average distance of the de-
tected cluster centers from the ground truth centers.

• Volume accuracy: Average accuracy of the cluster vol-
umes. The sizes of the axis-aligned 3D bounding boxes
of the ROIs are compared, i.e., we determined the
difference of the ground truth and the detected volume
divided by the ground truth volume.

• Covered ROI volume: Percentage of the total volume of
the ground truth that was detected, considering the 3D
bounding boxes.

The planner was given a total planning time of three minutes.
In order to show that the ROI targeted sampling is bene-

ficial, we evaluated and compared two approaches: Our ap-
proach, which automatically switches between ROI targeted
and exploration sampling, and pure exploration sampling at
frontiers of occupied cells without considering ROIs, similar
to Monica et al. [3]. We tested the two utilities for viewpoint
evaluation as described in Section V-C for both approaches.
The proximity count utility is shortened with UP , the unob-
served voxel utility with UU . For each scenario, we executed
20 trials. In order to show the statistical significance of the
results, we performed a one-sided Mann-Whitney U test on
the acquired samples.

Tab. I shows the quantitative results for both scenarios.
Fig. 4 illustrates the averaged ROI volume and volume
accuracy over the three minutes planning time in Scenario 1.
As can be seen, our approach performs the best with UP . It
has the most covered volume and highest volume accuracy,
although the values are only slightly better than for our
approach with UU or exploration sampling with the UP .
An explanation for that could be that the ROI targeted
sampling already ensures viewpoints nearby and directed
towards ROIs, so using the proximity utility does not bring
any additional advantage. For exploration sampling, on the
other hand, UP can be used to prefer viewpoints near ROIs,
since this is not considered during sampling.

As can be seen from the results in the second sce-

https://github.com/Eruvae/ur_with_cam_gazebo

Ours-UP Ours-UU Explo-UP Explo-UU
Sc

en
.1

Detected ROIs 13.2 ± 0.7 13.8 ± 0.4 12.8 ± 1.1 13.4 ± 1.4
Covered ROI volume 0.69 ± 0.07 0.64 ± 0.12 0.63 ± 0.11 0.40 ± 0.12
Center distance (cm) 2.41 ± 0.48 2.44 ± 0.45 2.23 ± 0.54 2.80 ± 0.47
Volume accuracy 0.52 ± 0.07 0.49 ± 0.10 0.50 ± 0.21 0.35 ± 0.08

Sc
en

.2

Detected ROIs 23.3 ± 2.9 27.0 ± 2.4 17.4 ± 3.9 24.8 ± 4.1
Covered ROI volume 0.55 ± 0.11 0.68 ± 0.10 0.34 ± 0.08 0.36 ± 0.13
Center distance (cm) 2.31 ± 0.45 2.21 ± 0.35 2.75 ± 0.51 2.96 ± 0.43
Volume accuracy 0.55 ± 0.07 0.56 ± 0.08 0.50 ± 0.09 0.40 ± 0.08

TABLE I: Quantitative results over 20 trials. Bold values show a significant improvement compared to the other approaches.

(a) Covered ROI volume (b) Volume accuracy

Fig. 4: Results for Scenario 1 (Fig. 3a). For each tested approach,
20 trials with a duration of three minutes each were performed. The
plots show the average results. Our approach with UP performs the
best, but the advantage over UU or exploration sampling with UP

is minor. Exploration sampling with UU performs the worst.

(a) Covered ROI volume (b) Volume accuracy

Fig. 5: Results for Scenario 2 (Fig. 3b). Like in Scenario 1, 20 trials
were performed for each approach and the plots show the average
results. Here, our approach with UU has the best results, followed
by the approach with UP utility. Exploration sampling with both
utilities performs significantly worse.

nario (Fig. 5), our approach works best with UU . A reason
why the simpler metric achieves better results could be the
computation time. The distance to the nearest ROI has to be
computed in each planning step to enable determining the
weight for UP . Thus, in the larger environment, computa-
tional costs are higher. Using the simpler metric allows a
faster evaluation of the viewpoints. Therefore, more poses
can potentially be reached within the given planning time.
Tab. I shows that our approach with UU achieves a signif-

icantly higher number of detected ROIs and a significantly
higher covered ROI volume than pure exploration sampling.

These experiments demonstrate that our sampling ap-
proach outperforms exploration sampling, which suggests
that considering detected ROIs during planning improves the
efficiency of gaining information about ROIs. Furthermore,
it enables using a simple metric for viewpoint evaluation,
which can have computational advantages, especially in large
environments.

However, while most fruits were detected successfully, the
accuracy of the determined volume is limited, with average
values of 0.52 and 0.56 for the best approach in the trials.
One reason is the naive clustering approach in combination
with the relatively low resolution of the octree of 1 cm. How-
ever, a higher resolution is not feasible for online planning,
and the gathered information is sufficient to plan viewpoints.
In the future, we plan to combine our planning approach
with a method to generate high-resolution 3D models from
the recorded point clouds. The ROI information will then be
used to find the location of fruits, whereas the high-resolution
model will be used to determine a more accurate volume.

B. Real-World Glasshouse Experiment

For real-world experiments, we deployed the robotic arm
to plan viewpoints in a capsicum glasshouse. The arm is
equipped with a RealSense L515 Lidar sensor, which is
used as RGB-D input for the planner. The arm was hereby
placed on top of a pipe-rail trolley (see Fig. 6), which has
a pneumatically actuated scissor-lift to lift the platform up
to 3m. The platform height and movement along the pipes
can be controlled. This enables us to map a complete row
autonomously utilizing the planning framework, which we
plan to do in the future. For now, the planner was set to only
control the arm in the experiments. It was given some time to
explore the environment at the current position of the trolley,
then the planner was paused and the trolley moved forward
manually by the length of the platform using the control
GUI. Since the trolley publishes its position estimated from
a wheel encoder, the planner can combine a whole row of
plants in a single map.

Figure 7 shows the resulting map for part of a row in one
of the trials. Since there is no ground truth available and
the number of performed trials was limited, no numerical
analysis could be performed. However, the experiment still
shows that the planning approach is viable for real-world
challenges and fruit regions can be estimated. The shown

Fig. 6: Pipe-rail trolley with a robotic arm equipped with a
RealSense L515 Lidar sensor.

(a) ROI octree (b) Captured photos

Fig. 7: Segment of the recorded row in the glasshouse. Left:
Visualization of the ROI octree during planning. Orange cells are
ROIs, blue cells indicate other occupied regions. The red bounding
boxes mark the detected fruits. Right: Pictures of these fruits
captured during planning. One of the fruits is mostly occluded by
a leaf in the bottom picture, but visible in full in the top picture.

segment shows two red peppers that were successfully recog-
nized and clustered during planning. Due to false detections
of the neural network, the full octree also contains some
wrongly marked fruits, and the map is less accurate than in
the simulations due to noise. Nevertheless, our approach was
able to sample reasonable viewpoints to move the arm.

VII. CONCLUSIONS

We introduced a novel viewpoint planning approach that
detects ROIs in the environment and samples viewpoint can-
didates from them in order to achieve a high ROI coverage.
Our planning framework allows switching between different
planning modes, depending on the stage of coverage, i.e.,
our system automatically switches between ROI targeted
and general exploration sampling. We demonstrated in sim-

ulated experiments that our sampling approach outperforms
a method that does not consider the information about ROIs
with respect to the number of correctly detected ROIs and the
covered ROI volume. The ROI targeted viewpoint sampling
enables good results even with a simple metric for viewpoint
evaluation, which can be an advantage in larger maps, where
more complex metrics become computationally expensive.
We also showed that our planner can be used in a real-world
environment by demonstrating its use on a robotic platform
in a commercial glasshouse environment with capsicum
plants.

REFERENCES

[1] R. Pito, “A sensor-based solution to the ”next best view” problem,” in
Proc. of the Int. Conf. on Pattern Recognition (ICPR), 1996.

[2] E. Palazzolo and C. Stachniss, “Effective exploration for MAVs based
on the expected information gain,” Drones, vol. 2, no. 1, 2018.

[3] R. Monica and J. Aleotti, “Contour-based next-best view planning
from point cloud segmentation of unknown objects,” Autonomous
Robots, vol. 42, no. 2, pp. 443–458, 2018.

[4] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, 2013, software
available at http://octomap.github.com. [Online]. Available: http:
//octomap.github.com

[5] S. Oßwald, P. Karkowski, and M. Bennewitz, “Efficient coverage of 3d
environments with humanoid robots using inverse reachability maps,”
in Proc. of the IEEE-RAS Intl. Conf. on Humanoid Robots, 2017.

[6] W. Jing, D. Deng, Z. Xiao, Y. Liu, and K. Shimada, “Coverage
path planning using path primitive sampling and primitive coverage
graph for visual inspection,” in Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2019.

[7] R. N. De Carvalho, H. Vidal, P. Vieira, and M. Ribeiro, “Complete
coverage path planning and guidance for cleaning robots,” in Proc. of
the IEEE International Symposium on Industrial Electronics (ISIE),
vol. 2, 1997.

[8] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of field robotics, vol. 26, no. 8,
pp. 651–668, 2009.

[9] C. Lehnert, D. Tsai, A. Eriksson, and C. McCool, “3d move to see:
Multi-perspective visual servoing towards the next best view within
unstructured and occluded environments,” in Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[10] Y. Wang, S. James, E. K. Stathopoulou, C. Beltrán-González, Y. Kon-
ishi, and A. Del Bue, “Autonomous 3-d reconstruction, mapping, and
exploration of indoor environments with a robotic arm,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3340–3347, 2019.

[11] R. Monica, J. Aleotti, and D. Piccinini, “Humanoid robot next best
view planning under occlusions using body movement primitives,” in
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2019.

[12] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon ”next-best-view” planner for 3d exploration,” in
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[13] F. Sukkar, G. Best, C. Yoo, and R. Fitch, “Multi-robot region-
of-interest reconstruction with Dec-MCTS,” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2019.

[14] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza, “A com-
parison of volumetric information gain metrics for active 3d object
reconstruction,” Autonomous Robots, no. 42, 2018.

[15] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[16] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance
segmentation,” in Proc. of the IEEE Intl. Conf. on Computer Vision
(ICCV), 2019.

[17] M. Halstead, S. Denman, F. Clinton, and C. McCool, “Fruit detection
in the wild: The impact of varying conditions and cultivar,” in Digital
Image Computing: Techniques and Applications (DICTA), 2020.

http://octomap.github.com
http://octomap.github.com
http://octomap.github.com

	I Introduction
	II Related Work
	III System Overview
	IV Preliminaries
	IV-A ROI Detection
	IV-B Octree for Viewpoint Planning

	V Viewpoint Planning
	V-A ROI Targeted Sampling
	V-B Exploration Sampling
	V-C Viewpoint Evaluation
	V-D Viewpoint Selection

	VI Experiments
	VI-A Simulated Scenarios
	VI-B Real-World Glasshouse Experiment

	VII Conclusions
	References

