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Abstract— Recent advances in unsupervised learning for
object detection, segmentation, and tracking hold significant
promise for applications in robotics. A common approach is to
frame these tasks as inference in probabilistic latent-variable
models. In this paper, however, we show that the current
state-of-the-art struggles with visually complex scenes such as
typically encountered in robot manipulation tasks. We propose
APEX, a new latent-variable model which is able to segment and
track objects in more realistic scenes featuring objects that vary
widely in size and texture, including the robot arm itself. This
is achieved by a principled mask normalisation algorithm and
a high-resolution scene encoder. To evaluate our approach, we
present results on the real-world Sketchy dataset. This dataset,
however, does not contain ground truth masks and object IDs
for a quantitative evaluation. We thus introduce the Panda
Pushing Dataset (P2D) which shows a Panda arm interacting
with objects on a table in simulation and which includes ground-
truth segmentation masks and object IDs for tracking. In both
cases, APEX comprehensively outperforms the current state-of-
the-art in unsupervised object segmentation and tracking. We
demonstrate the efficacy of our segmentations for robot skill
execution on an object arrangement task, where we also achieve
the best or comparable performance among all the baselines.

I. INTRODUCTION

Scene segmentation and tracking are cornerstones of
robotics (e.g. [1], [2]). A principal motivation is the abil-
ity to ground sensory observations in state-representations
suitable for executing downstream tasks. While considerable
advances have been made in using supervised methods for
detecting and segmenting objects (e.g. [3], [4]), labelling
data is resource intensive and quickly becomes intractable
when trying to consider every possible object category
for every deployment eventuality. Unsupervised learning –
the discovery of representations suitable for task execution
without the need for training labels – is therefore emerging
as a promising alternative. In particular, recently developed
object-centric scene representations (e.g. [5], [6], [7], [8], [9],
[10]) have the potential of vastly improving data efficiency
in robotics and other applications (e.g. [11], [12], [13]).
Here we show, however, that current state-of-the-art methods
fail on visually complex datasets that are representative of
scenarios commonly encountered in robot manipulation.

Within the class of unsupervised, object-centric models,
variational autoencoders (VAEs) ([14], [15]) are emerging
as a popular choice. Object detection and segmentation are
performed by using spatial transformer networks (STNs) [16]
and spatial Gaussian mixture models (SGMMs) ([17], [18],
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[19]) to separate objects, respectively. Some works do not im-
pose any further structure on these latent representations (e.g.
[5], [7], [11], [20]), while others further factorise the repre-
sentations to explicitly disentangle foreground objects from
the background, object location, appearance, and whether an
object slot is used or not (e.g. [6], [9], [21], [22]).In contrast
to, e.g., OP3 [11] which was also developed in the context of
robotics, we argue the latter is of particular utility in robotics
applications where such highly structured representations can
be directly used as inputs to a planning module. A recently
proposed model of this type called SCALOR [9] achieves
particularly good results on segmenting and tracking objects
in videos that contain a possibly large number of objects.
We demonstrate however, that SCALOR struggles to learn
object-centric representations on datasets with objects of
widely varying sizes and textures as encountered in robot
manipulation.

We therefore develop APEX (Amortised Parallel infErence
with miXture models), a novel object-centric generative
model trained on videos. In contrast to prior work, APEX uses
a principled mask normalisation procedure to parameterise
an SGMM, which allows the explicit tuning of foreground
and background standard deviations. APEX also features
an improved scene encoder that outputs a high-resolution
feature map that is particularly suitable for tracking [24].
To showcase the efficacy of APEX, we evaluate APEX
qualitatively on Sketchy [23], an existing real-world robot
manipulation dataset. We also introduce the Panda Pushing
Dataset (P2D) as a quantitative benchmark against prior art.
This contains videos of a Panda arm interacting with objects
on a table in simulation and includes ground truth labels for
segmentation masks and tracking objects between frames.
It can be observed that APEX comprehensively outperforms
recent state-of-the-art methods ([9], [11], [20], [25], [26])
by a large margin in terms of unsupervised segmentation
and object tracking. Finally, inspired by the Open Cloud
Robot Table Organization Challenge [27], we demonstrate
the utility of APEX specifically in the context of a robot
object re-arrangement task. Here, the superior segmentation
performance of APEX, as illustrated in Figure 1, as well
as the quality of the learned object representations lead to
significantly better results compared to prior art.

II. RELATED WORK

This work builds on recent literature on object-centric
generative models (OCGMs), which are typically formulated
as VAEs (e.g. [21], [22]) or generative adversarial networks
(GANs) (e.g. [28], [29], [30]).Unlike object-centric GANs,
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(a) Sketchy   
(b) Panda Pushing Dataset (P2D)

Fig. 1: APEX learns to segment and track objects in videos without supervision from (a) the established Sketchy dataset [23]
and (b) our Panda Pushing Dataset (P2D). Segment colour indicates object ID. APEX accurately segments the diverse objects
in the scenes and tracks the blue cup in (b) despite severe occlusion at t = {7, 11}.

VAE-based methods directly provide an amortised inference
mechanism for extracting object-centric representations from
input images. Early works that use STNs for separating ob-
jects do so by sequentially attending to different regions in an
image, leading to a computational complexity that increases
linearly with the number of objects ([21], [22]). More recent
works parallelise the inference of object representations,
which has been shown to be particularly useful for images
with a large number of objects ([6], [9]). Segmentation-
based models that parameterise an SGMM (e.g. [5], [7],
[8], [20]) tend to be computationally more expensive than
STN-based approaches where objects can be generated as
smaller crops rather than image-sized components. A more
informative pixel-level labelling, however, is required in
applications such as the object arrangement task considered
in this work. SLOT-ATTENTION [20] is a prominent recent
model belonging to this category and is therefore selected
as one of our baselines. The majority of related works learn
object representations from individual images (e.g. [5], [7],
[20]), but some also exploit temporal information in video
sequences (e.g. [9], [10], [11]) to improve object separation.
APEX also leverages a VAE, STNs, and an SGMM for the
parallel inference of structured, object-centric latent repre-
sentations from videos. The structure of the model is most
closely related to SCALOR [9]. Instead of parameterising a
Gaussian image likelihood, however, APEX parameterises an
SGMM which allows direct tuning of loss magnitudes from
background and foreground modules. Moreover, APEX uses a
scene encoder that is particularly suitable for object tracking
[31].

A small number of works also explore the use of object-
centric representations in robotics ([11], [12]). OP3 [11]
uses an object-centric model to predict goal images that
contain a set of blocks in a desired configuration and the
authors in [12] show that explicit object representations can
accelerate the acquisition of robotic manipulation skills. Sim-
ilarly, COBRA [13] leverages object-centric representations
to improve data efficiency and policy robustness in several
RL tasks in visually simple simulated environments. Inspired
by [27], we benchmark a number of models on an object
manipulation task, where we observe that segmentations and
object representations learned by APEX lead to significantly
better results compared to the recent state-of-the-art.

III. APEX: AMORTISED PARALLEL INFERENCE WITH
MIXTURE MODELS

Let x ∈ [0, 1]H×W×C be a frame from a video se-
quence x1:T , where H and W denote the image height
and width, C represents the number of image channels (e.g.
RGB), and T denotes the number of frames in the video
sequence. Consider a scene S to be formed of K object
hypotheses – or components – which are each encoded
by a set of latent variables such that S = {z1, . . . , zK}.
In particular, we consider two disjoint sets of object hy-
potheses comprised of foreground objects and a back-
ground component, such that S = Ofg ∪ Obg, where
Ofg = {zfg

1 , . . . , z
fg
K−1} and Obg = {zbg}, i.e., zbg = zK .

Each foreground component is described by a set of latent
variables zfg

k = {zwhere
k , zwhat

k , zpres
k } encoding its location,

appearance, and existence in the scene (see [21]). zbg directly
encodes the appearance of the background. For each frame xt
at time t, foreground components can either be propagated
from the previous time step or discovered in the current
image (see [9], [10]).

APEX defines a generative model with learnable parame-
ters θ that is formulated as an SGMM (e.g. [5], [7], [8]) via
the image likelihood

pθ(xt|z1:K,t) =
K∑
k=1

mk(z1:K,t)�N (µ(zk,t), σk), (1)

where mk,t are the segmentation masks, µk,t are the means
of the Gaussian components, and σk is a fixed component
standard deviation. Separate standard deviations are used
for the foreground and background, i.e. σ1:K−1 = σfg and
σK = σbg. A probabilistic prior pθ(z1:K,1:T ) is defined to
regularise the model.

To achieve segmentation and tracking, APEX provides an
approximate inference model [32] with learnable parameters
φ for an object-centric latent representation of how a scene
evolves in a sequence of images, i.e.,

qφ(z1:K,1:T |x1:T ) =

T∏
t=1

qφ(z1:K,t|z1:K,<t,x≤t) . (2)

The inference and generative models are learned jointly as
a VAE ([14], [15]). An overview of APEX is illustrated in



Figure 2. This section proceeds by first defining the under-
lying structure of the generative model, before defining the
associated inference model that facilitates the segmentation
and tracking of objects in video sequences.

A. Generative Model

To capture correlations between frames, we assume the
latents z1:K,t depend on the latents of the previous time steps

pθ(z1:K,1:T ) =

T∏
t=1

pθ(z1:K,t|z1:K,<t) . (3)

pθ(z1:K,t) is further factorised into three terms to represent
propagated objects Opt , discovered objects Odt , and the back-
ground Obg

t . Assuming there are P propagated objects and
D newly discovered objects, we assume propagated objects
depend on the previous latent variables, newly discovered
objects in turn depend on objects that have already been
propagated to avoid the rediscovery of propagated objects

pθ(z1:K,t|z1:K,<t) =
pθ(z

bg
t |z

bg
<t) pθ(z

d
1:D,t|z

p
1:P,t) pθ(z

p
1:P,t|z1:K,<t) . (4)

To facilitate application in robotics and similar to prior works
(e.g. [9], [10]), the latents describing foreground objects
in Ofg are factorised into {zwhere

k , zwhat
k , zpres

k } describing
component location, appearance, and presence in the scene,
respectively, such that

pθ(z
p
k,t|z

fg
k,<t) =

pθ(z
pres
k,t |z

fg
k,<t) pθ(z

what
k,t |z

fg
k,<t)

zpres
k,t pθ(z

where
k,t |z

fg
k,<t)

zpres
k,t , (5)

pθ(z
d
k,t|z

p
1:P,t) =

pθ(z
pres
k,t |z

p
1:P,t) pθ(z

what
k,t )

zpres
k,t pθ(z

where
k,t )z

pres
k,t . (6)

The segmentation masks mk and the means µ of the
Gaussian components in Equation (1) are decoded from
{zwhere
k,t , zwhat

k,t , z
pres
k,t } and zbg

t . We consider zpres
k,t to be Bernoulli

distributed and the remainder of the latents being Gaussian
distributed (see [9], [25]). zwhat

k,t encodes the appearance of
a component and the logits αk,t from which the mask mk,t

is later obtained. zbg
t only encodes the appearance of the

background component. zwhere
k,t encodes a transformation in

an STN [16], describing the size and location of a bounding
box that contains an object. A separate variable for encoding
background location is not needed as every pixel that is not
assigned to a foreground object is treated as background.

In contrast to SCALOR, where the foreground mask needs
to be explicitly clamped to [0, 1], we employ a principled
approach to mask normalisation. In particular, we first in-
troduce a foreground mask mfg

t to model the occupancy of
the foreground as a whole, and then compute intermediate
object masks m̂1:K−1,t which attribute specific occupancy
responsibility to each individual object. Specifically, the
mask logits α1:K−1,t for the K − 1 foreground objects are
computed as

αk,t = c tanh
(
CNN(zwhat

k,t )
)
, (7)

where c is a fixed constant that constrains the mask logits to
[−c , c]. The foreground mask mfg

t is computed as

mfg
t = tanh

(
K−1∑
k=1

STN
(
softplus(αk,t) z

pres
k,t , z

where
k,t

))
,

(8)
where the softplus operation ensures that a possible fore-
ground component makes a non-negative contribution to the
foreground mask when zpres

k,t = 1. The intermediate object
masks m̂1:K−1,t are obtained such that

α̂k,t = STN
(
αk,t, z

where
k,t

)
+ 2czpres

k,t , (9)

m̂1:K−1,t = softmax (α̂1,t, . . . , α̂K−1,t) . (10)

Equation (9) maps components with zpres
k,t = 1 to an interval

that does not overlap with components where zpres
k,t = 0. This

formalises the intuition that objects which are not present
will not occupy any physical space. The masks for the K−1
foreground objects are then obtained by the element-wise
multiplication of the foreground mask mfg

t with intermediate
object masks m̂1:K−1,t,

m1:K−1,t = m̂1:K−1,t �mfg
t . (11)

Finally, inspired by the stick-breaking process formulations
in prior work ([5], [7]), the background mask mbg

t is com-
puted as

mbg
t = 1−mfg

t . (12)

B. Inference Model

The true posterior over latent variables is generally in-
tractable, so a variational approximation qφ(z1:K,1:T |x1:T ) is
introduced. Mirroring Equation (3) in the generative model,
the approximate posterior is factorised as

qφ(z1:K,1:T |x1:T ) =

T∏
t=1

qφ(z1:K,t|z1:K,<t,x≤t) . (13)

The posterior at time step t exhibits the same dependencies
as were assumed in Equation (4) and can thus be written as

qφ(z1:K,t|z1:K,<t,x≤t) = qφ(z
bg
t |zd

1:D,t, z
p
1:P,t,xt)

qφ(z
d
1:D,t|z

p
1:P,t,x≤t) qφ(z

p
1:P,t|z1:K,<t,x≤t) . (14)

We assume that the approximate posterior for the kth prop-
agated object in Opt factorises such that

qφ(z
p
k,t|z

fg
k,<t,x≤t) =

qφ(z
pres
k,t |z

what
k,≤t, z

pres
k,<t, z

where
k,t−1,x≤t)

qφ(z
what
k,t |zwhere

k,t , zwhat
k,<t,x≤t)

zpres
k,t

qφ(z
where
k,t |zwhere

k,<t , z
what
k,<t,x≤t)

zpres
k,t

(15)

and that the posterior for a discovered object factorises as

qφ(z
d
k,t|z

p
1:P,t,x≤t) = qφ(z

pres
k,t |z

what
k,t , z

where
k,t , zp

1:P,t,x≤t)

qφ(z
what
k,t |zwhere

k,t ,x≤t)
zpres
k,t qφ(z

where
k,t |x≤t)

zpres
k,t . (16)

Intuitively, zwhere
k,t encodes where to look in an image in order

to infer zwhat
k,t which is used for determining the appearance

of an object.



Fig. 2: Illustration of APEX. A backbone first extracts an encoding from an input image. This is used to propagate objects
from the previous time step and to discover additional objects in the current image. The remainder of the image is treated
as background. The final image is composed from both the foreground objects and the background.

C. Inference - Implementation

We now proceed with describing the implementation of
how these posterior distributions are inferred for object
propagation and discovery as well as the background.
Feature Extraction Features are extracted with a shared
encoder. Observations x≤t are stacked and encoded into a
feature map et ∈ RH/4×W/4×F with a deep layer aggrega-
tion (DLA) encoder [33] and a ConvLSTM [34] to capture
spatio-temporal correlations. F is the number of the feature
channels. The encoder outputs a high-resolution feature map
that preserves spatial correspondences between the features
and input images. This is beneficial for object tracking [24]
and in contrast to SCALOR, where a low resolution feature
map is used instead. Propagation: Using the previous object
bounding box at t− 1, a square feature map f p

k,t is extracted
from et using an STN, whereby the square dimensions are
set equal to the larger side of the previous bounding box. A
CNN then maps f p

k,t to a feature vector cp
k,t. Discovery: A

grid of equally spaced features cd
1:D,t is extracted from the

feature map et to discover new objects.
Object Location Propagation: The posterior over
zwherek,t is computed with an RNN whose inputs are
[cp
k,t, z

what
k,t−1, z

where
k,t−1]. Discovery: The posterior over zwhere

k,t

is computed from cd
k,t with a 1× 1 convolution.

Object Appearance Propagation: A glimpse Gk,t is
cropped from the feature map et using a STN according
to zwhere

k,t . A RNN takes the encoding of the glimpse Gk,t

encoded by a CNN and zwhat
k,t−1 as inputs to infer the posterior

over zwhat
k,t . Discovery: The posterior over zwhat

k,t is inferred
in same fashion as for propagated objects with weights
being shared and zwhat

0 being initialised to a vector of zeros.
Background: The posterior over zbg

t is obtained with a CNN
using the background mask mbg

t and the current image xt.
Object Presence Propagation: The posterior over
zpres
k,t is computed with an RNN whose inputs are
[cp
k,t, z

what
k,t , z

pres
k,t−1]. Discovery: The presence of objects in

the discovery phase is determined by: 1. whether a new object
is detected and 2. whether that object has been explained by
the propagated objects. We use the scope st to indicate which
pixels have not been explained yet. This scope is defined as
st = 1 −mp

t whereby mp
t is computed as in Equation (8)

but only using propagated objects. We thus decompose the

posterior over zpres
k,t into two terms {pproposal

k,t , pcontext
k,t } ∈ [0, 1]

so that

qφ(z
pres
k,t |z

what
k,t , z

where
k,t , zp

1:P,t,x≤t) = pproposal
k,t pcontext

k,t . (17)

pproposal
k,t is obtained with a fully-connected layer from

[cd
k,t, z

what
k,t , z

where
k,t ] and describes whether a cell might con-

tain a new object or not. The purpose of pcontext
k,t is to avoid

the rediscovery of objects via the scope st. This removes
discovered objects that overlap with propagated objects and
it is computed as

pcontext
k,t =

∑
i,j st,i,j tanh(softplus(αk,t,i,j))∑

i,j tanh(softplus(αk,t,i,j))
, (18)

where (i, j) are all pixel coordinate tuples in an image.
Intuitively, pcontext

k,t corresponds to the fraction of the proposed
object mask that has not been explained by the propagated
objects. Object Filtering: To reduce memory requirements,
foreground objects are discarded at every time step when
zpres
k,t is below a fixed, manually set threshold.

D. Learning

The inference and generative models can be jointly trained
by maximising the evidence lower bound (ELBO). Omitting
object subscripts, this is given by

L(θ, φ) =
T∑
t=1

Eqφ(zt|z<t,x≤t) [log pθ(xt|zt)] (19)

+KL [qφ(zt|z<t,x≤t) ‖ pθ(zt|z<t)] . (20)

Prior distributions for continuous and discrete variables are
assumed to be Gaussian and Bernoulli, respectively. Continu-
ous variables are reparameterised (see [14], [15]) and discrete
variables are obtained using the Gumbel-Softmax trick [35].
In practice, we minimise the inclusive KL divergence [36]
for the zwhat and zwhere as we empirically find this leads to
better performance. We also include an entropy loss on the
K − 1 foreground object masks in the training objective,

LH =

H∑
i=1

W∑
j=1

T∑
t=1

K−1∑
k=1

−mfg
t,i,jmk,t,i,j logmk,t,i,j . (21)

This penalises pixels being explained by multiple compo-
nents. The full training objective is the sum of the ELBO



and the mask entropy loss:

L = L(θ, φ) + LH . (22)

IV. EXPERIMENTS

This section presents experiments on unsupervised scene
segmentation, object tracking, and a simulated object ma-
nipulation task to showcase the capabilities of APEX. Our
recent, state-of-the-art baselines consist of SCALOR [9], OP3
[11], SLOT-ATTENTION [20], SPACE [25], and G-SWM [26].
Datasets We perform a qualitative evaluation using the real-
world Sketchy dataset [23], which contains demonstration
trajectories of a robot arm performing different tasks involv-
ing a set of objects. The images are pre-processed as in [37],
using a 128 × 128 resolution and sequences of length 10.
Sketchy, however, does not contain object annotations, which
prohibits the quantitative evaluation of object segmentation
and tracking methods. We therefore introduce the Panda
Pushing Dataset (P2D), which shows a Panda arm interacting
with objects in simulation and includes pixel-level ground
truth segmentations as well as object tracking IDs. Up to
three objects are spawned in each episode and the robot-
arm moves along a randomly selected straight line in the
horizontal direction. Objects in the dataset are sampled from
a set of 14 common objects (e.g. mugs, coffee cans, apples)
with varying shapes, colours, and textures (see [38]). We
collect a total of 2,400 trajectories (2,000 for training, 200 for
validation, and 200 for testing) with each trajectory having
a length of 20 frames with a resolution of 128× 128.
Metrics Similar to prior work (e.g. [7], [8]), the quality of
object segmentations is evaluated using the Adjusted Rand
Index (ARI) [39] and the Mean Segmentation Covering
(MSC) on a held-out test set. To enable rigorous benchmark-
ing, we report results on two variants of these metrics: one
which only considers foreground objects (see [7]) as well as
one where all pixels and ground truth masks are considered,
including those belonging to the background. The latter
is relevant in the context of this work as the background
needs to be explicitly separated from the foreground for
the manipulation task in Section IV-C. Multi-object tracking
metrics are evaluated following the procedure in Weis et
al. [40], which is based on the protocol from the established
MOT16 tracking benchmark [41].
Implementation Details APEX is trained with ADAM [42]
and a learning rate of 10−4. The baselines are trained with
the default learning rates and optimisers from the released
implementations. The number of components in OP3 and
SLOT-ATTENTION is set to K = 5 for P2D and to K = 8 for
Sketchy. For SCALOR, the hard constraint on object size as
found in the original implementation is removed as P2D and
Sketchy contain objects of various sizes. APEX, SCALOR, and
OP3 are trained with a batch size of 4 for 4× 104 iterations.
An additional 104 warm-up iterations are used for G-SWM.
With the exception of OP3, the models are trained on the full
image sequences. OP3 is trained on sub-sequences of length
five due to the model capacity limitations on images that are
resized to 64 × 64 as used in the original model. Training
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Fig. 3: Scene segmentation results on P2D. APEX achieves
the qualitatively best results, cleanly segmenting all fore-
ground objects as well as the Panda arm.
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Fig. 4: Scene segmentation results on Sketchy. In contrast to
the baselines, APEX manages to cleanly segment all objects
even on this more challenging real-world dataset.

APEX, SCALOR, G-SWM and OP3 on a single NVIDIA Titan
RTX GPU takes about 20 hours each. For SPACE, the batch
size is increased to 16 and the number of training iterations
are increased to 2× 105 and 1× 105 iterations for P2D and
Sketchy, respectively, to account for the fact that SPACE is
trained on individual images rather than image sequences.
For SLOT-ATTENTION the number of training iterations is
further increased to 4×105 and 2.5×105 iterations for P2D
and Sketchy, respectively, as we found that the models take
longer to learn reasonable segmentation masks. The resulting
wall-clock times for SPACE and SLOT-ATTENTION are about
5 hours and 20 hours, respectively.

A. Unsupervised Segmentation and Tracking

Quantitative results for unsupervised segmentation and
tracking on P2D are summarised in Table I and Table II,
respectively. For both tasks, it can be seen that APEX
outperforms the baselines by significant margins. We also
observe a smaller standard deviation of the scores for APEX,
indicating that APEX is more stable than the baselines.
We attribute these improvements to the principled mask
normalisation, the high-resolution feature maps, and the
mask entropy loss. Qualitative tracking results for APEX
are shown in Figure 1. It can be seen that APEX is clearly
able to track individual objects even through occlusions, thus
corroborating the quantitative results in Table II.

Qualitative segmentation results for APEX as well as for
the baselines are shown in Figures 3 and 4 on P2D and
Sketchy, respectively. In Figure 3, a fairly cluttered scene
from P2D can be seen where the robot arm is interacting with
two objects in close proximity to each other. While APEX
clearly segments the foreground objects and the arm itself – a
key prerequisite for task planning and control – the baselines
struggle to do so. SCALOR is unable to accurately segment
the arm with part of it being captured by the background



TABLE I: Mean and standard deviation of the segmentation metrics on P2D from four random seeds.

Object tracking ARI-FG MSC-FG ARI MSC

OP3 3 0.30± 0.03 0.30± 0.01 0.15± 0.05 0.39± 0.03
SCALOR 3 0.31± 0.03 0.37± 0.01 0.43± 0.04 0.52± 0.01
G-SWM * 3 0.38± 0.17 0.42± 0.05 0.33± 0.13 0.55± 0.04
SPACE 7 0.33± 0.17 0.49± 0.12 0.72± 0.21 0.62± 0.09
SLOT-ATT. 7 0.77± 0.24 0.46± 0.16 0.25± 0.22 0.50± 0.14
APEX 3 0.89± 0.02 0.73± 0.01 0.93± 0.00 0.80± 0.01

* The G-SWM results are computed with one failed random seed being excluded.

TABLE II: Mean and standard deviation of the tracking metrics on P2D from four random seeds.

MOTA ↑ MOTP ↑ Match ↑ ID S. ↓ FPs ↓ Miss ↓ MD ↑ MT ↑

OP3 −48.6± 17.0 66.6± 0.9 25.7± 4.4 0.3± 0.1 74.4± 13.4 73.9± 4.5 15.2± 4.7 15.6± 4.8
SCALOR −125.6± 6.3 73.5± 0.5 31.6± 1.1 2.6± 0.0 157.2± 6.5 65.8± 1.1 19.0± 1.7 22.3± 2.3
G-SWM * −41.8± 2.0 73.1± 0.5 36.7± 4.0 2.0± 1.0 78.4± 2.5 61.3± 3.5 25.3± 4.6 28.6± 3.2
APEX 50.5± 4.0 83.2± 0.6 79.7± 0.5 0.2± 0.1 29.2± 3.8 20.0± 0.5 70.8± 1.0 71.2± 0.7

* The G-SWM results are computed with one failed random seed being excluded.

module. We conjecture that this is due to the Gaussian image
likelihood used for training SCALOR, as this does not untie
the standard deviation of the foreground and the background
likelihood as in APEX. A similar problem is observed with
G-SWM which uses the same image likelihood modelling as
SCALOR. For APEX and SPACE, in contrast, a smaller stan-
dard deviation is used for the background likelihood (0.04)
than that of the foreground (0.1) to prevent the background
module from also capturing the foreground objects. A Gaus-
sian likelihood with a smaller standard deviation leads to a
sharper distribution and thus results in a very low likelihood
when the reconstructed colour deviates even slightly from
the target. This will force the background module to focus
on the more uniform background pixels which are easier to
reconstruct compared to the foreground pixels. This is further
examined in Section IV-B. While SPACE manages to segment
the robot arm from the background, it fails to segment the
small objects accurately. Unlike APEX, SPACE operates on
static images and can thus not leverage temporal information.
We argue that this helps APEX to learn to distinguish objects
even when they are physically very close to each other in
one frame, as they might move relative to each other in other
frames. Both OP3 and SLOT-ATTENTION are able to roughly
segment the objects but the segmentation results are noisy
and inaccurate.

In Figure 4, APEX accurately segments all the objects
in the scene – even the cables of the manipulator. We
attribute the segmentation of the robot manipulator into left
and right grippers to the relative motion (open/close) of the
two gripper handles. In contrast, SCALOR fails to segment
the objects and while SPACE is able to segment the arm, it
omits the other foreground objects. This might be caused
by the fact that the objects have a uniform colour and are
therefore easily reconstructed by the background module. G-
SWM successfully segments the objects, but part of the arm is
treated as background. OP3 and SLOT-ATTENTION struggle
to predict accurate masks.

B. Ablation Study
A set of ablation experiments is performed to validate the

efficacy of the key design choices that set apart APEX from
prior art: better scene encoding, principled mask normalisa-
tion, and a mask entropy loss. The results are summarised
in Table III. Rather than re-using features extracted by the
backbone with STNs when inferring object latents, it can
be observed that using STNs to extract information from
the input images, such as in SCALOR, performs consistently
worse. Re-using the backbone features also facilitates a
reduction in model parameters and computation. The fore-
ground scores when training without the additional mask
entropy loss are also smaller, indicating that the entropy loss
is indeed beneficial for learning to disambiguate foreground
objects. It can be seen that mimicking the normalisation
scheme from SCALOR results in lower scores compared to the
mask normalisation introduced in Section III. For the former,
the STN outputs a mask αsk ∈ [0, 1] for each component
and the masks are normalised according to (αsk)

2/
∑
k α

s
k,

which is numerically less stable than a softmax. This might
also explain the increased standard deviation of the scores,
especially for the foreground ARI. Finally, we compare the
use of APEX’s SGMM image likelihood formulation to using
a standard Gaussian likelihood. Both variants of APEX with
a standard Gaussian likelihood fail to learn object-centric
scene decompositions, highlighting the benefit of the SGMM
formulation with separate standard deviations for foreground
and background modules.

C. Object Arrangement Task
Generative models can be used to learn concise and

informative representations that can be used in downstream
tasks. In contrast to methods where a single latent vector
encapsulates all object-relevant information (e.g. [11], [20]),
further factorising the information into [zpres

k,t , z
where
k,t , zwhat

k,t ]
as well as foreground and background latents allows us to
directly use these representations as inputs to a controller.

We demonstrate this in an object arrangement task where
a robot is required to pick and place objects on a table



TABLE III: Mean and standard deviation of the segmentation metrics on P2D from four random seeds.

ARI-FG MSC-FG ARI MSC

APEX 0.89± 0.02 0.73± 0.01 0.93± 0.00 0.80± 0.01

Image space STN 0.71± 0.27 0.62± 0.10 0.91± 0.01 0.71± 0.08
No entropy loss 0.63± 0.18 0.63± 0.07 0.92± 0.01 0.73± 0.05
SCALOR-norm 0.62± 0.30 0.60± 0.13 0.90± 0.03 0.70± 0.09
Gaussian likelihood * 0.10± 0.01 0.06± 0.00 0.00± 0.00 0.28± 0.00
Gaussian likelihood & SCALOR-norm. * 0.02± 0.00 0.06± 0.00 0.00± 0.00 0.28± 0.00

* These models consistently fail to meaningfully segment the images.

  Input Segmentation Point cloud Result

Fig. 5: Object arrangement task illustration. Given an input of
the current scene and a goal image (a), objects are segmented
(b) and matched (c). Depth information is used to obtain
the 3D locations and shapes of all objects, which are used
as inputs to a heuristic control policy that tries to move the
objects to the desired locations specified by the target image.

according to a goal image. This image is first parsed
into foreground objects and background. Assuming depth
information is available, e.g. via a stereo camera, the 3D
location and shape of an object are obtained by filtering
a depth image according to the object mask. The current
scene is processed in the same fashion, which allows the
current objects to be matched to the associated objects in
the goal image according to the smallest L2 distance in
terms of the objects’ appearances encoded by zwhat

k . This is
facilitated by discarding empty detections according to zpres

k

and the explicit separation of foreground and background
components. The current and desired location and shape of
each object serve as inputs to a heuristic control policy that
executes a sequence of sub-tasks to move the objects. This
is illustrated in Figure 5. To avoid collisions, a check for
whether the target location is occupied by other objects is
conducted before executing a sub-task. If all target locations
are occupied, one of the unsorted objects is moved to an
edge of the table to make space for the other objects. This
object will be moved to its target space at the end of the
re-arrangement process.

Three object arrangement tasks are created involving two
to four objects on a table. For each task, we create 150 test
scenarios with the same group of objects spawned in different
locations. The performance of APEX is compared to SCALOR,
SPACE and G-SWM. Comparisons against OP3 and SLOT-
ATTENTION are omitted here as neither explicitly models
foreground and background components which are required
for task execution. Performance is quantified using the mean
distance of the final object locations relative to the desired
object locations. We set a fixed penalty of 1m for outliers
where an object falls off the table.

TABLE IV: Mean and standard deviation of the object
distance to the desired goal positions in metres.

Two objects Three objects Four objects

SPACE 0.07± 0.16 0.23± 0.25 0.23± 0.20
SCALOR 0.22± 0.17 0.15± 0.17 0.18± 0.21
G-SWM 0.02± 0.09 0.04± 0.12 0.25± 0.21
APEX 0.04± 0.10 0.06± 0.13 0.09± 0.18

The results are summarised in Table IV. APEX performs
better than SPACE and SCALOR on all three tasks. Some
failures are caused by missing detections or incorrect object
matches. G-SWM performs better than APEX on tasks with
two or three objects but fails to segment the goal image prop-
erly on task with four objects. Although G-SWM outper-
forms APEX when there are fewer objects, APEX appears
to pull ahead as the number of objects increases. APEX also
performs better on segmenting the robot arm (fig. 3, fig. 4),
which is excluded from this task. SPACE performs worst on
tasks with three objects, but better than SCALOR for two
objects. We find that SPACE tends to oversegment the objects,
i.e., a single object is divided into several components, which
reduces the efficacy of both object matching and location
estimation. We hypothesise that the improvement of SCALOR
compared to SPACE is facilitated by the propagation module
which is also incorporated into APEX and aids the learning
of higher quality segmentations.

V. CONCLUSIONS

This paper proposes APEX , a novel, object-centric genera-
tive model designed to provide state-of-the-art unsupervised
object segmentation and tracking on datasets commonly
encountered in robotics. APEX is evaluated on the estab-
lished Sketchy dataset [23] for qualitative results and on a
custom Panda Pushing Dataset (P2D) for both quantitative
and qualitative results. We show that APEX comprehensively
outperforms prior art in terms of segmentation and tracking
by leveraging improved feature encoding modules as well as
a principled normalisation scheme for object and background
masks. Finally, we demonstrate the efficacy of the unsu-
pervised object representations learned by APEX on a robot
manipulation task that involves the rearrangement of several
objects on a table. APEX outperforms most of the baselines
due to consistently providing segmentations of significantly
higher quality, leading to improvements in object matching
and 3D shape extraction.
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