
Disentangling and Vectorization: A 3D Visual Perception Approach for
Autonomous Driving Based on Surround-View Fisheye Cameras

Zizhang Wu1 Wenkai Zhang1 Jizheng Wang1 Man Wang1

Yuanzhu Gan1 Xinchao Gou2 Muqing Fang1 Jing Song1

Abstract— The 3D visual perception for vehicles with the
surround-view fisheye camera system is a critical and challeng-
ing task for low-cost urban autonomous driving. While existing
monocular 3D object detection methods perform not well
enough on the fisheye images for mass production, partly due to
the lack of 3D datasets of such images. In this paper, we manage
to overcome and avoid the difficulty of acquiring the large
scale of accurate 3D labeled truth data, by breaking down the
3D object detection task into some sub-tasks, such as vehicle’s
contact point detection, type classification, re-identification and
unit assembling, etc. Particularly, we propose the concept of
Multidimensional Vector to include the utilizable information
generated in different dimensions and stages, instead of the
descriptive approach for the bird’s eye view (BEV) or a
cube of eight points. The experiments of real fisheye images
demonstrate that our solution achieves state-of-the-art accuracy
while being real-time in practice.

I. INTRODUCTION

In recent years, autonomous driving has attracted more and
more attention from both industry and research communities
[1]. The 3D perception of the environment is one of the most
challenging tasks [2]. Recent advances [3] demonstrate the
potential to replace the LIDAR with cheap onboard cam-
eras, which are readily available on most modern vehicles.
Particularly, the surround-view fisheye camera system is very
popular in mass production, on account of a larger field-of-
view (FoV) [4] than the pin-hole cameras.

The surround-view fisheye camera system can provide a
360-degree perception, which makes up for other pinhole
cameras’ lack of close-range perception around the vehicle,
especially in the scene of a traffic jam. So more researches
focus on obtaining position and pose information from the
above system, which are mostly in the Bird’s Eye View
(BEV) manner [5]. To obtain a BEV image, previous works
either use the Inverse Perspective Mapping (IPM) method [6]
to stitch the raw image data from the surrounding cameras or
leverage 3D object detection methods [3], [7], [8] to obtain
the 3D bounding boxes of the target-vehicles, which are then
projected on the BEV image. Despite its simplicity, the IPM
method can not directly provide valuable information such
as the positions and the heading angles of the target-vehicles
[9]. On the contrary, 3D object detection methods [10], [11]
can provide more comprehensive information, but a fisheye
image dataset with labeled 3D truth data is hardly available
[12]. Annotating such datasets is costly and heavily relies
on the fisheye cameras used to collect data, which makes

1Zongmu Technology
2Karlsruhe Institute of Technology

Surround-View

Visual

Perception

System

Fisheye

Calibration

2D Label Data

Training

Four-Channels

Fisheye Images
Bev Vector Map

The Proposed

System

Front

Left

Right

Rear

Depth Info

Fig. 1: The overview of the proposed method. Best view in
color and zoom in.

it unsuitable for mass production. Meanwhile, 3D object
detection requires more computing resources compared to 2D
[13]. Existing approaches usually utilize the visual features
to regress the heading angles of the target-vehicles [14],
[15] and achieve great success in many public datasets such
as KITTI [16]. However, it remains a challenging task to
obtain robust results covering a wide variety of use cases in
industrial applications [17].

In autonomous driving and mobile robotics applications,
we can generally assume that the most important dynamic
objects are on a ground plane, and the camera is mounted
at a certain height above the ground [18]. In particular, the
assumptions hold well in quite close distance, such as within
the perception range of the surround-view fisheye camera
system [9]. So we can obtain the 3D positions of certain
points on the ground through inverse projection, and these
points can serve as useful hints under the condition of being
stable and detectable in the image.

In the past few years, the two-dimensional keypoint de-
tection and object detection techniques are gradually mature
[13], [19]. Inspired by the above two sides, we define some
keypoints of the vehicle in the image, which are also the
contact points on the ground [18]. As mentioned above,
we can acquire the 3D positions of the vehicle’s contact
points, such as the contact points of wheels and bumpers.
But we can’t compute the three-dimensional positions only
based on the above information. For example, in some

ar
X

iv
:2

10
7.

08
86

2v
1

 [
cs

.C
V

]
 1

9
Ju

l 2
02

1

.

.

.

Four-Channels Fisheye Images Object Vector Generator BEV Vector Generator BEV Vector Map

ReID

F-IPM

~

2
3

1

Target

Vectors

BEV Box1

Generator

BEV BoxN

Generator

BEV Box2

Generator

.

.

.

l

w

Contact Point

Detection

Vehicle Type

Classification

Heading Angle

Regression

GP(xphy,yphy)

GP(xpix,ypix)



h

P

l

w

 front overhang

 rear overhang

Fig. 2: The overall structure of our proposed approach. The inputs are four-channels fisheye images which construct a
surround-view environment for ego-vehicles. The final output is a vector map containing the shape of the object under the
bird’s-eye view. Best view in color and zoom in.

situations, we also need the heading angle and vehicle type
for additional information, which is bounded with its types
such as the length, width and height. So we disentangle
the 3D object detection task into some sub-tasks, such
as vehicle’s contact point detection, type recognition, and
heading angle regression. Moreover, to maximize the advan-
tages of every algorithm component, we establish a robust
mechanism to achieve stable acquisition of 3D information
for different situations, combined with geometric constraints.
Furthermore, we propose the Multidimensional Vector to
improve the prediction effect, which describes the target-
vehicle by its center point, heading angle, type, etc. So in
this paper, we propose a system that takes raw images from
four surrounding fisheye cameras as input and outputs the
3D position of the target-vehicle with only the 2D labeled
truth data (including some heading angle truth data) and
calibration required, as shown in Fig. 1.

The contributions are summarized as following three-fold:
1. We provide a solution for 3D visual perception of the
surrounding environment with a fisheye camera system in au-
tonomous driving and avoid the difficulty of acquiring a large
scale of accurate 3D labeled truth data. 2. We improve the
prediction effect by the proposed Multidimensional Vector,
which includes the utilizable information generated in differ-
ent dimensions and stages, for more robust re-identification
and tracking, etc. 3. Our method demands lower computing
resources and achieves state-of-the-art accuracy in real-time
scenes, thus has great advantages in mass production.

II. RELATED WORKS

A. Surround-view fisheye cameras and 3D visual perception

Extensive visual perception tasks usually employ
surround-view fisheye cameras to capture the surrounding
environment due to their large FoV [4] and sufficiently
good performance [20], [21]. In particular, ego-vehicles
can achieve 360-degree perception using only four fisheye
cameras, which is conducive to mass production [22]. [23]

proposes a system to classify track vehicles and pedestrians
around the ego-vehicle using only four fisheye cameras. [4]
presents a solution to detect and classify moving objects
around the vehicle in real-time, which merges four views
captured by fisheye cameras into a single frame. Moreover,
surround-view fisheye cameras are widely used in various
perception tasks, such as semantic segmentation [24],
depth estimation [25], [26], object detection [27], [28] and
Re-Identification (ReID) [29].

Despite the advantages mentioned above, fisheye cameras
have a strong radial distortion and exhibited more com-
plex projection geometry [30], which leads to appearance
distortion [31]. Thus, it is hard to generalize the models
trained on the fisheye dataset. Besides, the distortion brings
additional challenges to annotate fisheye datasets [12], [32],
and there are few public 3D visual perception systems
for vehicles based on the surround-view fisheye cameras
[17]. Moreover, OmniDet [33] presents a multi-task visual
perception network to capture the surrounding environment.
Their object detection task requires a large annotated dataset
of fisheye images which increases the additional cost of the
integral task. The dense pixel-wise depth estimation would
result in prohibitive computational cost and limited real-time
performance.

B. 3D object detection

The visual perception system is a crucial part of au-
tonomous driving, in which 3D object detection is an im-
portant component to estimate the pose and location of
the surrounding vehicles [3], [34]. Recent developments
[11], [8], [10] in 3D object detection mainly utilize various
information such as context, geometry, depth map, and so
on. They usually regress 3D information of target-vehicles,
including the bird’s eye view or a cube of eight points,
through neural networks [35], [36], [37].

However, previous representations provide only limited
information for the visual perception task in autonomous

driving. In this paper, we propose the Multidimensional
Vector that includes more usable information, instead of the
descriptions of the bird’s eye view or a cube of eight points.

III. METHODS

In this section, we introduce the proposed visual percep-
tion system in detail, as shown in Fig. 2. First of all, we
feed four fisheye images into the Contact Point Detection
module, Vehicle Type Recognition module, and Heading
Angle Regression module to obtain the required attributes for
Multidimensional Vector, including vehicle type, dimensions
(l, w, h), front overhang (fo), rear overhang (ro), heading
angle (ϕ) and contact points’ coordinates, as shown in Fig.
3. Then these attributes are merged and unified by the ReID
module to generate a unique identification number for each
target-vehicle. Subsequently, we integrate the intermediate
results to generate vectors for the BEV description of target-
vehicles and illustrate the final BEV Vector Map. Table I
shows the notations used in this paper.

TABLE I: Notations used in this paper.

Notations Descriptions

A,B,C,D
BEV box
(Left-Front, Left-Rear, Right-Front, Right-Rear)

FW Front wheel ground contact point
RW Rear wheel ground contact point
FB Front bumper contact point
RB Rear bumper contact point
P Center point of the target vehicle
O Origin point of the ego-vehicle coordinate system
GPphy Physical coordinates of the ground contact point
GPpix Pixel coordinates of the ground contact point
l, w, h length,width and height of the target vehicle
fo Front overhang of the target vehicle
ro Rear overhang of the target vehicle
objid Id of the target vehicle
θ* Azimuth angle of the target-vehicle
ϕ* Heading angle of the target-vehicle
γ* Angle of line(RB,RW) in standard position
* All the angles are positive angles along the positive x-axis of the

ego-vehicle coordinate system.

A. Object Vector Generator

1) Contact Point Detection: To overcome and avoid the
difficulty of acquiring large-scale accurate 3D labeled truth

Heading angleBEV_box
(A, B, C, D)

Type

Dimension (l, w, h)

Front overhang

Rear overhang

Horizontal

Coordinate

Vertical

Coordinate

Multidimensional

Vector

Left front wheel

Left rear wheel

Right front wheel

Right front wheel

Unique identification

Front bumper

Rear bumper

Fig. 3: The specific composition of the Multidimensional
Vector.

CO

LO

P

'P

''P

LX

LY

LZ

CX

CY
d

cf


px
py

CD

''x

'x

''y

'y

PO

U

V

'' '' ''(u ,)P v c(, ,)c cP x y z'' '' ''(,)P x y
' ' '(,)P x y

Pre-calibrated

Table

De-distortion

Table

Internal

Parameters

 ,R t

CD

(, ,0)P x y
cf

LO XYZ

CO XYZ

PO XYZ

PO UV

Local coordinate

Camera coordinate

Plane coordinate

Pixel coordinate

Fig. 4: The diagram of translating the pixel coordinates of the
contact points in fisheye image to the physical coordinates.
Best view in color and zoom in.

data, we perform 2D contact point detection on fisheye
images. For detecting and locating the surrounding vehicles,
we need to detect vehicles, front wheels, and rear wheels to
compute the contact points of target-vehicles. Considering
the trade-off between real-time performance and accuracy in
autonomous driving scenes, we employ the CenterNet [19] as
the base framework. Specially, we input four fisheye images
from different channels into the network, which outputs the
predicted bounding boxes of the vehicles, front and rear
wheels.

Then we acquire the contact points’ pixel coordinates in
the image through post-processing. Here we define (ground)
contact point as the midpoint of the bottom edge of the
bounding box of a vehicle or a wheel. These points are on the
ground and their physical coordinates are P (x, y, 0). With
the pixel coordinates of the contact points, we can calculate
their physical coordinates in the real-world coordinate system
through the Fisheye IPM algorithm [6], as shown in Fig. 4.
The pixel coordinates of contact points in fisheye images are
P ′′(u′′, v′′), which are transformed into the distorted plane
with coordinates P ′′(x′′, y′′) through the internal parameter
matrix. By referring to the de-distortion table, they can
be converted into the de-distorted plane with coordinates
P ′(x′, y′). After introducing the re-calibrated internal param-
eters and pre-calibrated tables, we get coordinates P (x, y, z)
in the camera coordinate system and target depth values
Dc. Through the R, t matrix of the external parameters,
we obtain coordinates P (x, y, 0) of contact points in the
local coordinate system (ego-vehicle coordinate system). In
conclusion, we prepare some useful information of detected
vehicles in this step, including 2D bounding boxes, pixel
coordinates (GPpix) and physical coordinates (GPphy) of
the contact points (FB, RB, FW , RW).

2) Vehicle Type Classification: We infer more information
on target-vehicles by our vehicle type classification module,
which contains a simple classification network [38]. We

Heading Angle

Regression

Contact Point

Detection

Vehicle Type

Classification

MultiBranch

Vector Fusion

Target-Vehicle

ID Generation
 BEV Object

ID Generation

1
2
1
3
4
1

3
2

ID

1
2
3
4

ID
BEV_ID

Fig. 5: ReID module is divided into three stages. The first
stage fuses the vectors of three branches, the scond stage
generates an ID for each object of each channel, and the
third stage merges the vectors which describing the same
object into one vector. Best view in color and zoom in.

crop vehicle images according to the detected 2D bounding
boxes and input them into the network, which outputs the
types of vehicles. Particularly, we divide vehicles into 8
types, including car, SUV, MPV, etc. Therefore, we obtain
additional attributes for Multidimensional Vector, such as the
dimensions (l, w, h), front overhang (fo), and rear overhang
(ro), because they are bonded with the type of vehicles.

3) Heading Angle Regression: The Heading Angle Re-
gression module is implemented by the MultiBin [14], which
is a method to estimate the pose of objects by the cropped
images. We take the output of this module as the estimation
of the heading angle in the third case mentioned in III-B.

4) ReID: In our surround-view system, a target-vehicle
can be observed from different cameras and described by
one or more vectors. To facilitate the subsequent tasks, it is
necessary to describe the target-vehicle using a vector with
a unique identification number. So, we merge the original
vectors from three branches into one vector with the unique
identification number, as shown in Fig. 6. This process is
target re-identification (ReID) and consists of three different
stages.

The first stage is the multi-branch vector fusion. The
bounding boxes (X,Y,W,L) information of the target-
vehicles is included in the vector of each branch. If two
vectors in different branches have the same bounding box,
we append one to the other and remove duplicate elements.
In this instance, we append the vectors from the vehicle type
classification and heading angle regression branches to the
contact point detection vector branch.

The second stage is the target-vehicle id generation. Since
the same target may be observed in different channels and
described with different vectors, the goal of this stage is
to assign the same identification number to these vectors.
This stage is mainly achieved by some hand-craft rules.

(1) Channel Fusion (2) Category Fusion

bumper

FW

RW

FW

RW

RW

RW

RW

RW

FW FW

FW

bumper

FW





Fig. 6: Channel fusion and category fusion. (1) Wheels from
different channels are fused into one vehicle. α and β are 0.5,
which indicate weights assigned to the front wheels of two
vehicles. (2) Wheels and bumper from different categories
are fused into one vehicle. Best view in color and zoom in.

For example, we assign the same identification number to
vectors, whose physical coordinates of ground contact points
are less than 50 cm away.

The third stage is the BEV target id generation, which
aims to merge all the vectors that describe the same target-
vehicle and assign them a unique identity. Two situations are
considered in this stage. One is the fusion between channels,
which is performed in a complementary or weighted way,
as shown in Fig. 6(1). The other is the fusion between
categories, which is carried out in a complementary way,
as shown in Fig. 6(2). Finally, we get the unique vector
representation that contains all the information for the BEV
Vector Map.

B. BEV Vector Generator

The output of the previous modules is integrated to calcu-
late the BEV Vectors, which are used to construct the BEV
Vector Map.

Firstly, we estimate the position of the center point P and
the heading angle ϕ of the target-vehicle. The azimuth angle
θ and the heading angle ϕ (as shown in Table I) are used
to determine whether the visible side is left or right side of
the target-vehicle via equation (1). The azimuth angle can
be calculated by the position of the wheels or the bumpers.{

sin(ϕ− θ) > 0, left side
sin(ϕ− θ) < 0, right side

(1)

Then, three different cases are considered to estimate the
center point P and the heading angle ϕ of the target-vehicle.
In the first case, two wheels on one side of the target-vehicle
are visible. The heading angle ϕ of the target-vehicle is
determined by the slope of the line(RW,FW), as shown
in Fig. 7(a).

ϕ = arctan(
FWy −RWy

FWx −RWx
) (2)

The positions of the left-front corner A and the left-rear
corner B of the target-vehicle as well as their midpoint M
are determined with the help of its front overhang fo and

o

P

B

M



w

RW

FW



A

y

x

of

ro

90-

ego-vehicle
target-vehicle



(a)

o

P
RW



w



/ 2w







ro

y

x

A

B

2/l

RB

ego-vehicle
target-vehicle



(b)

Fig. 7: Two cases of calculating the heading angles of the
target-vehicles. (a) two wheels on one side are visible. (b)
only one wheel and one bumper are visible. Best view in
color and zoom in.

rear overhang ro, which are bounded with its type.(
Ax

Ay

)
=

(
FWx + fo ∗ cos(ϕ)
FWy + fo ∗ sin(ϕ)

)
(3)

(
Bx

By

)
=

(
RWx + ro ∗ cos(ϕ)
RWy + ro ∗ sin(ϕ)

)
(4)(

Mx

My

)
=

(Ax+Bx

2
Ay+By

2

)
(5)

We acquire the position of center point P by line(M,P)
and half of the width w of the target-vehicle.(

Px

Py

)
=

(
Mx + w

2 ∗ cos(ϕ− 90)
My +

w
2 ∗ sin(ϕ− 90)

)
(6)

In the second case, one wheel and one bumper can be
observed as shown in Fig. 7(b). Similarly, the slope of the
line(RB,RW) determines the angle γ.

γ = arctan(
RWy −RBy

RWx −RBx
) (7)

The rear overhang ro and half of the width w of the target-
vehicle w indicate the angle φ.

φ = arctan(
w/2

ro
) (8)

We calculate the heading angle ϕ of the target-vehicle based
on the angle γ and angle φ.

ϕ = γ − φ (9)

The position of the center point P can be determined by the
position of the rear bumper RB and half of the length l of
the target-vehicle.(

Px

Py

)
=

(
RBx + l/2 ∗ cos(ϕ)
RBy + l/2 ∗ sin(ϕ)

)
(10)

In the third case, only one bumper is available. So we take
the output of the Heading Angle Regression module as the
final heading angle of the target-vehicle.

After acquiring the heading angle ϕ and the center point
P of the target-vehicle, we can calculate the positions of its

TABLE II: Comparison results on synthetic panorama dataset

Models 2D-AP 3D-mAP AOS IoU Dist. Err.
[39] 0.447 0.203 0.157 0.265 1.143
[31] 0.472 0.301 0.419 0.36 0.883
Ours 0.573 0.362 0.856 0.647 0.535

four corners by the width w and length l and illustrate it by
a rectangle on the BEV Vector Map.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed visual perception
method on accuracy, robustness and real-time performance.

A. Experimental settings

The 3D detection methods usually require 3D labeled data
from the public 3D datasets for training, such as the KITTI
dataset [16]. Since we decompose the 3D object detection
task into sub-tasks, our method doesn’t require 3D labeled
data. Currently, there is no public dataset suitable for our
setting, so we collect and label the training data manually.
The training dataset contains about 140,000 images collected
by a surround-view camera system with four fisheye cameras.
Our system is deployed on the Qualcomm 820A platform
with an Adreno 530 GPU and a Hexagon 680 DSP. It can
deliver about 1.2 TOPs (trillion operations per second). In
comparison, the NVIDIA Xavier is for 30 TOPs, and Tesla’s
V3 “Full Self-Driving” Computer is claimed to deliver 144
TOPs. There is no doubt that our system can operate on a
platform with rather low computing ability.

B. Results of the synthetic panorama dataset

Following [31], we evaluate our results on the synthetic
panorama dataset from [39]. [31] trained their 3D object de-
tector on the KITTI 3D Object training set which is different
from ours. The 2D and 3D metrics include 2D-AP (defined
using IoU> 0.5 between 2D bounding boxes following [31]),
3D-mAP, average orientation similarity (AOS), mean 3D
volumetric IoU, and mean Euclidean distance error. Table
II presents these results. Our method has achieved the best
performance, especially on AOS and IoU metrics, which
proves that our method is effective in decomposing the total
task into sub-tasks, even without 3D labeled data. Fig. 8
shows the visualization of the perception output.

C. System positioning error analysis

We conduct three experiments to evaluate the object
position accuracy. In these experiments, the numbers of
objects perceived by our system are 9382, 11777, and 7911,
respectively. In the evaluation of positioning error along the
x-direction (Fig. 7), it is eligible when errors are smaller
than 25 cm. As shown in Fig. 9(a), the qualification rates of
these three tests are 99.82%, 99.50%, and 99.54%.

As for y-direction (Fig. 7), since the strong relation
between the positioning error and the distance from the target
vehicle to the ego-vehicle, we divide the statistical errors into
multiple intervals. In the experiments, the distance range is

Fig. 8: Visualization results of our perception system. Best
view in color and zoom in.

ON QR
9382 99.82%
11777 99.50%
7911 99.54%

Object Number Qualification Rate

ON QR
0-2m 14132 99.92%
2-3m 7298 99.96%
3-5m 7640 99.72%

1 2 3
ON 9382 11777 7911
QR 99.82% 99.50% 99.54%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

0

2000

4000

6000

8000

10000

12000

14000

16000
Object Number (ON) Qualification Rate (QR)

0-2m 2-3m 3-5m
ON 14132 7298 7640
QR 99.92% 99.96% 99.72%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

0

2000

4000

6000

8000

10000

12000

14000

16000
Object Number (ON) Qualification Rate (QR)

Index Y Detection Range

(a)

ON QR
9382 99.82%
11777 99.50%
7911 99.54%

Object Number Qualification Rate

ON QR
0-2m 14132 99.92%
2-3m 7298 99.96%
3-5m 7640 99.72%

1 2 3
ON 9382 11777 7911
QR 99.82% 99.50% 99.54%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

0

2000

4000

6000

8000

10000

12000

14000

16000
Object Number (ON) Qualification Rate (QR)

0-2m 2-3m 3-5m
ON 14132 7298 7640
QR 99.92% 99.96% 99.72%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

0

2000

4000

6000

8000

10000

12000

14000

16000
Object Number (ON) Qualification Rate (QR)

Index Y Detection Range

(b)

Fig. 9: Evaluation of the system positioning qualification
rate. Best view in color and zoom in.

divided into 3 intervals of 0-2 meters, 2-3 meters, and 3-
5 meters, while the requirements are no larger than 20 cm,
40 cm, and 50 cm. As shown in Fig. 9(b), the qualification
rates in the y-direction are 99.92%, 99.96%, and 99.72%.
These experiments effectively prove that our system has a
high positioning accuracy.

Since there is no ideal horizontal ground plane in practical
application, we design an experiment to evaluate the posi-
tioning accuracy of our system on the ground with a 5% slope
gradient. We randomly select 12 objects distributing from -
2.5 to 2.5 meters along the x-direction and calculate their
position errors. As shown in Fig. 10(a), the result demon-
strates that all the errors are less than 30 cm. Meanwhile,
12 points are randomly selected in the range of 1.5 to 3.5
meters along y-direction to analyze the position errors. As
shown in Fig. 10(b), the position errors of objects are less
than 20 cm. It can be concluded that our system can work
on the ground with a slight slope gradient, which proves the
robustness of the proposed system in practical scenarios.

D. System delay analysis

We perform time consumption tests on the hardware
platform, and Fig. 11 shows the latency time of each module.

The “Set Input” and “Result Publish” represent the input
and output of the proposed system. “Vehicle Type Recog-
nition”, “Contact Point Detection”, and “Heading Angle
Regression” are introduced in the Method section. The total
time of our system’s test is less than 45 ms. The “Vehicle
Type Recognition + Contact Point Detection + Heading

cam_x cam_y phy_x phy_y real_x real_y error_phy_x error_phy_y error_phy_ 	cam_new_cam_new_error_pix_xerror_pix_yframe_id 0
676 445 36.92739 291.5109 0.24 2.94 12.927391 2.489136 13.16485 662.6972 444.3141 -13.3028 -0.68585 0
684 461 36.37813 232.0534 0.24 2.34 12.378128 1.946548 12.53025 668.2927 460.2033 -15.7073 -0.79666 0
618 441 -21.1759 308.4625 -0.44 2.94 22.824089 14.462524 27.02043 594.0481 443.849 -23.9519 2.848999 0

460 -24.1951 233.2067 -0.44 2.34 19.804934 0.793274 19.82081 583.517 459.6176 -24.483 -0.38236 0
442 -97.3972 303.1057 -1.04 2.94 6.60276 9.105743 11.24771 534.96 443.9023 -9.03998 1.902344 0
455 -88.0069 248.8044 -1.04 2.34 15.993149 14.804459 21.79341 511.5588 459.5092 -24.4412 4.509247 0
443 -144.994 299.8095 -1.64 2.94 19.005753 5.809509 19.87383 479.5561 444.4168 -19.4439 1.416809 0
458 -144.382 239.4136 -1.64 2.34 19.617691 5.413651 20.35096 446.4442 459.8066 -23.5558 1.806641 0
445 -195.803 293.3529 -2.24 2.94 28.197449 0.647064 28.20487 429.6469 445.3445 -22.3531 0.344452 0
459 -199.475 237.7964 -2.24 2.34 24.524734 3.796463 24.81684 390.7122 460.4255 -24.2878 1.425537 0
450 155.4668 279.4043 1.44 2.94 11.466766 14.595703 18.56129 779.001 446.4061 -16.999 -3.59387 0
469 210.2156 218.2871 2.04 2.34 6.215591 15.712845 16.89755 867.5999 463.6893 -17.4001 -5.31067 0

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

X
 D

et
ec

tio
n

E
rr

or

Point Index

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Y
 D

et
ec

tio
n

Er
ro

r

Point Index

(a)

cam_x cam_y phy_x phy_y real_x real_y error_phy_x error_phy_y error_phy_ 	cam_new_cam_new_error_pix_xerror_pix_yframe_id 0
676 445 36.92739 291.5109 0.24 2.94 12.927391 2.489136 13.16485 662.6972 444.3141 -13.3028 -0.68585 0
684 461 36.37813 232.0534 0.24 2.34 12.378128 1.946548 12.53025 668.2927 460.2033 -15.7073 -0.79666 0
618 441 -21.1759 308.4625 -0.44 2.94 22.824089 14.462524 27.02043 594.0481 443.849 -23.9519 2.848999 0
608 460 -24.1951 233.2067 -0.44 2.34 19.804934 0.793274 19.82081 583.517 459.6176 -24.483 -0.38236 0
544 442 -97.3972 303.1057 -1.04 2.94 6.60276 0
536 455 -88.0069 248.8044 -1.04 2.34 15.993149 0
499 443 -144.994 299.8095 -1.64 2.94 19.005753 0
470 458 -144.382 239.4136 -1.64 2.34 19.617691 0
452 445 -195.803 293.3529 -2.24 2.94 28.197449 0
415 459 -199.475 237.7964 -2.24 2.34 24.524734 0
796 450 155.4668 279.4043 1.44 2.94 11.466766 0
885 469 210.2156 218.2871 2.04 2.34 6.215591 0

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

X
 D

et
ec

tio
n

Er
ro

r

Point Index

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Y
 D

et
ec

tio
n

E
rr

or

Point Index

(b)

Fig. 10: Evaluation of the positional accuracy on the ground
with 5% slope gradient. Best view in color and zoom in.

Fig. 11: Time consumption tests on the hardware platform.
The total time of our system’s test is less than 45 ms, which
can meet real-time requirements. Best view in color and
zoom in.

Angle Regression” part takes the most time (37.5 ms) since
it’s the network inference module. The test is carried out on
a serial setting and the total time is the sum of the running
time for four input pictures in series.

In real engineering applications, the parallel structure
achieves a total time consumption of less than 40 ms, which
can meet real-time requirements.

V. CONCLUSIONS

In this paper, we present an accurate and low-latency 3D
vehicle perception solution with the surround-view fisheye
camera system for autonomous driving. We are the first
to propose a method for overcoming and avoiding the
acquisition difficulty of the large-scale accurate 3D labeled
truth data, by breaking down the 3D object detection task
into some sub-tasks and obtain sufficient precision for mass
production. The above solution can achieve a sub-120 ms
latency from view to multidimensional vector output, with
average errors less than 0.25 meters at a distance of 5 meters.
Furthermore, the associated fisheye dataset will be public to
facilitate the progress of relevant research in this field. In
future studies, we will continue to optimize the performance
of the 3D perception system.

REFERENCES

[1] J. Monica and M. Campbell, “Vision only 3-d shape estimation
for autonomous driving,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2020. IEEE, 2020, pp. 1676–
1683.

[2] K. Strobel, S. Zhu, R. Chang, and S. Koppula, “Accurate, low-latency
visual perception for autonomous racing: Challenges,mechanisms,
and practical solutions,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2020. IEEE, 2020, pp. 1969–
1975.

[3] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3d lidar using
fully convolutional network,” arXiv preprint arXiv:1608.07916, 2016.

[4] I. Baek, A. Davies, G. Yan, and R. R. Rajkumar, “Real-time detection,
tracking, and classification of moving and stationary objects using
multiple fisheye images,” in 2018 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2018, pp. 447–452.

[5] M. H. Ng, K. Radia, J. Chen, D. Wang, I. Gog, and J. E. Gonzalez,
“Bev-seg: Bird’s eye view semantic segmentation using geometry and
semantic point cloud,” arXiv preprint arXiv:2006.11436, 2020.

[6] H. A. Mallot, H. H. Bülthoff, J. Little, and S. Bohrer, “Inverse
perspective mapping simplifies optical flow computation and obstacle
detection,” Biological Cybernetics, vol. 64, no. 3, pp. 177–185, 1991.

[7] X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang, and X. Fan, “Accurate
monocular 3d object detection via color-embedded 3d reconstruction
for autonomous driving,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019, pp. 6851–6860.

[8] Z. Qin, J. Wang, and Y. Lu, “Monogrnet: A geometric reasoning
network for monocular 3d object localization,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
8851–8858.

[9] Y. Kim and D. Kum, “Deep learning based vehicle position and
orientation estimation via inverse perspective mapping image,” in 2019
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 317–323.

[10] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task multi-
sensor fusion for 3d object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
7345–7353.

[11] Z. Liu, Z. Wu, and R. Tóth, “Smoke: single-stage monocular 3d object
detection via keypoint estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops,
2020, pp. 996–997.

[12] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley, D. O’Dea,
M. Uricár, S. Milz, M. Simon, K. Amende et al., “Woodscape: A
multi-task, multi-camera fisheye dataset for autonomous driving,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 9308–9318.

[13] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
779–788.

[14] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding
box estimation using deep learning and geometry,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7074–7082.

[15] J. Ku, A. D. Pon, and S. L. Waslander, “Monocular 3d object
detection leveraging accurate proposals and shape reconstruction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 11 867–11 876.

[16] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–
3361.

[17] P. Maddu, W. Doherty, G. Sistu, I. Leang, M. Uricar, S. Chennupati,
H. Rashed, J. Horgan, C. Hughes, and S. Yogamani, “Fisheyemultinet:
Real-time multi-task learning architecture for surround-view auto-
mated parking system,” arXiv preprint arXiv:1912.11066, 2019.

[18] Y. Liu, Y. Yuan, and M. Liu, “Ground-aware monocular 3d object
detection for autonomous driving,” IEEE Robotics and Automation
Letters, 2021.

[19] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv
preprint arXiv:1904.07850, 2019.

[20] M. Toromanoff, E. Wirbel, F. Wilhelm, C. Vejarano, X. Perrotton, and
F. Moutarde, “End to end vehicle lateral control using a single fisheye
camera,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 3613–3619.

[21] M. Drulea, I. Szakats, A. Vatavu, and S. Nedevschi, “Omnidirectional
stereo vision using fisheye lenses,” in 2014 IEEE 10th International
Conference on Intelligent Computer Communication and Processing
(ICCP). IEEE, 2014, pp. 251–258.

[22] V. R. Kumar, S. A. Hiremath, M. Bach, S. Milz, C. Witt, C. Pinard,
S. Yogamani, and P. Mäder, “Fisheyedistancenet: Self-supervised
scale-aware distance estimation using monocular fisheye camera for
autonomous driving,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 574–581.

[23] M. Bertozzi, L. Castangia, S. Cattani, A. Prioletti, and P. Versari, “360
detection and tracking algorithm of both pedestrian and vehicle using
fisheye images,” in 2015 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2015, pp. 132–137.

[24] G. Blott, M. Takami, and C. Heipke, “Semantic segmentation of
fisheye images,” in Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, 2018, pp. 181–196.

[25] V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold,
S. Yogamani, and T. Pech, “Near-field depth estimation using monoc-
ular fisheye camera: A semi-supervised learning approach using sparse
lidar data,” in CVPR Workshop, vol. 7, 2018.

[26] V. R. Kumar, M. Klingner, S. Yogamani, S. Milz, T. Fingscheidt,
and P. Mader, “Syndistnet: Self-supervised monocular fisheye cam-
era distance estimation synergized with semantic segmentation for
autonomous driving,” in Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, 2021, pp. 61–71.

[27] T. Li, G. Tong, H. Tang, B. Li, and B. Chen, “Fisheyedet: A self-study
and contour-based object detector in fisheye images,” IEEE Access,
vol. 8, pp. 71 739–71 751, 2020.

[28] M. Yahiaoui, H. Rashed, L. Mariotti, G. Sistu, I. Clancy, L. Yahiaoui,
V. R. Kumar, and S. Yogamani, “Fisheyemodnet: Moving object
detection on surround-view cameras for autonomous driving,” arXiv
preprint arXiv:1908.11789, 2019.

[29] Z. Wu, M. Wang, L. Yin, W. Sun, J. Wang, and H. Wu, “Vehicle re-id
for surround-view camera system,” arXiv preprint arXiv:2006.16503,
2020.

[30] B. Arsenali, P. Viswanath, and J. Novosel, “Rotinvmtl: Rotation
invariant multinet on fisheye images for autonomous driving appli-
cations,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, 2019, pp. 2373–2382.

[31] E. Plaut, E. B. Yaacov, and B. E. Shlomo, “Monocular 3d object
detection in cylindrical images from fisheye cameras,” arXiv preprint
arXiv:2003.03759, 2020.

[32] M. Uricár, J. Ulicny, G. Sistu, H. Rashed, P. Krizek, D. Hurych,
A. Vobecky, and S. Yogamani, “Desoiling dataset: Restoring soiled
areas on automotive fisheye cameras,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, 2019, pp.
4273–4279.

[33] V. R. Kumar, S. Yogamani, H. Rashed, G. Sitsu, C. Witt, I. Leang,
S. Milz, and P. Mäder, “Omnidet: Surround view cameras based multi-
task visual perception network for autonomous driving,” arXiv preprint
arXiv:2102.07448, 2021.

[34] Y. Wu, S. Feng, X. Huang, and Z. Wu, “L4net: An anchor-free generic
object detector with attention mechanism for autonomous driving,” IET
Computer Vision, 2021.

[35] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun,
“Monocular 3d object detection for autonomous driving,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 2147–2156.

[36] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliere, and T. Chateau,
“Deep manta: A coarse-to-fine many-task network for joint 2d and 3d
vehicle analysis from monocular image,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
2040–2049.

[37] G. Brazil and X. Liu, “M3d-rpn: Monocular 3d region proposal
network for object detection,” in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 2019, pp. 9287–9296.

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[39] G. P. de La Garanderie, A. A. Abarghouei, and T. P. Breckon, “Elim-
inating the blind spot: Adapting 3d object detection and monocular
depth estimation to 360 panoramic imagery,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 789–
807.

	I INTRODUCTION
	II Related Works
	II-A Surround-view fisheye cameras and 3D visual perception
	II-B 3D object detection

	III Methods
	III-A Object Vector Generator
	III-A.1 Contact Point Detection
	III-A.2 Vehicle Type Classification
	III-A.3 Heading Angle Regression
	III-A.4 ReID

	III-B BEV Vector Generator

	IV Experiments and Results
	IV-A Experimental settings
	IV-B Results of the synthetic panorama dataset
	IV-C System positioning error analysis
	IV-D System delay analysis

	V CONCLUSIONS
	References

